MAT4210—Algebraic geometry I: Mandatory assignment. 14th February 2018 ## PROBLEM 0.1 - a) Let a and b be two natural numbers and deine an ideal in k[x, y] by $\mathfrak{a} = (x^b y, y^a x)$. Determine a primary decomposition of \mathfrak{a} . - b) Determine the set $Z_+(\mathfrak{a})$ in \mathbb{P}^1 . ## PROBLEM 0.2 - a) Let $X \subseteq \mathbb{P}^3$ be the surface $X = Z_+(xw yz)$. Show that W is irreducible. - b) For any elements α and β in the ground field k not both zero, let $L_{\alpha,\beta}=Z_+(\alpha x+\beta z,\alpha y+\beta w)$ and $M_{\alpha,\beta}=Z_+(\alpha x+\beta y,\alpha z+\beta w)$. Show that for all α and β the varieties $L_{\alpha,\beta}$ and $M_{\alpha,\beta}$ are lines in \mathbb{P}^3 lying on the surface X. - c) Show that $L_{\alpha,\beta} \cap L_{\alpha',\beta'} = \emptyset$ whenever $(\alpha;\beta) \neq (\alpha';\beta')$ (as points in \mathbb{P}^1). Show that $L_{\alpha,\beta}$ and $M_{\alpha',\beta'}$ meet in one point.