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Introduction

Dimension

For general topological spaces there is no good notion of dimension.
Manifolds of course, have a dimension (or at least each connected
component has). They are locally isomorphic to open sets in some
euclidean space, and the dimension of that space is constant along
connected components, and is the dimension of the component.

Noetherian topological spaces as well, have a dimension, and in
many instances it is very useful, although it can be infinite. The def-
inition is inspired by the concept of the Krull dimension of a Noethe-
rian ring; and resembles vaguely one of our naive conception of
dimension. For example, in three dimensional geometric gadgets,
called threefolds, we may imagine increasing chains of subgadgets
of length three; points in curves, curves in surfaces and surfaces in
the threefold. The definition below works for any topological space,
but the ensuing dimension carries not much information unless the
topology is “Zariski-like”.

For varieties there is another good candidate for the dimension,
namely the transcendence degree of the fraction field K(X) over the
ground field. This may be motivated by the fact the Krull dimension
of the polynomial ring k[x1, . . . , xn] equals n, and obviously the tran-
scendence degree of k(x1, . . . , xn) is n. That the two coincide, follows
from the Normalization lemma which states that every variety is a
finite cover of an affine space.

This materializes in the following definition. In the topological
space X we consider strictly increasing chains of non-empty closed
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and irreducible subsets:

X0 ⊂ X1 ⊂ . . . ⊂ Xr, (1)

and we call r (that is, the number of inclusions in the chain) the length
ChainDim

of such a chain. The dimension dim X of X is to be the supremum of The dimension of a topological space

the set of r’s for which there is a chain like in (1).
One says that the chain is saturated if there is no closed irreducible Saturated chains

subset in between any two of the Xi’s; that is, if Xi ⊆ Z⊆Xi+1 and
Z is closed and irreducible, then Z = Xi or Z = Xi+1. Clearly, the
supremum over the lengths of saturated chains will be equal to the
dimension.

Possibly the dimension of X can be equal to ∞, and in fact, there
are Noetherian spaces for which dim X = ∞, although we shall not
meet many. There are even Noetherian rings whose Krull dimension
is infinite; the first example was constructed by Masayoshi Nagata,
the great master of counterexamples in algebra. For convenience we
put dim ∅ = −∞.

Example 5.1 One do not need to go far to find Noetherian spaces
of infinite dimension. The following weird topology on the set N

of natural numbers is one example. The closed sets of this topology
apart from the empty set and the entire space, are the sets defined by
Za = { x ∈ N | x ≤ a } for a ∈ N. They form a strictly ascending
infinite chain and are irreducible, hence the dimension is infinite. On
the other hand, any strictly descending chain is finite so the space is
Noetherian. We leave it as an exercise for the interested student to
check these assertions. K

Problem 5.1 The notion of dimension we introduced is only useful
for “Zariski-like” topologies. Show that any Hausdorff space is of
dimension zero. Hint: What are the irreducible subsets? M

Problem 5.2 Show that the only irreducible and finite topological
space of dimension one is the so called Sierpiński space. It has two
points η and x with {η} open and {x} closed. M

Problem 5.3 Assume that Y = Y1 ∪ . . . ∪ Yr is the decomposition
of the Noetherian space Y into irreducible components. Show that
dim Y = max dim Yi. M

One immediately establishes the following basic properties of the
dimension

Lemma 5.1 Assume that X is a topological space and that Y⊆X is a
closed subspace. If Y⊆X, them dim Y ≤ dim X. Assume furthermore that
Y is ireducible and that X is of finite Krull dimension. If dim Y = dim X,
then Y is a component of X.
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Proof: Any chain like in (1) in Y will be one in X as well; hence
dim Y ≤ dim X. Assume that dim Y = dim X = r, and let

Y0 ⊂ Y1 ⊂ . . . ⊂ Yr = Y

be a maximal chain in Y. In case Y is not a component of X, there is
a closed and irreducible subset Z of X strictly bigger than Y, and we
can extend the chain to

Y0 ⊂ Y1 ⊂ . . . ⊂ Yr ⊂ Z.

Hence dim X ≥ r + 1, and we have a contradiction. o

Our concept of dimension coincides, when X is a closed irre-
ducible subset of Am , with the Krull dimension of the coordinate
ring A(X). Indeed, the correspondence between closed irreducible
subsets of X and prime ideals in A(X) implied by the Nullstellensatz,
yields a bijective correspondence between chains

X0 ⊂ X1 ⊂ . . . ⊂ Xr

of closed irreducible subsets; like the one (1), and chains

I(Xr) ⊂ . . . ⊂ I(X1) ⊂ (X0)

of prime ideals.Hence the supremum of the lengths in the two cases
are the same, and we have

Proposition 5.1 Let X⊆An be a closed algebraic subset. Then dim X =

dim A(X).

Given that the polynomial ring k[x•] is of Krull dimension equal to
n we know that dim An = n. This is of course what it shoud be, but
it is astonishingly subtle to show, and may be this reflects the fact
that if R is not Noetherian the polynomial ring R[t] may have a Krull
dimension other than dim R + 1. We give a proof; see theorem 5.2 on
page 8 below.

Krull (1951– )
German mathematician

Dense open subsets do not nessecarily have the same dimension
as the surrounding space even when the sourrounding space is irre-
ducible, but it must be less:

DensOpen

Proposition 5.2 Assume that X is an irreducible topological space and that
U is an non-empty open dense subset. Then dim U ≤ dim X.

Proof: We establish first that dim U ≤ dim X. So let

U0 ⊂ U1 ⊂ . . . ⊂ Ur

be a chain of closed irreducible subsets of U. By lemma ?? on page
?? the closures Ui are irreducible closed subsets of X and they satisfy
Ui ∩U = Ui. Hence the chain {Ui} form a strictly ascending chain of
closed irreducible sets in X, and it follows that r ≤ dim X. o
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Problem 5.4 Find an example of an irreducible topological space
X having an irreducible open subset U so that dim U < dim X.
Hint: Take a look at the Sierpiński space. M

Recall that if A is a ring and p⊆ A is a prime ideal, the height The height of an ideal

of p is the length r of the longest strictly increasing chain of prime
ideals

p0 ⊂ . . . ⊂ pr = p

ending at p. It equals the Krull dimension of the localization dim Ap.
For any ring of finite Krull diension one has the inequality

dim Ap + dim A/p ≤ dim A;

It holds true since any satureted chain of prime ideqals in A where
p occurs, can be split into two chains. The first consists of the ide-
als in the cahin contained in p (this includes p itself); its length is
dim Ap. The second chain consists of the remaining ideals, that is,
those strictly containing p, and the length of that chain equals A/p.

In many case there is even an equality

dim Ap + dim A/p = dim A. (2)

However this is slightly subtle—it requires that all saturated chains of
DimPlusCodim

prime ideals in A where p occurs, are of the same length. Later on we
shall see that this holds true for the coordinate rings A(X) of affine
varities. However, if the closed algebraic set X has two irreducible
components of different dimensions, the equality (2) does trivially
not hold for all prime ideals in A(X)

Problem 5.5 Let X = Z(zx, zy)⊆A3. Describe X and determine
dim X. Exhibit two saturated chains of irreducible subvarities of dif-
ferent lengths. Exhibit a hypersurface Z so that Z ∩ X is of dimension
zero. M

Finite morphisms and Noethers Normalization Lemma

A very useful tool when establishing the basic theory of dimension
is the Normalization Lemma. Combined with the Going up Theorem
of Cohen and Seidenberg, it leads to the result that the dimension of
a variety X and the transcendence degree of the function field K(X)

coincide. We formulate and prove the Normalization Lemma in the
geometric context we work; that is, over an algebraically closed field.
However the Normalization Lemma remains true, and the poof is
mutatis mutandis the same, over any field.
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Images and fibres

Let φ : X → Y be a polynomial map between closed algebraic sets
(the notion morphism is reserved for varieties for some unclear rea-
son). To understand a map it is of course important to understand
the fibres, and the following lemma gives a simple criterion for a
point x to lie in a given fibre

InFibre
Lemma 5.2 Let φ : X → Y be a polynomial map beetween the two closed
algebraic subsets X and Y and let x ∈ X and y ∈ Y be two points. Then
φ(x) = y if and only if φ∗my⊆mx.

Proof: One has φ(x) = y, if and only if f (φ(x)) = 0 for all f ∈ my;
that is, if and only if φ∗( f ) = f ◦ φ ∈ mx for all f ∈ my. o

In orher words, the fibre φ−1(y) of φ over the a point y ∈ Y is a
closed algebtraic set given in X by the ideal φ∗my. It can of course be
empty and in which case ∈ φ∗my = A(X), and the ideal φ∗my need
not be radical.

Problem 5.6 Let φ : A1 → A1 be the map φ(t) = tn. For each point
a ∈ A1 determine the ideal φ∗ma and the fibre φ−1(a). M

Problem 5.7 Let ψ : A2 → A2 be the map ψ(x, y) = (x, xy). Deter-
mine then ideals ψ∗m(a,b) for all points (a, b) ∈ A2. M

Problem 5.8 Let A3 → A3 be given as (x, y, z) 7→ (yz, xz, xy). Find
all fibres. M

Morphisms whose image is dense in the target, are called domi-
nant. They are a little easier to handle than general polynomial maps, Dominant maps

and several proofs are reduced to this case.
Suppose that X and Y are varieties and that φ : X → Y is a domi-

nant morphism. Let f be a regular function defined on some open set
in U in Y and shrinking U if necessary, we may assume that f does
not have any zeros in U. Since φ(X) is dense in Y, the intersection
U ∩ φ(X) is non empty, and hence f ◦ φ does not vanish identically
on φ−1U. In other words, the composition map φ∗ : A(Y) → A(X) is
injective. This leads to

Lemma 5.3 A morphism φ : X → Y between affine varieties is dominant
if and only if the corresponding homomorphism φ∗ : A(Y) → A(X) is
injective.

Proof: Half the proof is already done. For the remaining part, sup-
pose the image φ(X) is not dense. Then its closure Z in Y is a proper
closed subset, and I(Z) is a non-zero ideal. Any function f in I(Z)
vanishes along φ(X), and hence φ∗( f ) = f ◦ φ = 0. o
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The Going up Theorem

A polynomial map φ : X → Y between two closed algebraic sets X
and Y is said to be finite if the composition map φ∗ : A(Y) → A(X) Finite polynomial maps

makes A(X) into a finitely generated A(Y)-module.
Finite morphisms have virtue of being closed and they are sur-

jective when they are dominating. This is one part of the Going up
Theorem, for finite maps it merely relies on Nakayama’s lemma.

Moreover, two affine varieties which are related by a dominant
finite morphism, have the same dimension. In the circles of ideas
round the the Going Up and Going Down Theorems, these results
are what we need. The proofs we give are formulated in our geo-
metric context, but there are other variants valid in a more general
setting, which you probably have seen in the course on commutative
algebra.

EndeligLukket
Proposition 5.3 Let φ : X → Y be a finite polynomial map. Then φ closed.
If it is dominating, it is surjective.

Z �
�

//

φ|∗Z
��

X

φ

��

W �
�

// Y

Proof: We begin with proving that φ is surjective when it is dom-
inating. So assume there is a y in Y not by belonging to the image
of φ. Then by lemma 5.2 above, it holds true that my A(X) = A(X).
Now A(X) being finite, it follows from Nakayama’s lemma that
A(X) is killed by element of the shape 1 + a with a ∈ my. The
assumption that φ be dominant ensures that φ∗ is injective, hence
0 = (1 + a) · 1 = φ∗(1 + a). It follows that a = −1 which is absurd
since a ∈ my which is a proper ideal. A(X) // // A(Z)

A(Y) // //

φ∗

OO

A(W)

φ|∗Z

OO

To see that φ is a closed map, let Z⊆X be closed, and decompose
Z into its irreducible components Z = Z1 ∪ . . . ∪ Zr. Then the image
φ(Z) satisfies φ(Z) = φ(Z1) ∪ . . . ∪ φ(Zr), and it suffices to show that
each φ(Zi) is closed. That is, we may assume that Z is irreducible.
Putting W equal to the closure of φ(Z), the restriction φ|Z : Z → W is
a dominating and finite map. Hence by the first part of the proof, it is
surjective! In other words φ(Z) = W and is closed. o

LemmaGoingUp

Lemma 5.4 Let X → Y be a dominating finite morphism between affine
varieties, and suppose that Z ⊂ X is proper and closed subset. Then φ(Z) is
a proper subset of Y, that is φ(Z) 6= Y.

Proof: Assume that φ(Z) = Y and let f be any regular function
on X vanishing along Z. Since φ∗ makes A(X) a finitely generated
module over A(Y), there is a relation

f r + φ∗(ar−1) f r−1 + . . . + φ∗(a1) f + φ∗(a0) = 0

where the ai are functions on Y and where r is the least integer for
which there is a such a relation. Obviously the relation implies that
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a0 ◦ φ vanishes along Z, but since φ(Z) is equal to Y, the composition
map φ|∗Z is injective, and hence a0 = 0. The integer r being minimal
and A(X) being an integral domain, we conclude that f = 0, and
Z = X. o

Proposition 5.4 Let φ : X → Y be a finite and dominating morphism
between affine varieties. Then dim X = dim Y.

Proof: We proceed by induction on dim Y. Let W⊆Y be a closed
subset of codimension one, and let Z be an irreducible component
of the inverse image φ−1W. It suffices to show that Z is of codimen-
sion one in X. To that end, assume that Z′ is a proper, closed and
irreducible subset of X containing Z; that is Z⊆ Z′ ⊂ X. By lemma
5.4 above, the image φ(Z′) is an irreducible and proper subset of Y,
and since it contains W, and W is of codimension one, it holds that
φ(Z′) = W. Hence Z′⊆ φ−1W and therefore Z′ = Z since Z is a
component of φ−1W. o

Problem 5.9 Let φ : X → Y be a dominating and finite morphism
between two affine varieties. Show that if Z1 ⊂ Z2 ⊂ . . . ⊂ Zr is a
strictly ascending chain of irreducible closed subsets, the same is true
for φ(Z1) ⊂ φ(Z2) ⊂ . . . ⊂ φ(Zr). M

Problem 5.10 A variety X is called catenary when it has the fol-
Catenary

Catenary affine varietieslowing property: Suppose Z⊆ Z′ are two closed irreducible subsets.
Then any two chains of irreducible and closed subsets of X con-
necting Z and Z′ have the same length. Show that if φ : X → Y is a
dominating and finite morphism between two affine varieties, then
one is catenary if and only if the other one is. M

The Normalization lemma

We shall formulate the Normalization lemma in the context of vari-
eties; that is, in an algebra version this corresponfs to algebras finitely
generated over an algebraically closed field. The proof however,
works fine over any infinite field, and we shall have the occation dur-
ing the course to use this more general result, but shall not prove it.
There is also a slightly different proof valid over finite fields, which
we shall not need. The proof is an inductibe argument, and the ba-
sic ingredient is the induction step as formulated in the following
lemma:

NoetNormL1

Lemma 5.5 Let X⊆Am be an affine variety whose fraction field k(X)

has transcendence degree at most m − 1; then there is a linear projection
π : Am → Am−1 so that π|X : X → Am−1 is a finite morphism.
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Proof: Let A(X) = k[x1, . . . , xm]/I(X) be the coordinate ring of X
and denote by ai the image of xi in A(X). Since the transcendence
degree of A(X) over k is less than m, the m elements a1, . . . , am can
not be algebraically independent and must satisfy and equation

f (a1, . . . , an) = 0,

where f is a polynomial with coefficients in k. Let d be the degree
of f and let fd be the homogenous component of degree d. Put a′i =
ai − αia1 for i ≥ 2 where the αi’s are scalars to be chosen. This gives1 1 Recall that for any polynomial p(x)

it holds true that p(x + y) = p(x) +
yq(x, y) where q is a polynomial of total
degree less than the degree of f .

0 = f (a1, . . . , am) = fd(1, α2, . . . , αm)ad
1 + Q(a′1, . . . , a′m)

where Q is a polynomial whose terms all are of degree less that
d in a1. Now, since the ground field is infinite, a generic choice of
the scalars αi implies that f (1, α1, . . . , αm) 6= 0 (see exercise 5.11

below ). Hence the element a1 is integral over k[a′2, . . . , a′m] and by
conscequence, A(X) is a finite module over the algebra k[a′2, . . . , a′m].
The projection Am → Am−1 sending (a1, . . . , am) to (a′2, . . . , a′m) does
the thrick. o

Problem 5.11 Let k be an infinite field and f (x1, . . . , xn) a non-zero
AlltidForsjNull

polynomial with coefficients from k. Show that f (a1, . . . , an) 6= 0 for
infinitely many choices of ai from k. Hint: Use induction on n and
expand f as f (x1, . . . , xn) = ∑i gi(x1, . . . , xn−i)xi

n. M

By induction on m one obtains the full version of the normaliza-
tion lemma:

Theorem 5.1 (Noethers Normalization Lemma) Assume that X⊆Am

is a closed subvariety and that the function field k(X) is of transcendence
degree n over k. Then there is a linear projection π : Am → An such that
the projection π|X : X → An is a finite map.

Proof: We proceed by induction on m. If m ≤ n, the elements
a1, . . . , am must be algebraically independent since they generate the
field K(X) over k. But any non-zero polynomial in I(X) would give
a dependence relation among them, so we infer that I(X) = 0, and
hence that X = Am.

Suppose then that m > n. By lemma 5.5 above, there is a finite pro-
jection φ : X → Am−1. The image φ(X) is closed by proposition 5.3
on page 6 and of the same transcendence degree as X since K(X) is
a finite extension of K(φ(X)). Applying the induction hypothesis to
φ(X), we may find a finite projection π : φ(X) → An. The composed
map X → φ(X)→ An is finite. o

DimLikTransDeg
Theorem 5.2 Let X by any variety. Then dim X = trdegkK(X). More-
over, X is catenary.
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In particular the theorem states that the affine n-space An is of
dimension n since cleary the transcendence degree of K(An) =

k(x1, . . . , xn) is n.

Proof: There are two parts of the proof; the case of An and the
general case, and the general case is easily reduced to the case of An.
Indeed, replacing X by some open dense and affine subset, we may
assume that X is affine. Let n = trdegkK(X). By the normalization
theorem there is a finite map X → An, hence dim X = dim An = n.

The case of An is done by induction on n; obviously it holds that
A1 is one dimensional (the ring k[t] is a pid). So assume that n > 1
and let Z ⊂ An be a maximal proper and closed subvariety. Then
dim Z = dim An − 1 and trdegkK(Z) ≤ n − 1 because I(Z) 6= 0.
Noethers Normalization Lemma gives us a finite and dominating
morphism Z → Am, where m = trdegkK(X). By induction it holds
true that dim Am = m and hence dim Z = trdegkK(Z). Hence we find

dim X = dim An − 1 = trdegkk(Z) ≤ n− 1,

and therefore dim An ≤ n. The other inequallity is trivial; there is an
obvious ascending chain of linear subspaces of length n in An.

Finally, to show that X is catenary, we may assume that X is affine.
This follows from proposition 5.2 on page 3, or rather from the proof
of thata proposition.

We proceed by induction on dim X, and it clearly suffices to see
that An is catenary, and by induction on dim X, it suffices to see that
two maximal saturated chains of subvarieties in An have the same
length. So let Z and Z′ respectively be the largest members of the
two chains not equal to An. Their dimensions are less than n and by
induction both are catenary, and the rest of two chain must have the
same length. o

The dimension of a product

The Normalization Lemma also gives an easy proof of the formula
for the dimension of a product. It hinges on the fact that the product
of to finite maps is finite, and by The Normalization Lemma the
proof is reduced to the case of two affine spaces. The formula is
stated for affine varieties due to the fact that we merely have defined
products of these.

DimProdukt
Proposition 5.5 Let X and Y be two (affine) varieties. Then dim X × Y =

dim X + dim Y.
ProdFinite

Lemma 5.6 Let X, Y, Z and W be affine varieties. Let φ : X → Y and
ψ : Z → W be two finite morphisms. Then the morphism φ× ψ : X × Z →
Y×W is finite.
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Proof: We first establish the lemma for the special case when W = Z
and ψ = idZ . In that case the map (φ × idZ )∗ : A(Y)⊗A(Z) →
A(X)⊗A(Z) is just φ∗⊗ idA(Z) . If a1, . . . , ar are elements in A(X)

that generates A(X) as an A(Y)-module, the elements ai⊗1 generates
A(X)⊗A(Z) as a module over A(Y)⊗A(Z), and we are through.

One reduces the general case to this special case by observing that
φ× ψ is equal to the the composition

X× Z
φ×idZ

// Y× Z
idY ×ψ

// Y×W

and using that the composition of two finite maps is finite. o

Proof of Proposition 5.5: Let φ : X → An and ψ : Y → Am be
finite and surjective maps. Then φ× ψ : X × Y → An ×Am is finite
by lemma 5.6 above, and it is clearly surjective. o

Krull’s Principal Ideal Theorem

This is another german theorem, HHauptidealsatz, but it is mostly ref-
ered to by its english name. The simplest version of the theorem con-
cerns the dimension of the intersection of hypersurface with a variety
X in Am, and confirms the intutive belief that a hypersurface cuts out
a space in X of dimension one less than dim X. This statement must
be taken with a grain of salt since the intersection could be empty,
and of course, the variety X could be contained in the hypersurface
in which case the intersection equals X, and the dimension does not
drop. If X is not irreducible, the situation is somehow more compli-
cated. The different components of X can be of different dimensions
and they may or may not meet the hypersurface; the components
must be treated one by one.

Here comes Krull’s theorem. We shall state it, but not prove
it (check your favorit text on commuative algebra to refresh your
memory).

Theorem 5.3 Let A be Noetherian ring and let f ∈ A be a non-zero ele-
ment that is not a unit. Then the height of a minimal prime of the principal
ideal ( f ) is a most one.

The geometric version of Krull’s Hauptidealsatz reads as follows. We
formulate it for affine varieties, that is for irreducible closed algebraic
sets. Notice that the coordinate rings of affine vareties are catenary,
so the equality (2) on page 4 holds, and the heigh of a prime ideal
A(X) equals the codimension of the variety it defines.
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KrullGeom
Theorem 5.4 Let X⊆Am be an affine variety and let f be a polynomial on
Am. Assume f does not vanish identically along X. Then every component
Y of Z( f ) ∩ X satisfies dim Y = dim X− 1.

It can of course very well happen that Z( f ) and X have an empty
intersection, in which case the theorem says nothing; in the theorem
it is impliciltly understood that the component Y is non-empty.

One may formulated the theorem in terms of regular functions
on a general variety as done below. This version is easily reduced
to theorem 5.4. Just replace X by an open affine subset intersecting
the component Y, and the regular function by an extension to a sur-
rounding affine space.

Theorem 5.5 Let X be a variety and let f be a non-zero regular function
on X. Then every component Y of Z( f ) ∩ X satisfies dim Y = dim X− 1.

For reducible subsets X of Am there is no clear and uniform state-
ment. The result depends on how f is related to the different compo-
nents of X, and virtually every conclusion is possible.

Proof: The restriction f |X is a unit if and only if Z( f ) ∩ X = ∅,
and f |X = 0 if and only if X⊆ Z( f ). So we may assume that g =

f |X is not equal to zero and not a unit. A component Y of Z( f ) ∩ X
corresponds to minimal prime ideal I(Y) of the principal ideal (g) in
A(X). By the algebraic version of Krull’s Principal Ideal theorem, the
height of I(Y) is at most one, but since 0 is a prime ideal in A(X), the
height equals one, and dim Y = dim X− 1.

The Hauptidealsatz generalizes to intersections of a closed
algebraic set X with a sequences of hypersurfaces. Since intersecting
with each one of the hypersurfaces increases the codimension with at
most one, induction on the number of hypersurfaces easily gives the
following:

Theorem 5.6 Suppose that X⊆An is a closed algebraic subset and that
f1, . . . , fr are polynomials. Then any component Y of Z( f1, . . . , fr) ∩ X is of
codimension at most r in X.

Proof: The proof goes by induction on r. Let Y′ be a component of
Z( f1, . . . , fr−1) ∩ X containing Y. By induction Y′ is of codimension at
most r− 1 in X; that is, dim Y′ ≥ dim X − r + 1. Moreover, Y must be
a component of of Y′ ∩ Z( fr), and therefore either dim Y′ = dim Y− 1
or fr vanishes on Y′ by theorem The Principal Ideal Theorem (theo-
rem 5.4 above). In the former case obviously dim Y ≥ dim X − r, and
in the latter, we find Y = Y′ and dim Y dim X− r + 1 ≥ dim X− r. o
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Problem 5.12 Let n > m be two natural numbers. Exhibit a (nec-
essarily reducible) closed algebaic subset X of some affine space AN

and a hypersurface Z( f ) such hat dim X = n and dim X ∩ Z( f ) = m.
Hint: For instance, one can let X be the union of two linear sub-
spaces of dimension n and m + 1. M

Intersection in projective spaces

The Principal Ideal Theorem has important cosequence for intersec-
tions in projectice spaces. The most stiking is that the intersection of
two subvarietis will be non-empty once their dimesnions satisfy the
following very natural condition. If X and Y are the two subvarieties
of Pn then X ∩Y 6= ∅ once

codim X + codim Y ≤ n. (3)

One can even say more, for any component Z of the intersection
CodimFormProj

X ∩Y, the following inequality holds

codim Z ≤ codim X + codim Y.

It is straight forward to finf examples of projective varieties X and
Y not satisfying he inequality (3) and having an empty intersection.
Just take two linear subvarieties P(V) and P(W) with dim P(V) +

dim P(W) < n (e.g., two skew lines in P3).

Reduction to the diagonal

These intersection theorms follows by combining Krull’s Principal
Ideal Theorem with a trick called the "Reduction to the diagonal". It
consists of the observation that the following observation. Let X and
Y be two subvarieties of An. Then of course X × Y lies as a closed
subvariety of the affine space An ×An = A2n. And clearly X ∩ Y is
isomorphic to the intersection ∆ ∩ X × Y, where ∆ is the diagonal in
An ×An.

The salient point is that the diagonal is cut out by a set of very
simple equations. If the coordinates on corresponidng to the left
factor in An ×An = A2n are {x}i and those of the right factor {yi}
the diagonal is given by the vanishing of the n functions xi − yi.
Hence we can conclude by Krull’s Principal Ideal Theorem that any
(non-empty) component Z of X ∩ Y satsfies dim Z ≥ dim X × Y − n
but dim X×Y = dim X + dim Y and we find

dim Z ≥ dim X + dim Y− n.
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Summing up we formuate the result as a lemma Let X and Y be two
subvarieties of An then any (non-empty) component of the intersec-
tion X ∩Y satifies

codim Z ≤ codim X + codim Y.

Of course, it might very well happen that X ∩ Y is empty, even for
hyper surfaces. As well, the strict inequality might hold; for example
it could happen that X = Y!

The projective case

The proof of thenext intersection theorem below will pass by the
afine cones over the projective varities, so we begin with a few obser-
vations about them. The natural equality C(X ∩ Y) = C(X) ∩ C(Y)
is obvious, and if Z is a component of the intersection X ∩ Y the
cone C(Z) will be a component of C(X ∩ Y). Going to cones in-
creses the dimensions by one; that is, for any varety X it holds
that dim C(X) = dim X + 1. Then of cpurse, it holds true that
codimPn X = codimAn+1 C(X); that is the codiemsnion of X in Pn

is the same as the codimension of its cone in An+1.
The following theorem is on of the cornerstones in projective ge-

ometry. Wether two varities intersect or not is as much a question of
their size as of their relative position: If they are "large enough" they
intersect.

Proposition 5.6 Let X and Y be two projective varieties in the projective
space Pn. Assume that dim Y + dim X ≥ n. Then the intersection X ∩Y is
non-empty, and any component Z of X ∩Y satisfies

codim Z ≤ codim X + codim Y.

Proof: Firstly, if dim X + dim Y ≥ n then dim C(X) + dim C(Y) ≥
n + 2 and the salient point is that the intersection C(X) ∩ C(Y) is
always non-empty: The two cones both contain the origin! Moreover,
the dimenson of any component W of C(X) ∩ C(Y) satisfies dim W ≥
dim C(X) + dim C(Y) − n − 1 = dim X + dim Y − n + 1 ≥ 1. One
deduces that the intersectiion C(X) ∩ C(Y) is not reduced to the
origin, and hence is the cone over a non-empty sunset in Pn.

Since X and the cone over X have the same codimension, we de-
duce directly from xxx that

codim Z ≤ codim X + codim Y.
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