
MAT4210—Algebraic geometry I: Notes 6
Bezout’s theorem

6th March 2018

Hot themes in Notes 6: Divisors—Local multiplicities—The Koszul
complex—Bezout’s theorem in the plane—General Koszul—A little
about graded modules
Super-Preliminary version 0.1 as of 6th March 2018 at 9:17pm—Well, still not
really a version at all, but better. Improvements will follow!
Geir Ellingsrud — ellingsr@math.uio.no

Introduction

Already sir Isaac Newton seems to have observed that the number
of intersection points of two curves in P2 equals the product of their
degrees. If one start looking at examples this pattern emerges almost
immediately. Two lines meet in one point and two conics in four—at
least if the two conics are what one calls general.

Étienne Bézout (1730–1783)

French Mathematician
That a line L meets a curve X which is the zero locus of a homo-

geneous form F of degree n, is a direct consequence the fundamen-
tal theorem of algebra. Choosing appropriate coordinates we can
parametrize the line as (u; v; 0); and hence the parameter values of
the intersection points are the roots of the equation F(u, v, 0) = 0, of
which there are n, unless, of course x2 is a factor of F, in which case
the line L is a component of X. There is also an issue of multiplici-
ties, all roots need not be simple. This issue persists in the general
situation and is inherent part of the problem.

Example 6.1 The two conics zy � x
2 and zy � x

2 � y
2 only intersect

at (0; 0; 1). Indeed, the difference of the two equations being y
2, it

must hold that y = 0 at a common zero; and then x must vanish there
as well. The parabolas have contact oder four at (0; 0; 1); inserting the
parametrization (uv, u

2, v
2) of the first into the equation of the second

yields, the equation u
4 = 0, which has a quadruple root at u = 0. K

Two ellipses with fourth order contact.

Apparently what now is called Bézout’s theorem in the plane,
was known a good time before Bézout’s published his famous paper
Théorie générale des équations algébriques in 1779. His original contri-
bution is the generalization to projective n-space Pn. He proved that
the number of points n hypersurfaces in Pn have in common, if finite,
equals the product of their degrees. And as usual there is an issue of
multiplicities; local multiplicities are part of the accounting.
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Curves versus divisors

Like in the section xxx where we spoke about hypersurfaces, we shall
give an extended meaning to the word curve in the present context
around Bézout’s theorem. The proper technical term is an effective di-

visor. Such an animal is just a formal linear combination Âi
niXi where Effective divisors

the ni’s are non-negative1 integers and the Xi’s are (irreducible) sub- 1 The significance of the attribute
effective is that the coefficients ni are
non-negative. A divisor is a linear
combination Âi

niXi with integral
coefficients

varieties of P2 of codimension one—that is, irreducible curves. This
might look enigmatic at the first encounter, but it is merely a conve-
nient geometric way to keep track of all the irreducible components
of a homogeneous form. Indeed, if F is homogeneous of degree n

and splits like F = ’i
F

ni

i
into a product of irreducible forms, the

associate divisor is Âi
niZ+(Fi).

And so, by a curve X we shall mean the divisor associated to a
homogeneous from F, and we shall allow ourself the slight abuse of
the language to write Z+(F) for that divisor (in case of an imminent
danger of confusion, we shall be precise about what Z+ means). In
the benign case that F has no multiple factors, the two interpretations
of Z+(F) coincide.

The degree of the curve X means the degree of F and it holds that
deg X = Âi

ni deg Xi.

Bézout’s theorem in the plane

To set the scene let X and Y be two curves on P2 without a common
component. The curve X will be the zero locus of a homogeneous
form F and Y that of the homogeneous form G ; that is, X = Z+(F)

and Y = Z+(G). The degrees of F and G will be denoted by m and n

respectively.
Since X \ Y is a finite set we can choose homogeneous coordinates

x0, x1, x2 on P in a way that X \ Y is contained in the basic affine
open set D = D+(x2); in other words x2 does not vanish at any point
of X \ Y. The basic open set D is an affine 2-space with coordinates
x0x

�1
2 and x1x

�1
2 . We shall keep this notation through out Notes 6.

The local picture

A description of the intersection X \ Y in the local affine piece D is
obtain by dehomogenizing the two forms F and G with respect to the
variable x2. This yields two polynomials f and g in x0x

�1
2 and x1x

�1
2

which are related to F and G by the equalities

x
m

2 f (x0x
�1
2 , x1x

�1
2 ) = F(x0, x1, x2)

x
n

2 g(x0x
�1
2 , x1x

�1
2 ) = G(x0, x1, x2).
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The zero locus Z( f , g) in the affine space D equals X \ Y, but of
course, if local multiplicities are involved, it will not be radical. Any-
how, we introduce the algebra

OX\Y = k[x0x
�1
2 , x1x

�1
2 ]/( f , g).

This algebra is supported at the intersection X \ Y, and again since
X \ Y is finite, OX\Y is a finite dimensional algebra over k. Therefore
it decomposes as the product

OX\Y = ’
p2X\Y

OX\Y,p

where OX\Y,p denotes the localization of OX\Y at the maximal ideal
corresponding to the point p.

The local intersection multiplicity of the curves X and Y at the point The local intersection multiplicities

p is defined as the integer µp(X, Y) = dimk OX\Y,p. Then it holds
true that

dimk OX\Y = Â
p2X\Y

dimk OX\Y,p.

With this in place, we can formulate Bezout’s theorem in the plane,

Two parabolas with triple contact at the

origin.

but recall that the term curve has the extended meaning explained
above.

Theorem 6.1 Let X and Y be two curves in P2
without a common compo-

nent. Then

deg X · deg Y = Â
p2X\Y

µp(X, Y).

The simplest local behavior two curves X and Y can have in an
intersection point p is that the multiplicity µp(X, Y) is one. This hap-
pens when and only when the curves intersect transversally; i.e.,

Transversal intersectionswhen both have a well defined tangent at p and the two tangents are
different. To explain what this means, we assume that p is the origin
and use coordinates x and y in a basic open affine neighbourhood
about p. Then f = a1x + b1y + H1(x, y) and g = a2x + b2y + H2(x, y)

where the terms Hi’s are of degree superior to one. The linear forms
Li = aix + biy define the tangents to the curves, and the curves in-
tersect transversally if Li are linearly independent; that is, they are
non-zero and define two distinct lines.

Example 6.2 — Transversal intersections Assume that two
curves X and Y are given locally round the origin p of A2 as the
zero sets of the polynomials f = x + H1 and g = y + H2 where
deg Hi � 2. Then µp(X, Y) = 1.

Indeed, collecting all terms of H1 containing x together in a term
xr(x, y), one may write

f = x(1 + r(x, y)) + h(y)
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where r(x, y) and h(y) both are of degree one or more. In the local
ring OA2,p the element (1 + r) is invertible with say a = (1 + r)�1.
Hence x = �ah(y) mod ( f , g) . This gives that

g = y(1 + h2(ah(y), y))

mod ( f , g), and the important points is that 1 + h2(ah(y), y) is in-
vertible since H2(ah(y), y) has y

2 as a factor. It follows that y 2

( f , g)OA2,p and hence x lies there as well, so that ( f , g)OA2,p = (x, y),
and the multiplicity is one. K

Example 6.3 Let f (x, y) = y � x
2 and g(x, y) = y � x

2 � xy. Then the
two curves X = Z( f ) and Y = Z(g) have triple contact at the origin;
that is, µp(X, Y) = 3. One finds

( f , g) = (y � x
2, y � x

2
� xy) = (y � x

2, x
3),

and hence OX\Y,p = k[x, y]/( f , g) ' k[x]/x
3 K

Problem 6.1 Let n > m be two natural numbers and let a(x) and
OK

b(x) be two polynomials which do not vanish at x = 0. Determine
the local intersection multiplicity at the origin of the two curves de-
fined respectively by y � a(x)x

n and y � b(x)x
m. If m = n, show by

exhibiting an example that the local multiplicity can take any integral
value larger than n. M

Problem 6.2 Find all intersection points of the two cubic curves de-
OK

fined by the forms zy
2 � x

3 and zy
2 + x

3 (we assume the characteristic
of the ground field to be different from two). Determine all the local
intersection multiplicities of the two curves. M

The proof of Bézout in the plane

There are many proofs of Bézout’s theorem of various flavours, and
the one we shall present, leans on an analysis of the graded k-algebra
A = k[x0, x1, x2]/(F, G) and its Hilbert function.

One half of the proof naturally belongs to the realm of what are
called coherent sheaves on P2 and their Euler characteristics, and
within that context is obvious. However, we do not have all that
advanced machinery to our disposal and have to do with an ad hoc

calculation (and to be honest, a calculation that would be in some
way or the other included in the development of the theory). The
point is to link the dimensions dimk Ad of the graded pieces of de-
gree d to the local multiplicities. We shall see that, at least when d is
sufficiently large, dimk Ad do not depend on d, and in fact it holds
true that

dimk Ad = Â
p2X\Y

µp(X, Y).
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The other half of the proof is basically the same in our context as
in the context of coherent sheaves. It consists of using what is called
a Koszul complex, to show that for d >> 0 the dimensions dimk Ad

are equal to the product deg X · deg Y; that is, to the left side of the
equality in Bézout’s theorem.

The graph of the Hilbert function hA(d).

The Koszul complex

There are a great many Koszul complexes around (in fact one for
each finite sequence of elements in a ring), but the one we need, is
of the simplest sort. It is a four term2 exact sequence of graded R-

2 Strictly speaking, only the three
leftmost terms belong to the complex.
The quotient R/(F, G) is the zeroth
homology of the complex.

modules3, and is shaped like

3 Hence the maps are homogeneous of
degree zero.

0 // R(�n � m)
a
// R(�n)� R(�m)

b
// R // R/(F, G) // 0.

The maps a and b are defined as a(a) = (aF,�aG) and b(a, b) =

aG + bF, and the last map is the quotient map. One easily checks
that b � a = 0, and indeed, that ker b = a. This last equality hinges
on the assumption that F and G be without common components.
Indeed, if b(a, b) = 0; that is, if aF = �bG, it follows that a = cG

and b = �cF for some polynomial c since the polynomial ring is a
ufd). The sequence obviously being exact at all other places than at
the middle one, is therefore exact.

Jean-Louis Koszul (1921–12/2 2018)

French mathematician

Lemma 6.1 The Hilbert function hA(d) of A satisfies hA(d) = nm for

d � n + m.

Proof: It is a general fact that the Hilbert function is additive over
exact sequences of graded modules4, and according to this principle

4 The maps must of course be homoge-
neous of degree zero. Additivity means
that for each degree d the alternating
sum of the dimensions of the graded
pieces of degree d equals zero

we find for d > n + m that

hA(d) = (d+2
2 )� (d�n+2

2 )� (d�m+2
2 ) + (d�m�n+2

2 ) = nm,

where the last equality results from a trivial computation with the
binomial coefficients. o

Problem 6.3 Perform the trivial computation in the proof. M

The local connection

Now, we have come to the point where to establish the link between
the graded pieces of A and the algebra OX\Y. Recall that when set-
ting the scene, we chose coordinates so that the entire intersection
X \ Y is contained in the basic open set D = D+(x2). So it is very
natural to localize at x2 and to consider the localized algebra Ax2 .
Since x2 is homogeneous, Ax2 is a graded algebra whose homoge-
neous elements are of the form H · x

�r

2 with H (the residue class of) a
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homogeneous polynomial. The degree of the homogeneous element
H · x

�r

2 is of course equal to deg H � r.
The first crucial fact is the following description of the graded

pieces of Ax2 ; they are all isomorphic to OX\Y:

Lemma 6.2 The degree zero part of Ax2 equals OX\Y, and the decomposi-

tion of Ax2 into homogeneous pieces takes the form:

Ax2 =
M

i2Z

k[x0x
�1
2 , x1x

�1
2 ]/( f , g) · x

i

2 =
M

i2Z

OX\Y · x
i

2.

Proof: The first thing to observe, is that in the ring Ax2 where x2

is invertible the equality, (F, G) = ( f , g) holds; indeed, x
n

2 f = F

and x
m

2 g = G. The second is that both f and g are homogeneous of
degree zero.

Given that (Ax2)0 = OX\Y clearly OX\Y · x
d

2 ✓ (Ax2)d, and because
x2 is invertible, the multiplication map is injective.

Any homogeneous element z in Ax2 is of the form z = ax
s

2 where
a is homogeneous of degree zero and s 2 Z; indeed, z equals
H(x0, x1, x2)x

�r

2 for some homogeneous polynomial H and some
integer r, and therefore z = H(x0x

�1
2 , x1x

�1
2 , 1)x

d�r

2 where d denotes
the degree of H. Hence Ax2 =

L
d2Z(Ax2)0 · x

d

2.
What remains, is to identify the degree zero piece (Ax2)0. To that

end, consider the quotient map R ! R/(F, G). When localized in x2

it yields the quotient map

Rx2 ! Rx2 /( f , g)Rx2 = Ax2 .

Considering the degree zero part of this map, and observing that the
degree zero part of the ideal ( f , g) in Rx2 is the ideal ( f , g)(Rx2)0 in
(Rx2)0—since f and g both are of degree zero—we are done; indeed,
the degree zero part of Rx2 equals (Rx2)0 = k[x0x

�1
2 , x1x

�1
2 ]. o

The second, and last, crucial element in the proof is the the follow-
ing:

Lemma 6.3 For d sufficiently large, the localization map A ! Ax2 induces

an isomorphism Ad ! (Ax2)d between the graded pieces of degree d.

Proof: There are two things to prove; that the map is injective and
that it is surjective.

First of all, the kernel of the localization map has support at the
origin because the locus Z(x2) and the support of A only has the ori-
gin in common: Since Z+(F, G, x2) = ∆, the Projective Nullstellensatz
implies that (F, G, x2) is m+-primary (recall that m+ = (x0, x1, x2)).
Any element in the kernel of the localization map is killed by some
power of x2 and being an element in A, it is killed by F and G. Hence
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the kernel is killed by some power mN
+ , and is therefore of finite di-

mension as a vector space over k. Being of finite dimension over
k, the kernel can merely have finitely many graded pieces differ-
ent from zero, and hence the localization maps induce injections
Ad ! (Ax2)d in large degrees.

Turning to the surjectivity, we observe that any homogeneous
element ax

r

2 2 Ax2 with a of degree zero, can be expressed as a
product ax

r

2 = Hx
r�d

2 where H is the residue class mod (F, G) of
a homogeneous polynomial of degree d, and consequently, when
r > d, the element ax

r

2 lies in the image of the localization map.
So, take any basis a1, . . . , ar for (Ax2)0 and write the members as

products aj = Hjx
�dj

2 where Hj is the residue class of a homogeneous
polynomial of degree dj. If now d > max dj, all the products ajx

d

2 lie
in the image by our observation above; and since multiplication by x2

is an isomorphism (Ax2)0 ! (Ax2)d, this shows that the localization
map Ad ! (Ax2)d is onto, and we are sauf and saint. o

Ad
// (Ax2 )d

A0 //

x
d

2

OO

(Ax2 )0

x
d

2'

OO

Summing up, the two lemmas combined yields the result we want:

Proposition 6.1 For d >> 0, the localization map A ! Ax2 induces an

isomorphism between the graded piece Ad of A and OX\Y · x
d

2 . In particu-

lar, the following equality holds true

dimk Ad = dimk OX\Y.

Proof of Bézout’s theorem: Finally, to finish of the proof of
Bézout’s theorem the lemmas we have established and the definitions
we have given yields the following sequence of equalities:

mn = hA(d) = dim Ad = dimk OX\Y = Â
p

dimk OX\Y,p = Â
p

µp(X, Y)

o

General Bézout

Notice that in the above argument, we never used in an essential
way that the scene is set in P2. The arguments go through mutatis

mutandis for the intersection of n hypersurfaces Xi = Z+(Fi) in Pn as
long as the intersection is finite. One chooses coordinates such that
X1 \ . . . \ Xn is entirely contained in D+(xn), and one lets fi be the
polynomial Fi dehomogenized with respect to xn. The algebra

OX1\...\Xn
= k[x0x

�1
n , . . . , xn�1x

�1
n ]/( f1, . . . , fn)

is then finite dimensional as a vector space over k. Moreover, letting
A = k[x0, . . . , xn]/I where I is the ideal generated by the Fi’s; that is
I = (F1, . . . , Fn), one obtains the following
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Proposition 6.2 For d >> 0, the localization map A ! Axn
induces

an isomorphism between the graded piece Ad of A and OX1\...\Xn
· x

d
n. In

particular

dimk Ad = dimk OX1\...\Xn
.

There is a Koszul complex build on the n forms Fi of length n +

1. It requires more work to construct than the simple one we used
above, and shall not do that. But established, via a computation with
binomial coefficients, it shows that dim Ad = deg X1 · . . . · Xn.

Introducing local intersection multiplicities by splitting OX1\...\Xn

into a product of local factors

OX1\...\Xn
= ’

p2X1\...\Xn

OX1\...\Xn ,p

and setting µpX1, . . . , Xn = dimk OX1\...\Xn ,p, one arrives at the
general Bézout theorem

Theorem 6.2 Assume that Xi for 1  i  n is a hypersurface in Pn
and

assume that their intersection is finite. Then

’
i

deg Xi = Â
p2X1\...\Xn

µp(X1, . . . , xn).

The Koszul complex in dimension three

Example 6.4 — The Koszul complex on three elements To get
an idea of the shape of the general Koszul complex, we take a look
at the one on three elements. Given three forms F1, F2 and F3 and
let di = deg Fi. The Koszul complex build on these forms is the
following complex:

0 // R(�d123)
b
// R(�d23)� R(�d13)� R(�d13)

M
// R(�d1)� R(�d2)� R(�d3)

a
// R

where dij = di + dj and d123 = d1 + d2 + d3. The middle map is given
by the antisymmetric matrix

M =

0

B@
0 �F3 F2

F3 0 �F1
�F2 F1 0

1

CA

and two others, a and b, respectively by the matrices (F1, F2, F3) and
(F1, F2, F3)t. It is fairly straightforward to check that we have a com-
plex; that is, M � b = 0 and a � M = 0. The condition for the com-
plex being exact is that F1 and F2 do not have common component
and that F3 does not belong to (F1, F2). In case the forms are in four
variables, this is equivalent to the intersection in P3 of the three cor-
responding hypersurfaces being finite. K
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Problem 6.4 Show that (R/(F1, F2, F3))d is of dimension d1d2d3

when d � d1 + d2 + d3. M

Example 6.5 As a warm up, we take a quick look at the localization
of the polynomial ring R = k[x0, x1, x2] in the variable x2. This ring
is a graded algebra whose homogeneous elements are shaped like
F · x

�r

2 with F a homogeneous polynomial; the degree of F · x
�r

2
equals deg F � r.

One obviously has Rx2 = k[x0x
�1
2 , x1x

�1
2 , x2, x

�1
2 ], and since the two

first elements, x0x
�1
2 and x1x

�1
2 are of degree zero, the decomposition

of Rx2 into homogeneous pieces takes the form

Rx2 =
M

i2Z

k[x0x
�1
2 , x1x

�1
2 ]xi

2. (1)

Be aware that the index i also takes all negative values—there are
Dekomp

rationale functions of negative degree. A fraction F(x0, x1, x2)x
�b

2
in Rx2 , i.e., of a homogenous form F of degree a and the power x

�b

2 ,
corresponds to the element F(x0x

�1
2 , x1x

�1
2 , 1)x

a�b

2 in the right hand
sum in the equation (1) above. K

Problem 6.5 Show that the degree zero part of Rx2 equals k[x0x
�1
2 , x1x

�1
2 ].

M

Example 6.6 This describes an observation that can be useful when
computing local multiplicities. Assume that X, X

0 and Y are curves
(in the extended meaning, i.e., effective divisors) passing through the
point p and assume that neither X nor X

0 has a common component
with Y that passes through p. If f and f

0 are the equations of X and
X
0, we denote by X + X

0 the curve whose local equation is f f
0.

Then it holds true that

µp(X + X
0, Y) = µp(X, Y) + µp(X

0, Y). (2)

AddLokMult

One has the exact sequence of algebras

0 // OP2,p/( f
0, h)

a
// OP2,p/( f f

0, h) // OA2,p/( f , h) // 0.

The map a is multiplication by f and is injective; indeed, if a f =

b f f
0 + ch it follows that c = c

0
f and hence a = b f

0 + c
0
h; that is

a = 0 in OP2,p/( f
0, h). The exactness of the sequence at the two other

places follows easily, and hence taking dimensions over k we obtain
the equality (2) K

The affine pieces in D+(z) of one the two

curves in problem 6.6

The affine pieces in D+(z) of the two

curves in problem 6.6

Problem 6.6 Let X and Y be two curves in P2 being the zero loci

ToKurver

of the polynomials z
5
y

2 � x
3(z2 � x

2)(2z
2 � x

2) and z
5
y

2 � x
3(z2 �

x
2)(2z

2 � x
2). Determine all intersection points and the local multi-

plicities in all the intersection points of X and Y M
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Problem 6.7 Let C be the curve given as zy
2 � x(x � z)(x � 2z).

Determine the intersection points and the local multiplicities that X

has withe line z = 0. Same task, but with the line x � z = 0. M

Appendix: Some graded algebra

Graded modules

Recall that a graded k-algebra is a k-algebra S with a decomposition
S =

L
d

Sd into a direct sum of k-vector spaces. The summands are
called the homogeneous parts of S, and the elements of Sd are said to
be homogeneous of degree d. The decomposition is subjected to the
requirement

Sd · Sd0 ✓ Sd+d0 ,

which can be considered a compatibility relation between the grading
and the multiplicative structure of S. The part S0 of elements of de-
gree zero acts on each of the parts Sd making them S0-modules. The
field k is contained in S0.

Example 6.7 The archetype of a graded ring is the polynomial ring
R = k[x0, . . . , xn] with the homogenous part of degree consisting of
the homogenous forms of degree d. K

Example 6.8 If one localizes R in xn, the resulting algebra Rxn
is

graded. The homogeneous elements of Rxn
are the ones of the form

z = H(x0, . . . , xn)x
�r
n for some homogeneous polynomial H and some

non-zero integer r. The degree of the element z equals deg H � r.
When deg z = 0, it holds true that z = H(x0x

�1
n , . . . , xn�1x

�1
n ); that is

the dehomogenization of H. This implies that the degree zero piece
of Rxn

is given as the polynomial ring (Rx2)0 = k[x0x
�1
n , . . . , xn�1x

�1
n ].

Hence the decomposition of Rxn
into homogeneous pieces is shaped

like
Rx2 =

M

i2Z

k[x0x
�1
n , . . . , xn�1x

�1
n ] · x

i

n.

K

A graded S-module is an S module M with a decomposition M = Graded S-modules

L
d

Md into a direct sum of k-vector space such that

Sd0 · Md ✓ Md+d0

Notice that all the summands Md are modules over the degree zero
piece S0.

Example 6.9 Every homogenous ideal a in R is a graded Rn-module.
It satisfies the equality a =

L
d
a \ Rd so that the homogeneous part

ad of degree d is given as the intersection ad = a\ Rd.
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The quotient R/a is a graded module over Rn as well as a graded
k-algebra. It holds true that R/a =

L
d

Rd/ad. K

The introduction of a new concept in mathematics is almost al-
ways followed by the introduction of corresponding “morphism’s’;
that is, “maps” preserving the new structure. In the present case
a “morphism” between two graded S-modules M and M

0 is an
S-homomorphism f : M ! M

0 that respects the grading; that is
f(Md)✓ M

0

d
. One says that f is a homogeneous homomorphism of

degree zero, or homomorphism of graded modules. Two graded mod- Homomorphism of graded modules

ules are isomorphic if there is a homomorphism of graded modules Isomorphic graded modules

f : M ! M
0 having an inverse.

One easily checks that the kernel and the cokernel of a homomor-
phism of degree zero are graded in a natural way. Students initiated
in the categorical language would say that the graded modules form
an abelian category.

Problem 6.8 Show that if f : M ! M
0 is invertible and homoge-

neous of degree zero, the inverse is automatically is homogeneous of
degree zero. M

There is a collection of shift operators acting on the cat-
egory of graded S-modules. For each graded module M and each
integer m 2 Z there is fresh graded module M(m) associated to
a graded module M. The shift operators do not alter the module
structure of M, not even the set of homogeneous elements is affected,
but they give new degrees to the homogeneous elements. The new
degrees are defined by setting

M(m)d = Mm+d.

In other words, one declares the degree of elements in Mm to be
d � m.

Example 6.10 For instance, when m > 0, the shifted polynomial
ring R(�m) has no elements of degree d when d < f , indeed,
R(m)d = Rd�m, and the ground field k sits as the graded piece of
degree m. Whereas the twisted algebra R(m) has non-zero homoge-
neous elements of degree down to �m with the ground field sitting
as the piece of degree �m. K
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�m
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R4
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R5

�m
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�m

R7

�m

R8
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The graded modules R(�m) and R(m)

Example 6.11 One simple reason for introducing the shift operators,
is to keep track of the degrees of generators. For instance, consider
the principle ideal a = (F) in the polynomial ring R generated by a
homogeneous form F of degree m. As every principal ideal in R is,
a is isomorphic to R as an R-module—multiplication by F gives an
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isomorphism. However, this not an isomorphism of graded modules
since it alters the degrees; a homogeneous element a is mapped to
the product aF which is of degree deg a + m. But multiplication by
F induces a graded isomorphism between R(�m) and a, since for
elements a 2 R(�m)d it holds that deg a = d � m and consequently
deg aF = d.

The classical short exact sequence is therefore an exact sequence of
graded modules:

0 // R(�m)
µ
// R // R/F // 0,

where thew map µ is multiplication by F. K

All graded modules we shall meet in this course are finitely
generated over the polynomial ring R. Their generators may be taken
to be homogeneous, but they can of course be of different degrees.
If the degrees of generators are d1, . . . , dr, then M is quotient of a
module shaped like a finite direct sum

L
1ir

R(�di); the factor
R(�di) is sent to the generator of degree di. The twists make the
quotient map homogenous of degree zero.

Lemma 6.4 If M is a graded module finitely generated over the polynomial

ring R, then all the graded pieces Md are finite dimensional vector spaces

over k.

Proof: This is more or less obvious. It is true for R itself, hence
for all twists R(m), hence for direct sums

L
i
R(�di). And if M is a

quotient of
L

i
R(�di)d, the graded piece Md of M of degree d is a

quotient of the graded piece
L

i
R(�di)d. o

Hilbert functions and Hilbert polynomials

There are some numerical invariants attached to a graded module M

finitely generated over a polynomial ring R, which makes working
with graded modules much easier. These functions, or their alter
egos, are ubiquitous in algebraic geometry and they play an ex-
tremely important role. One is the so called Hilbert function hM(d) Hilbert functions

of M defined as hM(d) = dimk Md. It turns out that hM(d) behaves
like a polynomial for d sufficiently large; that is, there is a unique
polynomial PM(d) coinciding with hM(d) when d >> 0. This is the
Hilbert polynomial of M. Hilbert polynomials

A fundamental property of the Hilbert functions that makes it
possible to calculate at least of them, is that, just like the vector space
dimension, they are additive over short exact sequences. If

0 // M
0

// M // M
00

// 0
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is an exact sequence of graded module, it holds true that hM = hM0 +

hM00 . Indeed, for each degree d the graded pieces of degree d fit into
an exact sequence

0 // M
0

d
// Md

// M
00

d
// 0

of vector spaces, and the assertion follows since vector space dimen-
sion is additive.

For functions h : Z ! Z; i.e., functions taking integral values on
the integers, one introduces a difference operator D. It is some sort of The difference operator or the discrete

derivative
discrete derivative and it is defined as

Dh(d) = h(d)� h(d � 1).

Just like a derivative, if Dh(d) = 0 for all d, then h is constant. And so
two functions h and h

0 having the same discrete derivative are equal
up to a constant.

Multiplication by an element x 2 R of degree one which is not a
zero-divisor in the graded module M, induces an exact sequence

0 // M(�1) // M // M/xM // 0,

from which we infer the equality

hM/xM(d) = hM(d)� hM(d � 1) = DhM(d). (3)

MultxDer

A polynomial P(t) with rational coefficient is called a numerical

polynomial if it assumes integral values for integral arguments; that is, Numerical polynomials

if P(t) 2 Z whenever t 2 Z.

Example 6.12 The binomial coefficients are archetypes of numerical
polynomials. Recall that they are defined for any t by the identity

✓
t + n

n

◆
= (t + n)(t + n � 1) · . . . · (t + 1)/n!,

and it is well known they are numerical polynomials. A straightfor-
ward calculation shows that

D
✓

t + n

n

◆
=

✓
t + n � 1

n � 1

◆
. (4)

K
BinomLikhetDelta

Example 6.13 The Hilbert function of the polynomial5 ring n
R van- 5 Recall that n

R = k[x0, . . . , xn]

ishes for negative arguments and is given as the binomial coefficient

hnR(d) =

✓
n + d

n

◆
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when d � 0. Indeed, multiplication by xn induces the exact sequence

0 //

n
R(�1) //

n
R //

n�1
R // 0

of graded modules, and hence DhnR = hn�1R. By induction on n and
the identity (4) above the assertion follows. Because 0

R = k[x0] it
obviously holds that h0R(d) = 1 for d � 0 and h0R = 0 when d < 0, so
that the induction can start. K

Example 6.14 For a graded R-modules M of finite support, the
Hilbert polynomial PM vanishes identically. Indeed, the module M

is finite dimensional as a vector space over k, and there is only room
for finitely many non-zero graded pieces. But of course, the Hilbert
function of M is not identically zero. K

We shall mostly be concerned with the leading term of numerical
polynomials; they are of a special form as described in the following
lemma:

Lemma 6.5 Assume that P(t) is a numerical polynomial of degree m. Then

P(t) = cm/m!tm + . . .

where cm is an integer
6
. The discrete derivative DP(t) is of degree m � 1 6 As is customary, the dots stand for

terms of lower degree than m.
and its leading coefficient equals cm/(m � 1)!

Proof: We proceed by induction on m. The lemma holds for m = 0
because a numerical polynomial of degree zero is an integral con-
stant. For m > 0 we write P(t) = amt

m + Q(t) with Q of degree at
most m � 1. Appealing to the binomial theorem, one finds

DP(t) = amt
m
� am(t � 1)m + DQ(t) =

= amt
m
� amt

m + mamt
m�1 + DQ(t) = mamt

m�1 + DQ(t),

by induction DQ(t) is of degree at most m � 2, the leading coefficient
of DP(t) is mam, and again by induction, it is shaped like mam =

cm�1/(m � 1)! where cm�1 is an integer. The lemma follows. o

Theorem 6.3 Let a be a homogenous ideal in R. Then PR/a is of degree

dim R/a.

Proof: We proceed by induction on dim R/a. Let pi be the as-
sociated prime ideals to a. Then there is an element x 2 m+ of
degree one not contained in any of the minimal primes of a, and
dim R/a+ (x) = dim R/a� 1. Hence there is an exact sequence

0 // K // S(�1) x
// S // S/xS // 0

where K is of finite support. By example xxx above, the Hilbert poly-
nomial of K vanishes identically, and hence DPS = PS/xS. By induc-
tion we are through. o
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Example 6.15 Let F 2 R = k[x0, x1, x2] be a homogeneous poly-
nomial of degree m. Then there is a short exact sequence of graded
modules

0 // R(�m)
a
// R // R/F // 0

where the map a is multiplication by F. Additivity of the Hilbert
functions yields, when d � m, that

hR/F(d) = hR(d)� hR(d � m) = md + m
2
� 3m/2,

while
hR/F(d) = hR(d) = d

2/2 + 3d/2 + 1

when 0  d < m since then hR(d�m) = 0. For d < 0 it obviously holds
true that hR/F(d) = 0. So the Hilbert function is constant and equal
to zero for negative values of the argument, it grows quadratically
for d between 0 and m and settles with a linear grows for d � m.
The Hilbert polynomial is linear and has leading term md. The ge-

The graph of hR/(F).

ometric interpretation of the algebra R/(F)R is as the homogeneous
coordinate ring S(X) of of the curve X = Z+(F)✓P2. Notice that the
degree of the Hilbert polynomial PS(X)(d) equals the dimension of X

(both are one) and that the leading coefficient equals the degree of F.
K
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