## MAT4210—Algebraic geometry I: Mandatory assignment.

14th February 2018

## PROBLEM 0.1

- a) Let a and b be two natural numbers and deine an ideal in k[x, y] by  $\mathfrak{a} = (x^b y, y^a x)$ . Determine a primary decomposition of  $\mathfrak{a}$ .
- b) Determine the set  $Z_+(\mathfrak{a})$  in  $\mathbb{P}^1$ .

## PROBLEM 0.2

- a) Let  $X \subseteq \mathbb{P}^3$  be the surface  $X = Z_+(xw yz)$ . Show that W is irreducible.
- b) For any elements  $\alpha$  and  $\beta$  in the ground field k not both zero, let  $L_{\alpha,\beta}=Z_+(\alpha x+\beta z,\alpha y+\beta w)$  and  $M_{\alpha,\beta}=Z_+(\alpha x+\beta y,\alpha z+\beta w)$ . Show that for all  $\alpha$  and  $\beta$  the varieties  $L_{\alpha,\beta}$  and  $M_{\alpha,\beta}$  are lines in  $\mathbb{P}^3$  lying on the surface X.
- c) Show that  $L_{\alpha,\beta} \cap L_{\alpha',\beta'} = \emptyset$  whenever  $(\alpha;\beta) \neq (\alpha';\beta')$  (as points in  $\mathbb{P}^1$ ). Show that  $L_{\alpha,\beta}$  and  $M_{\alpha',\beta'}$  meet in one point.