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Intoduction
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Overview

Rational and birational maps

Just like we spoke about rational functions on a variety being func-
tion defined and regular on a non-empty open subset, one may speak
about rational maps from a variety X to another Y. Strictly speaking,
this is a pair consisting of an open subset U C X and a morphism
¢: U — Y. Commonly a rational map is indicate by a broken arrow
like ¢: X -—» Y.

If V is another open subset of X containing U, an extension of ¢ to
V is a morphism ¢: V — Y such that ¢y = ¢; it is common usage to
say that ¢ is defined on V. An open subset U C X is called a maximal
subset of definition for ¢ if ¢ can not be extended to any open subset
strictly containing U. The next proposition tells us that every rational
map ¢ has unique maximal set of definition:

Proposition 8.1 Let X and Y be two varities, and U C X an open non-
empty set. Suppose that ¢: U — Y a morphism. Then ¢ has a unique
maximal set of definition.

Proo¥: Since X is a Noetherian topological space, any non-empty
collection of open subsets has a maximal element. Hence maximal
sets of definition exists, and merely the unicity statement requires
some work.

Assume that V7 and V, open subsets of X cotaining U and both
being maximal sets of definition for ¢. Let the two extensions be ¢;
and ¢,. Both restrict to morphisms on the intersection V; N V3, and
the salient point is that these two restrictions coincide. Indeed, both
¢1 and ¢, restrict to ¢ on U, and because Y is a variety (open subset
of varieties are varieties) the Hausdorff axiom holds for V; N V5.
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Consequently, the subset of V; N V, where ¢; and ¢, coincide, is
closed; and since they coincide on U, which is dense in V; N V,, they
coincide along the entire intersection V; N V,. This means that ¢; and
¢» can be patched together to give a map defined on V; U V,, which is
a morphism (being a morphism is a local property). My maximality,
it follows that V; = V5. a

DOMINANT RATIONAL MAPS enjoy a weeker but similar functorial
property as morphisms. “By composition” they induce in a con-
travariant way a k-algebra homomorphism, but merely between the
function fields of the two involved varieties.

To be precise, assume that ¢: X --» Y is the dominant, rational
map, and that ¢ is defined on the open set Up. For any open V CY,
the inverse image ¢~ 1(V N ¢Uy) is non-empty since ¢ is dominating
and of course it is open. A member f of the function field K(Y) is a
regular function defined on some open set V; of Y and the composi-
tion f o ¢ is a regular function on ¢! (Vy N ¢Uy), and hence defines
an element in function field K(X). In this way we obtain a homomor-
phism ¢*: K(Y) — K(X).

An important proertry is that this construction is reversible:

) . . . RatFunkKropp
Theorem 8.1 Given two varities X and Y and a k-algebra isomoprhism

a: K(Y) — K(X). Then there exists a unique dominant rational map
¢: X --» Y such that ¢* = a.

Notice that the « is a field isomorphism but it must act trivially on
the constants k.

ProoFr: We begin by choosing an open and affine set in each of the

varieties X and Y. Call them U and V with U C X and V C Y. They

have coordinate rings A = Ox(U) and B = Oy(V); then A C K(X)

and B C K(Y). Furthermore, the function fields are the fractio fieldsa

of A and B respectively. As U and V were randomly chose, there

is no reason for « to send B into A; but we shall replace B with a

localization for this to happen.
The k-algebra B is finitely generated over k; let by, ..., bs be gener-

ators. The images a(b;) are form a(b;) = a;a~! with the a;’s and a all

belonging to A (the field K(X) is the fraction field of A). But then «

sends B into the localized ring A,. K(Y) — K(X)
Translating this algebra into geometry will finish the proof. The j

localization A, is the coordinate ring of the distinguished affine open B

subset U, of U, and by the main theorem about morphisms between

affine varieties, there is a morphism ¢: U, — V with ¢* equal to

a|y. Hence ¢ represents a rational and dominating map with the

requested property that « = ¢* 0



MAT4210—ALGEBRAIC GEOMETRY I: NOTES 8 3

A birational map is a rational map which has a rational inverse. To Birational maps
be precise, assume that X and Y are two varieties; To give a birational
map from X to Y is to give open sets U C X and V C Y and an iso-
morphism ¢: U — V. When there is birational map between X and
Y one sais that X and Y are birationally equivalent. Be aware that the Birationally equivalent varities
open set U might be smaller than the maximal set of definition Uy;
like in example 8.1 below. The main theorem (theorem 8.1 above) tells
us that two varities X and Y are birationally equivalent if and only if
their faunctions fields are isomorphic as k-algebras.

BIRATIONAL GEOMETRY did almost dominate algebraic geometry at
a certain period. The classification of varities up to birational equiv-
alence is a much courser classification than classification up to iso-
morphism, and hence it is a priori an easier task (but still, challenging
enough). However, for non-singular projective curves, as we later
shall see, the two are equivalent. Two such curves are isomorphic if
and only if they are birationally equivalent.

Already for projective non-singular surfaces, the situation is com-
pletely different. There are infinitely many non-isomorphic surface in
the same birational class (see example 8.3 below for a simple example
of two), and they can form a very complicated hierarchy. For varities
of higher dimension, the picture is even more complicated, but the
so called Mori Minimal Model Program that as evolved during the last
twenty years, shed some light on the situation.

ExaMmrLE 8.1 Consider the map o(x;y;z) = (yz; xz; xy) which is B
a rational map from P2 to IP? (by lemma ?? above, it is morphism
where it is defined). The map ¢ is certainly define away from the
three points e, = (0;0;1), e, = (0;1;0) and e, = (1;0;0), but can
not be extended beyond any of these. Let us check this for the point
e; = (0;0;1). To that end, introduce the two lines L, = Z,(x) and
Ly, = Z,(y). Now, the point is that c maps Ly \ e; and L, \ e; to
two different points, namely to e, and e, repectively. And this, of
course, excludes an extension of ¢ to a neighbourhood of ¢,. For the
two other points symmetric arguments hold, and we can conclude
that the maximal set of definition for ¢ is the open set U, = P?\

{ex,ey ez} *

ExAMPLE 8.2 Any rational map P! — P" is defined everywhere;
in other words, the maximal set of definition Uy of ¢ is equal to the
entire P'. Let D = D (x;) be one the basic open sets which meet
the image of Uy under ¢. The variety D is an affine n-space with
coordinates {x]'xi_1 }.

The inverse image V = ¢~1(D N ¢(Uy)) is an open set, and the n
component functions of ¢|y are rational functions on P!. They may
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be brought on the form f;/ f; with 0 < j < nand j # i, where the
polynomial f; is their common denominator and does not vanish on
V; that is, at points in V the relation x]'xf1 = f] ffl holds.

The idea is to use the f;'s (now including f;) as the homogenous
components of a morphism of P! into P". However, it could happen
that the n + 1 polynomials f; have a common factor, but it can be
discarded and hence we can assume that f;’s are without common
zeros. This allows us to define a map ®(x) = (fo(x);...; fu(x))
which is easily checked to be a morphism that extends ¢. *
ExaMmrLE 8.3 The quadric Q = Z (xz — yw) C IP? is birationally s
equivalent to the projective plane IP?, the two are not isomorphic.

This is one of the simplest example of two non-isomorphic projective
and non-singular surfaces being birationally equivalent.

To begin with, the two are not isomorphic. They are not even
homeomorphic since any two curves in IP? intersect, but on the
quadric there families of disjoint lines. For example the two disjoint
lines x =y =0 and x +z = y +w = 0 both lie on Q.

Next we exhibit a birational map ¢: Q --+ P2. It will be defined
on the open set U = D4 (x) N Q. In D4 (x) ~ A3 with coordinates
Y,z and w, the equation of ) becomes, z = yw. It is almost obvious
that the projection A% — A? sending (y,z, w) to (y,w) induces an
isomorphism from Q N D (x) to A2, but a rewarding exercise for the
sudents to check all details. *

The case of curves

In this section X will denote a curve; that is, a variety of dimension
one. The fundamental property of curves in this context is that any
rational map from a curve into a projective varletry is defined at

all non-singular points of the curve. This implies that binational
maps between projective non-singular curves are isomorphisms, and
consequently there is up to isomorphism only one non-singular and
projective curve in a binational class.

Another consequence of the extension property is that every non-
singular curve is isomorphic to an open set of a non-singular projec-
tive curve (it could of course be equal to the whole ). In particular,
any field of trancendence degree one over an algebraically closed
field k is the function field of a projective and non-singular curve.

An easy algebraic preparation

If P € X is a non-singular point, the local ring Ox p of X at P is regu-

lar of dimension one. It is also an integral domain, X being® a variety. *It is a theorem that regular rings are
domains, but we have not proven that.
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That Oy p is regular of dimension one implies that the maximal ideal

m of Ox p requires just one generator. Let t be one. Then ¢ is a ratio-

nal function on X which is regular in a neighbourhood V of P, and if

the neighbourhood is sufficiently small, ¢ has no other zeros in V but

P. Such a function t is often called a uniformizing parameter at P. Uniformizing parameters
The following easy lemma from commutative algebra, tells us that

any rational function f on X may be expressed as f = at” where « is

a rational function, regular and non-vanishing at P, and where v is an

integer. It holds true that v > 0 precisely when f is regular at P, and

v = 0 exactly when f is regular and non-vanishing at P.

Lemma 8.1 In a local Noetherian domain whose maximal ideal is principal,
all ideals are powers of the maximal ideal.

Proo¥F: Let x a generator for the maximal ideal m and let a C A be a
non-zero ideal. Let n be the largest integer such that a Cm”; an n like
that exists by e.g., Krull’s intersection theorem. Since a ¢ m"*1, there
isan a € q, such that a = ax” with &« € m, that is « is a unit since the
ring is local. It follows that (") C a, and we are done. a

The lemma shows that A is a discrete valuation ring; any element in
its fraction field K can be written as at” with a a unit in A and v an
integer.

The extension lemma

The main property of curves in this context is that any rational map
from a curve into a projective varletry is defined at all non-singular
points of the curve.

One may think about this as an advanced form of “1"'Hopital’s”
rule. The tactics of the proof is firts to realize the mapping in a neigh-
bourhood of P as the composition 77 c ® where 7r: A"\ {0} — P"
and where ® = (go,...,gn) with the g;’s regular near P, and then
cancel out common factors of the g;’s vanishing at P.

ExtensionLemma

Lemma 8.2 Let U be a curve and P € U a non-singular point. Assume
that ¢: U\ {P} — PP" is a morphism. Then there exists a morphism
p: U — P" extending ¢.

Proor: The first observation is that it suffices to find an open Uy C U
containing P over which ¢ extends. Indeed, if ¢p: Uy — P”" is such
an extension, the two morphisms ¢ and ¢ coincide on Uy \ {P}, and
hence they patch together to a morphism on U. It follows that we
may assume U to be affine.

Secondly, we may, possible after having renumbered the coordi-
nates, assume that the image ¢(U \ {P}) meets the basic open set
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D = D4 (xp); then the inverse image V = ¢~ 1D is a non-empty open
subset of U, and by shrinking V' if necessary, V will be an affine open
subset being mapped into D The basic open set D is an affine n-space
with coordinates x1x, L xn Xg 1 and the map ¢|y is therefore
given by m component functions on V. They are all rational function
on U, and may therefore be written as fractions f; = g;/go of regular
functions on U.

Consider the morphism ®(x) = (go,81,---,8x) from U into A"*1.
It is well defined at the point P, but of course, it might be that it
maps P to the origin. However, if this is not the case, the composition
7t o ¢ is defined at P and extends ¢ to the neighbourhood of P where
the g;’s do not vanish simultaneously, and we will be done.

Now, the salient point is that we have the liberty to alter the mor-
phism @ by cancelling common factors of the g;’s without changing
the composition 77 o ®: after such a modification the composition
7t o @ and the original morphism ¢ coinside where they both are de-
fined. Indeed, it holds true that (hgo;...;hgs) = (go0;--.;gn) Where
both sets of homogeneous coordinates are legitimate.

To get rid of common zeros of g;’s might have at the point P, we
introduce a uniformizing parameter f at p; that is, a regular function
t on U which generates the maximal ideal of the local ring Oy p. One
may then write g; = a;t"i with the a;’s being regular functions on U
that do not vanish at P, and where the v;’s are non-negative integers.
Putting v = min, v;, the differences y; = v; — v will be non-negative
and at least one will be zero. Hence replacing g; by g;t =" = a;t"i™"
we arrive at the requested modification of ®. 0

The theorems

Most of the work is done in proving the lemma , and we can collect
the fuits. Here comes the theorems:

ExtensionTheorem

Theorem 8.2 Let X be a curve and P € X a non-singular point. Any
rational map ¢: X --+» Y where Y is a projective variety, is defined at P.

Proor: Assume the projective variety Y is a closed subvariety of

P™; that is, Y CIP™. Let U be a neighbourhood of P such that ¢ is
defined on U \ {P}. By the extension lemma (lemma 8.2 above), the
map ¢ composed with the inclusion Y into IP”* extends to P, and the
extension takes values in Y since Y is closed in IP™. 0

It is paramount that P be a non-singular point. If X has e.g., two
different branches passing theorug P, the “limit” of ¢ at P along the
two branches may be different.

Theorem 8.3 Assume that X and Y are two projective and non-singular
curves that are birationally equivalent. Then they are isomorphic.
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ProoF: Let U C X and V CY be two open sets such that there is an
isomorphism ¢: U --+ V. Since Y is projective and X is non-singular
a repeated application of theorem 8.2 above gives a morphism

®: X — Y extending ¢. Similarly, there is morphism ¥: ¥ — X
extending ¢~!. Finally, the Hausdorff axiom holds for both X and Y,
and one infers that P oY = idy and ¥ o ® = idx since they extend
po¢~! =idy and ¢! o ¢ = idy respectively. Q
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