MAT4210-Algebraic geometry I: Mandatory as-

 signment.14th February 2018

Problem o.i
a) Let a and b be two natural numbers and deine an ideal in $k[x, y]$ by $\mathfrak{a}=\left(x^{b} y, y^{a} x\right)$. Determine a primary decompoition of \mathfrak{a}.
b) Determine the set $Z_{+}(\mathfrak{a})$ in \mathbb{P}^{1}.

Problem 0.2

a) Let $X \subseteq \mathbb{P}^{3}$ be the surface $X=Z_{+}(x w-y z)$. Show that W is irreducible.
b) For any elements α and β in the ground field k not both zero, let $L_{\alpha, \beta}=Z_{+}(\alpha x+\beta z, \alpha y+\beta w)$ and $M_{\alpha, \beta}=Z_{+}(\alpha x+\beta y, \alpha z+\beta w)$. Show that for all α and β the varieties $L_{\alpha, \beta}$ and $M_{\alpha, \beta}$ are lines in \mathbb{P}^{3} lying on the surface X.
c) Show that $L_{\alpha, \beta} \cap L_{\alpha^{\prime}, \beta^{\prime}}=\varnothing$ whenever $(\alpha ; \beta) \neq\left(\alpha^{\prime} ; \beta^{\prime}\right)$ (as points in \mathbb{P}^{1}). Show that $L_{\alpha, \beta}$ and $M_{\alpha^{\prime}, \beta^{\prime}}$ meet in one point.

