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CONTENTS 5

These notes ere just informal extensions of the lectures I gave last year. As the
course developeds I’ll now and then posted new notes on the course’s website,
but this will certainly happen with irregular intervals. The idea with the notes
was to give additional comments and examples which hopefully made reading
of the book and the digestion of the lectures easier; and hopefully widened the
students mathematical horizon.

It seems that other lectures are interested in the notes, so I try to upgrade
them—correct misprints and not to the least give correct proofs of all theorems
(important buisiness!!!). This is an ongoing process and the present version is
still preliminary. As the students last year survived the notes in the then shaky
condition, I am confident that students this year will survive as well; and still
better (or more humbly less bad) version are coming!
GE





Lecture 1

Algebraic sets and the Nullstellensatz
Hot themes in Lecture 1: The correspondence between ideals and algebraic
sets—weak and strong versions of Hilbert’s Nullstellensatz—the Rabinowitsch
trick—two proofs of the Nullstellensatz, one elementary, and another totally
different—radical ideals—intuition, drawings and figures.

Algebraic geometry has many ramifications, but roughly speaking there are
two main branches. One could be called the “geometric” branch where the
geometry is the main objective. One studies geometric objects like curves,
surfaces, threefolds and varieties of higher dimensions, defined by polyno-
mials (or more generally algebraic functions). The aim is to understand their
geometry. Frequently techniques from several other fields are used like from
algebraic topology, differential geometry or analysis, and the studies are
tightly connected with these other branches of mathematics. This makes it nat-
ural to work over the complex field C, even though other fields like function
fields are important.

To say that aims of algebraic geometry are totally geometric is half a lie
(but a white one). The study of elliptic functions in the beginning of the
19th century, and subsequently of other algebraic functions, was the birth
of modern algebraic geometry. The motivation and the origin was found in
function theory, but the direction of research quickly took a geometric rout.
Riemann surfaces and algebraic curves appeared thogether with their function
fields.

Figure 1.1: The affine
Fermat curve x50 `
y50 “ 1.

Figure 1.2: The affine
Fermat curve x51 `
y51 “ 1.

The other main branch one could call “arithmetic”. Superficially presented,
one studies numbers by geometric methods. An ultra famous example is
Fermat’s last theorem, now Andrew Wiles’ theorem, that the equation xn

`

yn
“ zn has no integral solutions except the trivial ones. The arithmetic

branch also relies on techniques from other fields, like number theory, Galois
theory and representation theory. One very commonly applied technique
is reduction modulo a prime number p. Hence the importance of including
fields of positive characteristic among the base fields. Of course another very
natural base field for many of these “arithmetic” studies is the field Q of
algebraic numbers.

Algebraic geometry is to the common benefit a triple marriage of geometry,
algebra and arithmetic. All of the spouses claim influence on the development
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of the field which makes the field quit abstract; but also a most beautiful part
of mathematics.

1.1 Fields and the affine space

1.1 We shall almost exclusively work over an algebraic closed field which we
shall denote by k. In general we do not impose further constraints on k, except
for a few results that require the characteristic to be zero. A specific field
to have in mind would be the field of complex numbers C, but as indicated
above, other important fields are Q and Fp.

1.2 The affine space An is just the space kn, but the name-change is there
to underline that there is more to An than merely being a vector space—
and hopefully, this will emerge from the fog during the course. Anyhow, in
the beginning think about An as kn. Often the ground field will be tacitly
understood, but when wanting to be precise about it, we shall write An

pkq.
The ground will always be algebraically closed unless the contrary is explicitly
stated.

Figure 1.3: A one
sheeted-hyperboloid.

Coordinates are not God-given but certainly man-made. So they are prone
to being changed. General coordinate changes in An can be subtle, but trans-
lation of the origin and linear changes are unproblematic, and will be done
unscrupulously. They are called affine coordinate changes and the affine spaces
An are named after them.

1.2 Closed algebraic sets

The first objects we shall meet are the so called closed algebraic sets, and master Closed algebraic sets
(lukkede algebraiske
mengder)

students in mathematics have already seen a great many examples of such.
They are just subsets of the affine space An given by a certain number of
polynomial equations. You have probably working with curves in the plane
and may be with some surfaces in the space—like conic sections, hyperboloids
and paraboloids, for example.

a,A b,B c,C d,D e,E
f,F g,G h,H i, I j, J
k,K l,L m,M n,N o,O
p,P q,Q r,R s,S t,T
u,U v,V w,W x,X y,Y
z,Z

Mathematicians are
always in shortage of
symbols and use all
kinds of alphabets. The
germanic gothic letters
are still in use in some
context, like to denote
ideals in some text.

1.3 Formally the definition of a closed algebraic set is as follows. If S is a
subset of the polynomial ring krx1, . . . , xns, one defines

ZpSq “ t x P An
| f pxq “ 0 for all f P S u,

and subsets of An obtained in that way are the closed algebraic sets. Notice
that any linear combination of polynomials from S also vanishes at points
of ZpSq, even if polynomials are allowed as coefficients. Therefore the ideal
a generated by S has the same zero set as S; that is, ZpSq “ Zpaq. We shall
almost exclusively work with ideals and tacitly replace a set of polynomials by
the ideal it generates.
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Any ideal in krx1, . . . , xns is finitely generated, this is what Hilbert’s basis
theorem tells us, so that a closed algebraic subset is described as the set of
common zeros of finitely many polynomials.
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Examples

1.1 The polynomial ring krxs in one variable is a pid 1, so if a is an ideal in 1 A ring is a pid or a
principal ideal domain if
it is an integral domain
where every ideal is
principal

krxs, it holds that a “ p f pxqq. Because polynomials in one variable merely
have finitely many zeros, the closed algebraic subsets of A1 are just the finite
subsets of A1.

1.2 A more spectacular example is the so called Clebsch diagonal cubic; a surface
in A3

pCq with equation

x3
` y3

` z3
` 1 “ px ` y ` z ` 1q

3.

An old plaster model of its reals points; that is, the points in A3
pRq satisfying

the equation, is depicted in the margin.

The Clebsch diagonal
cubic

1.3 The traditional conic sections are closed algebraic sets in A2. A parabola is
given as the zeros of y ´ x2 and a hyperbola as the zeros of xy ´ 1.

K

1.4 The more constraints one imposes the smaller the solutions set will be, so
if bÑ a are two ideals, one has Zpaq Ñ Zpbq. The sum a ` b of two ideals has the
intersection Zpaq X Zpbq as zero set; remembering that

a ` b “ t f ` g | f P a and g P b u

one easily convinces oneself of this. In the same vein, the product a ¨ b defines
the union Zpaq Y Zpbq. With a little thought, this is clear since the products
f ¨ g of polynomials f P a and g P b generate a ¨ b. Sending a to Zpaq is a order
reversing map from the partially ordered sets of ideals in krx1, . . . , xns to the
partially ordered set of subsets of An.

1.5 It might very well happen that two different ideals define the same alge-
braic set. The most stupid example being pxq and px2

q; they both define the
origin in the affine line A1. More generally, powers an of an ideal a have the
same zeros as a. Because an

Ñ a it holds that Zpaq Ñ Zpan
q, and the other inclu-

sion holds as well since f n
P an whenever f P a. Recall that the radical

?
a of an

ideal is the ideal whose members are the polynomials for which a power lies
in a; that is,

?
a “ t f | f r

P a for some r u.

The argument above yields that Zpaq “ Zp
?
aq (in fact, since all ideals in

the polynomial ring are finitely generated, a power of the radical is con-
tained in a). Ideals with the same radical therefore have coinciding zero sets,
and we shall soon see that the converse is true as well. This is the content
of the famous Hilbert’s Nullstellensatz which we are about to formulate
and prove, but first we sum up the present discussion in a proposition:
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Proposition 1.6 Let a and b be two ideals in krx1, . . . , xns.

o If aÑ b, then Zpbq Ñ Zpaq;

o Zpa ` bq “ Zpaq X Zpbq;

o Zpabq “ Zpaq Y Zpbq;

o Zpaq “ Zp
?
aq.

By the way, this also shows that Zpa X bq “ Zpaq Y Zpbq: Because of the
inclusion pa X bq

2
Ñ a ¨ b one has Zpa X bq Ñ Zpaq Y Zpbq, and the other inclusion

follows readily. Notice also that the argument for the second assertion remains
valid, mutatis mutandis, for any family of ideals taiuiPI ; that is, one has

o Zp
∞

iPI aiq “
ì

i Zpaiq.
David Hilbert
(1862–1943)

German mathematician.

1.7 The Nullstellensatz involves the ideal IpXq of polynomials in krx1, . . . , xns

that vanish along the subset X of An, and IpXq acts as a partial converse to
Zpaq. To be precise, for any subset X Ñ An one defines

IpXq “ t f P krx1, . . . , xns | f pxq “ 0 for all x P X u.

When X is an arbitrary set, there is not much information about X to be
extracted form IpXq; for instance, if X is any infinite subset of A1, it holds
true that IpXq “ p0q (non-zero polynomials have only finitely many zeros).
However, if X a priori is known to be a closed algebraic subset, it is true that
ZpIpXqq “ X; in other words, one has

o ZpIpZpaqqq “ Zpaq.

Indeed, it is true for all subsets X of An that X Ñ ZpIpXqq (the functions that
vanish in X vanish in X!). Thus Zpaq Ñ ZpIpZpaqqq. The other inclusion follows
from Zp´q reversing inclusions and the tautological inclusion aÑ IpZpaqq (a
function vanishes where it vanishes!!).

1.3 The Nullstellensatz

1.8 Hilbert’s Nullstellensatz is about the composition of I and Z the other
way around, namely about IpZpaqq. Polynomials in the radical

?
a vanish

along Zpaq and therefore
?
aÑ IpZpaqq, and the Nullstellensatz tells us that this

inclusion is an equality. We formulate the Nullstellensatz here, together with
two of its weak avatars, but shall come back with a thorough discussion of the
proof(s) a little later.

Theorem 1.9 (Hilbert’s Nullstellensatz) Assume that k is an alge-
braically closed field, and that a is an ideal in krx1, . . . , xns. Then one has IpZpaqq “
?
a.
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Notice that the ground field must be algebraically closed. Without this as-
sumption the result is not true. The simplest example of an ideal in a polyno-
mial ring with empty zero locus is the ideal px2

` 1q in Rrxs.

1.10 Obviously it holds true that IpHq equals the entire polynomial ring, and
if a is a proper ideal, it is as obvious that

?
a is not the entire polynomial

ring, so in particular, the theorem asserts that Zpaq “ H if and only if a
equals the whole polynomial ring; that is, if and only if 1 P a. Hence we can
conclude that Zpaq is not empty when a is proper. This statement goes under
the name of the Weak Nullstellensatz; and is despite the name equivalent to
the Nullstellensatz, as we shall see later on.

Theorem 1.11 (Weak Nullstellensatz) Assume that k is an algebraically
closed field. For every proper ideal a in krx1, . . . , xns there is a point x P Zpaq.

1.12 Consider now the ideals px1 ´ a1, . . . , xn ´ anq where the ai’s are elements
from k. It is easy to see that all these are maximal ideals; indeed, after a linear
change of variables it suffices to see that px1, . . . , xnq is maximal, which is
clear since px1, . . . , xnq obviously is the kernel of the map krx1, . . . , xns Ñ k
evaluating a polynomial at the origin.

Amazingly, the converse follows from the Nullstellensatz: Every maximal
ideal in the polynomial ring is of this form. If m is a maximal ideal, it is cer-
tainly a proper ideal, and by the Nullstellensatz there is point pa1, . . . , anq

in Zpmq. Consequently it holds that px1 ´ a1, . . . , xn ´ anq Ñm, but since
px1 ´ a1, . . . , xn ´ anq is also maximal, the two ideals coincide. Hence we
have the following equivalent version of the Weak Nullstellensatz:

Theorem 1.13 (Weak Nullstellensatz II) Let k be an algebraically closed
field. Then the maximal ideals in the polynomial ring krx1, . . . , xns are those of the
form px1 ´ a1, . . . , xn ´ anq with pa1, . . . , anq P An.

Radical ideals and algebraic subsets

1.14 In view of the Nullstellensatz, it is natural to introduce the notion of a
radical ideal. It is an ideal equal to its own radical; in other words, it satisfies Radical ideals

a “
?
a. With this concept in place, the two constructions I and Z are mutually

inverse mappings from the set of radical ideals to the set of closed algebraic
sets.

Both sets are partially ordered under inclusion, and the two mappings both
reverse the partial orders. Moreover, they take “sup’s” to “inf’s” and vice versa.

In a partial ordered set
infpa, bq is the greatest
element less then both
a and b, and suppa, bq
the smallest greater
than both. In general
they do not exists
and do not need to be
unique.
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a “ ?
a

Algebraic sets X

Ideals a

Zp´q

Ip´q

The radical of an intersection is the intersection of the radicals, so if a and b

are two radical ideals, their intersection a X b is as well, and it is the “inf” of the
two; that is, the greatest radical ideal contained in both.

On the other hand, the sum a ` b of two radical ideals is not in general
radical. For instance, the ideals py ´ x2

q and pyq are both radical, but py ´ x2
q `

pyq “ py ´ x2, yq “ py, x2
q is not. Hence the “sup” of the two in the set of

radical ideals will be
?
a ` b. This means that for radical ideals one has the two

relations:

o IpZpaq X Zpbqq “
?
a ` b;

o IpZpaq Y Zpbqq “ a X b.

Problem 1.1 Show that py ´ x2
q is radical. Let a P k and let a “ py ´ x2, y ´ axq.

Show that a is a radical ideal when a ‰ 0, but not when a “ 0. M

Figure 1.4: The
parabola y “ x2

and some lines through
the origin.

The coordinate ring

1.15 The ring ApXq “ krx1, . . . , xns{IpXq is called the affine coordinate ring of

Affine coordinate ringsX. If Y is a closed algebraic sets contained in X, it holds that IpXq Ñ IpYq, and
conversely if IpYq contains IpXq, one has Y Ñ X. Hence there is a one-to-one
correspondence between radical ideals in the coordinate ring ApXq and closed
algebraic subsets contained in X. If a is an ideal in ApXq, we denote by Zpaq

the corresponding subvariety of X. And for a point a “ pa1, . . . , anq P X we
let ma denote the image in ApXq of the maximal ideal px1 ´ a1, . . . , xn ´ anq of
polynomials vanishing at x.

1.4 Hilbert’s Nullstellensatz—proofs

In this section we discuss various proofs and various versions of the Null-
stellensatz. The Nullstellensatz comes basically in two flavours, the strong
Nullstellensatz and the weak one (of which we shall present three variations).
Despite their names the different versions are equivalent. The strong ver-
sion trivially implies the weak, but the reverse implication hinges on a trick
frequently called the Rabinowitsch-trick.
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The Rabinowitsch trick

1.16 We proceed to present the J.L. Rabinowitsch trick proving that the weak
version of the Nullstellensatz (Theorem 1.11 on page 12) implies the strong.
That is, we need to demonstrate that IpZpaqq Ñ

?
a for any proper ideal a in

krx1, . . . , xns.
The crux of the trick is to introduce a new auxiliary variable xn`1 and for

each g P IpZpaqq to consider the ideal b in the polynomial ring krx1, . . . , xn`1s

given by
b “ a ¨ krx1, . . . , xn`1s ` p1 ´ xn`1 ¨ gq.

In geometric terms Zpbq Ñ An`1 is the intersection of the the subset Z “

Zp1 ´ xn`1 ¨ gq and the inverse image p´1Zpaq of Zpaq under the projection
p : An`1

Ñ An that forgets the last and auxiliary coordinate. This intersection
is empty, since obviously g does not vanish along Z, but vanishes identically
on p´1Zpaq.

The weak Nullstellensatz therefore gives that 1 P b, and hence there are
polynomials fi in a and hi and h in krx1, . . . , xn`1s satisfying a relation like

1 “

ÿ
fipx1, . . . , xnqhipx1, . . . , xn`1q ` h ¨ p1 ´ xn`1 ¨ gq.

We substitute xn`1 “ 1{g and multiply through by a sufficiently2 high power 2 For instance the
highest power of xn`1
that occurs in any of
the hi’s.

gN of g to obtain

gN
“

ÿ
f px1, . . . , xnqHipx1, . . . , xnq,

where Hipx1, . . . , xnq “ gN
¨ hipx1, . . . , xn, g´1

q. Hence g P
?
a.

The third version of the Weak Nullstellensatz

1.17 As already mentioned there are several variants of the weak Nullstel-
lensatz. We have already seen two, and here comes number three. This is the
one we shall prove and from which we subsequently shall deduce the other
versions. It has the virtue of being general, in that it is valid over any field k,
and we shall bring it with us into Grothendieck’s marvelous world of schemes.

Theorem 1.18 (Weak Nullstellensatz III) Let k a field and let m be a
maximal ideal in the polynomial ring krx1, . . . , xns. Then krx1, . . . , xns{m is a finite
field extension of k.

Before proceeding to the proof of this version III we show how the Weak
Nullstellensatz II (Theorem 1.11 on page 12) can be deduced from version III
above.
Proof of II from III: So assume that k is algebraically closed and let m be a
maximal ideal in krx1, . . . , xns. The salient point is that the field krx1, . . . , xns{m
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is a finite extension of k after version version III above, and since k is alge-
braically closed by assumption, the two fields coincide. Thus there is an
algebra homomorphism krx1, . . . , xns Ñ k having m as kernel. Letting ai be the
image of xi under this map, the ideal px1 ´ a1, . . . , xn ´ anq will be contained in
m, and being maximal, it equals m. o

Proof of version III of the Nullstellensatz

1.19 The by far simplest proof of the Nullstellensatz I know, both technically
and conceptually, was found by Daniel Allcock. It relies on no more sophis-
ticated mathematics than the fact the polynomial ring krxs in one variable is
a pid. Allcock establishes the following assertion, which obviously implies
version III of the Weak Nullstellensatz:

Lemma 1.20 If k Ñ K is a finitely generated extension of fields which is not finite,
and a1, . . . , ar are elements in K, then kra1, . . . , ars is not equal to K.

Proof: To begin with we treat the case that K is of transcendence degree one
over k. Then there is a subfield kpxq Ñ K with x transcendental over which K is
finite. Let teiu be a basis for K over kpxq with e0 “ 1, and let cijk be elements
in kpxq such that ei ej “

∞
k cijk ek. Let s be a common denominator of the cijk.

Recall that krxss
denotes the locali-
zation of krxs in the
multiplicative set
t1, s, s2, . . .u. Elements
are of the form a{sr

with a P krxs.
Then A “

À
i krxss ei is a subalgebra of K which is free as a module over krxss.

Now, let a1, . . . , ar be elements in K, and express them in the basis teiu; that is,
write aj “

∞
dij ei with dij P kpxq. Let t be the common denominator of the dij’s.

Then kra1, . . . , ars is contained in At, and therefore can not be equal to K.
Indeed, if u P krxs is any irreducible element 3 neither being a factor in s nor in 3 Even if k is a fi-

nite field, there are
infinitely many irre-
ducible polynomials in
krxs, see problem 1.12
on page 19.

t, then u´1 will not lie in At.
Finally, if the transcendence degree of K is more than one, we let k1

Ñ K be a
field containing k over which K is of transcendence degree 1. Then K is never
equal to k1

ra1, . . . , ars, hence a fortiori neither to kra1, . . . , ars. o

1.5 Figures and intuition

To have some geometric intuition one frequently have real pictures of algebraic
sets in mind. Then the ground field must be C and the algebraic set must be
defined by real equations. The object depicted is the subset of the points in
Zpaq whose coordinates are real numbers.

These real pictures can be very instructive (and beautiful) and some times
they are unsurpassed to explain what happens. But they can be deceptive
and must be taken with a rather large grain of salt—often they do not tell
the whole story, and sometimes they do not say any thing at all. For instance,
x2

` y2
` 1 has no real zeros, so Vpx2

` y2
` 1q has no real points, but of course,

complex zeros abound.
Figure 1.5: The famous
surface of degree
six constructed by
Wolf Barth. It has 65
double points. The
picture is of a 3D-
print of the surface
from http://math-
sculpture.com.
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1.21 Performing complex coordinate shifts, which is perfectly legitimate
when working over C and does not alter the complex geometric reality, can
completely change the real picture. For instance, replacing y by iy in the
above example, which is a simple scaling of one of the coordinates; gives the
equation x2

´ y2
“ ´1 whose real points constitute a hyperbola, and scaling

both x and y by i gives the circle x2
` y2

“ 1. So the real picture depends
heavily on the coordinates one uses.

There is also a shift in dimension. The affine plane A2
pCq is as real mani-

fold equal to R4, and a plane in A2
pCq is a linear subspace of real codimen-

sion two; that is, an R2 in R4. Complex algebraic sets will be of even (real)
dimension and the (real) dimension of their real counterparts will be half that
dimension.

Figure 1.6: The real
points of a cubic
curve in the so called
Weierstrass normal
form.

Example 1.4 Consider the curve y2
“ xpx ` aqpx ´ bq in A3

pCq; with a and
b both positive. The real points, depicted in Figure 1.6, has two components.
One compact, which is homeomorphic to a circle, and one unbounded. The
complex points turn out to form a space homeomorphic to a torus S1

ˆ S1 (in
the topology induced from the standard topology on C2). Well, to be precise, it
is homeomorphic to the torus minus one point.

To underline to what extent the real picture depends on the chosen coor-
dinate system, in figure 1.7 we depicted a cubic curve (virtualy the same as
depicted in Figure 1.6) viewed in another coordinate system.

Figure 1.7: The real
points of a cubic curve
in the so called Tate
normal form.

K

1.6 A second proof of the Nullstellensatz

It is worth while to ponder over another proof of the Nullstellensatz which
follows a completely different path than the one of Daniel Allcock. We shall
present it in a simplified form assuming that k “ C and assuming that a is a
prime ideal.

1.22 The proof is based on the fact that the transcendence degree of the com-
plex numbers C over the rationals Q is infinite (in fact, it equals the cardinality
c of the continuum). It is not hard to see it is infinite; if not, C would have
been countable (it is more challenging to see it equals c). From this ensues the
following lemma:

Lemma 1.23 Every field K of finite transcendence degree over Q can be embedded in
C.

Proof: Let x1, . . . , xr be a transcendence basis for K over Q so that K is alge-
braic over Qpx1, . . . , xrq. Chose algebraically independent complex numbers
z1, . . . , zr. Sending xi to zi gives an embedding of Qpx1, . . . , xrq into C and
because C is algebraically closed, it extends to K. o
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1.24 Assume now that p is a prime ideal in Crx1, . . . , xns and choose gener-
ators f1, . . . , fr for it. Let k be the field obtained by adjoining all the coeffi-
cients of the fi’s to Q; it is clearly of finite transcendence degree over Q. Let
p1

“ p X krx1, . . . , xns. Then the fraction field of the domain krx1, . . . , xns{p1 is
of finite transcendence degree over Q and therefore it embeds into C. But this
means that the images of the xi’s are coordinates for a point where all the fi’s
vanish, and consequently Zppq is not empty.

Problem 1.2 Contrary to quadratic curves, show that a cubic curve in A2
pCq

defined by an equation with real coefficients always have real points. General-
ize to curves with real equations of odd degree. Hint: Intersect with real lines.

M

Examples

1.5 (Quadratic plane curves or conics) Curves in A2 given by irreducible quadratic
equations can be classified. Up to an affine change of coordinates there are
only two types. Either the equation can be brought on the form y “ x2 or on
form xy “ 1.

The quadratic polynomial can be written as Qpx, yq ` Lpx, yq ` c where
Q and L are homogeneous polynomials of degree respectively two and one,
and where c is a scalar. The quadratic form Q can be factored as the product
of two linear form. We change coordinates so that the two factors become x
and y; that is, Qpx, yq “ xy, if they are different, or x if they coincide; that is,
Qpx, yq “ x2. This brings the original quadratic polynomial on form

xy ` ax ` by ` c “ px ` aqpy ` bq ` c ´ ab

if Qpx, yq “ xy, and
x2

` ax ` by ` c

when Qpx, yq “ y2. The last necessary coordinate shifts are then easy to find
and left as an exercise.

The following super-trivial lemma is nothing but Taylor expansion to the
first order, but is now and then useful:

Lemma 1.25 Assume that R is any commutative ring. Let Ppzq be a polynomial in
Rrzs. Then Ppz ` wq “ Ppzq ` wQpz, wq for some polynomial Q in Rrz, ws.

Proof: Observe that by the binomial theorem one has pz ` wq
i

“ zi
` wQipz, wq;

the rest of the proof follows from this. o

1.6 (The affine twisted cubic) In this example we take a closer look at a famous
curve called the twisted cubic, or rather an affine version of it (there is also a
projective avatar which we come back to later). The word twisted in the name
comes from the curve being a space curve not contained in any plane.
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The twisted cubic C Ñ A3 is the image of the map f : A1
Ñ A3 given as

fptq “ pt , t2, t3
q. It is a closed algebraic set; indeed, we shall see that C “ Zpaq

where a is the ideal
a “ pz ´ x3, y ´ x2

q.

The inclusion C Ñ Zpaq follows readily, and for the other inclusion, we observe
that points in Zpaq are shaped like px, x2, x3

q so we can just take t “ x. More-
over, it holds true that IpXq “ a. To see this, notice that any polynomial f can
be represented as

f px, y, zq “ f px, x2, x3
q ` hpx, y, zq,

where h P a. This is just a repeated application of the little lemma (lemma 1.25)
above; first with y “ x2

´ px2
´ yq and then with z “ x3

´ px3
´ zq. That f px, y, zq

vanishes on C means that f px, x2, x3
q vanishes identically and hence f P a.

As a by product of this reasoning, we obtain that the ideal a is a prime ideal;
indeed, it is the kernel of the restriction map

krx, y, zs Ñ krts

that sends a polynomial to its restriction to C; in other words, x goes to t, y to
t2 and z to t3.

K

Problems

1.3 Let f P krx1, . . . , xns. Show that the ideal p f q is radical if and only if no
factor of f is multiple.

For any two ideals a
and b in a ring A recall
that one denotes by
pa : bq the ideal of those
a P A such that a ¨ bÑ a;
that is pa : bq “ t a P
A | a ¨ bÑ a u.

1.4 Assume that the characteristic of k is zero. Let f pxq be a polynomial in
krxs. Show that the relation

a
p f q “ p f : f 1

q holds (where f 1 is the derivative of
f ; see exercise 1.13). Give a counterexample if k is of positive characteristic.

1.5 Let p be a prime ideal in krx1, . . . , xns. Show that p is the intersection of
all the maximal ideals containing it; that is, p “

ì
pÑmm Hint: Show that

IpZppqq “
ì

pÑmm, then use the Nullstellensatz.

1.6 Consider the closed algebraic set in A2 given by the vanishing of the
polynomial Ppxq “ y2

´ xpx ` 1qpx ´ 1q. Let a P C and let a “ px ´ a, Ppxqq.
Determine Zpaq for all a. For which a’s is a a radical ideal?

1.7 With the same notation as in the previous problem. Let b be the ideal
b “ py ´ a, Ppxqq. Determine Zpbq for all a and decide for which a the ideal b
is radical. Hint: The answer depends on the characteristic of k, characteristic
three being special.

Figure 1.8: A cubic and
two lines.
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1.8 Let F1, . . . , Fr be homogenous polynomials in krx1, . . . , xns and let X “

ZpF1, . . . , Frq be the closed algebraic subset they define. Show that X is a cone
with apex at the origin; that is, show that if x is a point in X, the line joining x
to the origin lies entirely in X. Hint: Show that t ¨ x lies in X for all t P k.

1.9 Assume that X is a cone in An with apex at the origin, and assume that
f is a polynomial that vanishes on X. Show that also all the homogenous
components of f vanish along X.

1.10 Let Mn,m be the space of n ˆ m-matrices with coefficients from k. It can be
identified with the affine space Anm with coordinates xij where 1 § i § n and
1 § j § m. Let r be a natural number less than both n and m, and let Wr be
the set of n ˆ m-matrices of rank at most r. Show that Wr is a closed algebraic
subset. Show that all the Wr’s are cones over the origin. Hint: Determinants
are polynomials.

1.11 Let Cn Ñ An be the curve with parameter representation fptq “ pt, t2, . . . , tn
q,

and let a be the ideal a “ pxi ´ x1xi´1 | 2 § i § nq. Show that Cn is a closed
algebraic set, that IpCnq “ a and that a is a prime ideal. The curves Cn are
called affine normal rational curves and they are close relatives to the twisted Affine normal rational

curvescubic. For n “ 2 we have a parabola in the plane and for n “ 3 we get back the
twisted cubic.

1.12 As usual Fp is the finite field with p elements. The aim of this exercise
is to establish that there are infinitely many irreducible polynomials with
coefficients in Fp. If you are interested, there is a nice introduction to finite
fields in Irelands and Rosen’s book4. 4

Let Nd be the number of irreducible, monic polynomials over Fp of degree
d, and let Fd denote their product. Show that xpn

´ x “
±

d|n Fdpxq and that pn
“∞

d|n dNd. Conclude that there are infinitely many irreducible polynomials over
Fp. ( If you know about Möbius inversion, show that nNd “

∞
d|n µpn{dqpd.)

1.13 (The formal derivative.) Let f pxq “
∞

i aixi be a polynomial. Define the
(formal) derivative of f to be f 1

pxq “
∞

i iaixi´1. Show that the usual rules are
still valid; i.e. derivation is a linear operation and Leibnitz’s product rule holds
true. Show that f 1 vanishes identically if and only if either f is constant or the
characteristic of k is p and f pxq “ gpxp

q for some polynomial gpxq.

M

Geir Ellingsrud—13th February 2019

Geir Ellingsrud—versjon 1.1—13th February 2019 at 9:52am





Lecture 2

Zariski topolgies

Hot themes in Lecture 2: The Zariski topology on closed algebraic subsets—
irreducible topological spaces—Noetherian topological spaces—-primary de-
composition and decomposition of noetherian spaces into irreducibles—hypersurfaces—
polynomial maps—quadratic forms—determinantal varieties—Veronese sur-
face.

The realm of algebraic geometry is much bigger than the corner occupied by
the closed algebraic sets. There are many more geometric objects, several of
which will be the principal objects of our interest. However, the closed alge-
braic sets are fundamental and serve as building blocks. Just like a smooth
manifold locally looks like an open ball in euclidean space, our spaces will
locally look like a closed algebraic set, or in a more restrictive setting, like an
affine variety. Before giving the general definition, we need to know what “lo-

Oscar Zariski
(1899–1986)

Russian–American
mathematician

cally” means, and of course, this will be encoded in a topology. The topologies
that are used, are particularly well adapted to algebraic geometry, and they
are called Zariski topologies after one of the great algebraic geometers Oscar
Zariski.

The Zariski topology is of course useful in several other ways as well. For
instance, it leads to a general concept of irreducible topological spaces and a
decomposition of spaces into irreducible components—a generalization of the
primary decomposition of ideals in Noetherian rings.

2.1 The Zariski topology

In Lecture 1 we established the close relationship between closed algebraic sets
and ideals in polynomial rings, and among those relations were the following
two:

o Zp
∞

i aiq “
ì

i Zpaiq;

o Zpa X bq “ Zpaq Y Zpbq,

where a and b are ideals and taiuiPI any collection of ideals in krx1, . . . , xns.
The first relation shows that the intersection of arbitrarily many closed alge-
braic sets is a closed algebraic set, the second that the union of two is closed
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algebraic (hence the union of finitely many). And of course, both the empty
set and the entire affine space are closed algebraic sets (zero loci of respec-
tively the whole polynomial ring and the zero ideal). The closed algebraic sets
in An therefore fullfil the axioms for being the closed sets of a topology. This
topology is called the Zariski topology. The Zariski topology

2.1 Every closed algebraic set X in An carries a Zariski topology as well,
namely the topology induced from the Zariski topology on An . The closed
sets are easily seen to be the closed subsets of An that are contained in X.
These are the zero-loci of ideals a containing IpXq; that is, those shaped like
Zpaq with IpXq Ñ a. Such ideals are in one-to-one correspondence with the
ideals in the coordinate ring ApXq “ krx1, . . . , xns{IpXq. In other words, the
Zariski closed sets in X are the zero-loci of the ideals in ApXq. And if we
request the a’s to be radical ideals, the correspondence is one-to-one.

Example 2.1 The closed algebraic sets of A1 are, apart from the empty set
and A1 itself, just the finite sets. Indeed, the polynomial ring krxs is a pid so
that any ideal is shaped like p f pxqq, and the zeros of f are finite in number1. 1 Remember that k is

algebraically closedThe Zariski open sets are therefore those with a finite complement. K

Example 2.2 The closed sets of the affine plane A2 are more complicated.
Later on we shall show that they are finite unions of either points or subsets
shaped like Zp f px, yqq where f is a polynomial in krx, ys. Notice that this is
not the product topology on A2. Indeed, the product topology is generated
by the inverse images of closed sets in the factors which in our case are just
points (apart from the empty set anf the entire space), and the inverse images
are thus sets of the form Zpx ´ aq or Zpy ´ aq. The closed are finite union of
intersections of these, that is, unions of points or lines “parallel to one of the
axes”. However, a conic like the hyperbola xy “ 1, for instance, is not among
those. K

2.2 The open sets are of course the complements of the closed ones, and
among the open sets there are some called distinguished open sets that play a The distinguished open

setsspecial role. They are the sets where a single polynomial does not vanish. If f
is any polynomial in krx1, . . . , xns, we define

X f “ t x P X | f pxq ‰ 0 u,

which clearly is open in X being the complement of Zp f q X X. Another common
notation for X f is Dp f q.

Proposition 2.3 Let X be a closed algebraic set. The distinguished open sets form
a basis2 for the Zariski topology on X. 2 Recall that a collection

tUiu of open sets is a
basis for the topology if
every open set in X is
the union of members
of tUiu.

Proof: Fix an open set U. The complement Uc is closed and hence of the
form Uc

“ Zpaq for some ideal a in ApXq. If t fiu is a set of generators for a, it
holds true that Zpaq “

ì
i Zp fiq, and consequently U “ Zpaq

c
“

î
i Ufi . o
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2.4 When the ground field is the field of complex numbers C, the affine space
An

pCq “ Cn has in addition to the Zariski topology the traditional metric
topology, and a closed algebraic set X in An inherits a topology from this. The
induced topology on X is called the complex or the strong topology. The complex or strong

topologyThe Zariski topology is very different from the strong topology. Polynomi-
als are (strongly) continuous, so any Zariski-open set is strongly open, but the
converse is far from being true. For example, in contrast to the usual topology
on C, the Zariski topology on the affine line A1

pCq, as we saw in Example 2.1
above, is the topology of finite complements; a non-empty set is open if and
only if the complement is finite.

The Zariski topology has, however, the virtue of being defined whatever the
ground field is (as long as it is algebraically closed), and the field can very well
be of positive characteristic.

2.2 Irreducible topological spaces

2.5 A topological space X is called irreducible if it is not the union of two Irreducible topological
spaces (irreduktible
topologiske rom)

proper closed subsets. That is, if X “ X1 Y X2 with X1 and X2 both being
closed, then either X1 “ X or X2 “ X.

2.6 If X is a closed algebraic subset of An, one may translate the topological
property of being irreducible into an algebraic property of the ideal IpXq: If
IpXq “ a X b then either a “ IpXq or b “ IpXq, and in commutative algebra
such ideals are called irreducible (guess why!). Prime ideals are examples
of irreducible ideals, but there are many more. However, irreducible ideals
are primary ideal, and this observation is at the base of the theory of primary
decomposition in Noetherian rings.

2.7 Taking complements, we arrive at the following characterization of irre-
ducible spaces:

Lemma 2.8 A topological space X is irreducible if and only if the intersection of any
two non-empty open subsets is non-empty.

Proof: Assume first that X is irreducible and let U1 and U2 be two open
subset. If U1 X U2 “ H, it would follow, when taking complements, that
X “ Uc

1 Y Uc
2, and X being irreducible, we could infer that Uc

i “ X for either
i “ 1 or i “ 2; whence Ui “ H for one of the i’s. To prove the other implication,
assume that X is expressed as a union X “ X1 Y X2 with the Xi’s being closed.
Then Xc

1 X Xc
2 “ H; hence either Xc

1 “ H or Xc
2 “ H, and therefore either

X1 “ X or X2 “ X. o

2.9 There are a few properties irreducible spaces have that follow immediately.
Firstly, every open non-empty subset U of an irreducible space X is dense.
Indeed, if x P X and V is any neighbourhood of x, the lemma tells us that
U X V ‰ H, and x belongs to the closure of U.
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Secondly, every non-empty open subset U of X is irreducible. This follows
trivially since any two non-empty open sets of U are open in X, hence their
intersection is a fortiori non-empty.

Thirdly, the closure Y of an irreducible subset Y of X is irreducible. For if
U1 and U2 are two non-empty open subsets of Y, it holds true that Ui X Y ‰ H,
and hence U1 X U2 X Y ‰ H since Y is irreducible, and a fortiori the intersection
U1 X U2 is non-empty.

Fourthly, continuous images of irreducible spaces are irreducible. If f : X Ñ

Y is surjective and continuous and Ui for i “ 1, 2 are open and non-empty
subsets of Y, it follows that f ´1

pUiq are open and non-empty (the map f is
surjective) for i “ 1, 2. When X is irreducible, it holds that f ´1

pU1 X U2q “

f ´1
pU1q X f ´1

pU2q ‰ H, and so U1 X U2 is not empty.
Summing up for later reference, we state the following lemma:

Lemma 2.10 Open non-empty sets of an irreducible set are irreducible and dense.
Closures and continuous images of irreducible sets are irreducible.

We should also mention that Zariski topologies are far from being Hausdorff;
it is futile to search for disjoint neighbourhoods when all non-empty open
subsets meet!

2.11 Closed algebraic sets in the affine space An are of special interest, and we
have already alluded to the algebraic equivalent of being irreducible. Here is
the formal statement and a proof:

Proposition 2.12 An algebraic set X P An is irreducible if and only if the ideal
IpXq of polynomials vanishing on X is prime.

As a particular case we observe that the affine space An itself is irreducible.
Proof: Assume that X is irreducible and let f and g be polynomials such that
f g P IpXq, which implies that X Ñ Zp f q Y Zpgq. Since X is irreducible, it follows
that either Zpgq X X or Zp f q X X equals X. Hence one has either X Ñ Zp f q or
X Ñ Zpgq, which for the ideal IpXq means that either f P IpXq or g P IpXq.

The other way around, assume that IpXq is prime and that X “ Zpaq Y Zpbq

with a and b being radical ideals. Then it holds that IpXq “ a X b and because
IpXq is prime, we deduce that IpXq “ a or IpXq “ b. Hence X “ Zpaq or
X “ Zpbq. o

2.13 Algebraic sets that are the zero-locus of one single polynomial; that is,
sets X such that X “ Zp f q, are called hypersurfaces. They are quintessential Hypersurfaces

players in our story. Curves in A2 and surfaces in A3 are well known exam-
ples of the sort.

In general, hypersurfaces are somehow more manageable than general
algebraic sets—even though the equation can be complicated, at least there is
just one!

If f is a linear polynomial, Zp f q is called a hyperplane—basically a hyper- Hyperplanes

plane is just a linear subspace of dimension n ´ 1 in An.
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2.14 The Nullstellensatz tells us that p f q and the radical
a

p f q have the same
zero-locus, so every hypersurface has a polynomial f without multiple factors
as defining polynomial. Moreover, we know that a polynomial f generates a
prime ideal if and only it is irreducible—this is just the fact that polynomial
rings are ufd. Hence a hypersurface is irreducible if and only if it can be
defined by an irreducible polynomial.

Proposition 2.15 Let f be a polynomial in krx1, . . . , xns. If f is an irreducible
polynomial, the hypersurface Zp f q is irreducible. If the hypersurface Zp f q is irre-
ducible, then f is a power of some irreducible polynomial.

Figure 2.1: A hyperel-
liptic curve.

Examples

2.3 Polynomials shaped like f pxq “ y2
´ Ppxq are irreducible unless Ppxq

is a square; that is Ppxq “ Qpxq
2. Indeed; if f “ A ¨ B either both A and B

are linear in y or one of them does not depend on y at all. In the former case
Apx, yq “ y ` apxq and Bpx, yq “ y ` bpxq which gives

y2
´ Ppxq “ py ` apxqq ¨ py ` bpxqq “ y2

` papxq ` bpxqq ¨ y ` apxqbpxq,

and it follows that apxq “ ´bpxq. In the latter case one finds

y2
´ Ppxq “ py2

` apxqq ¨ bpxq

which implies that bpxq “ 1 and hence f pxq is irreducible. When the polyno-
mial Ppxq has merely simple zeros, the curve defined by f is called a hyperellip-
tic curve, and if Ppxq in addition is of the third degree, it is said to be an elliptic Hyperelliptic curves

curve. In figures 2.1 and 2.2 in the margin we have depicted (the real points
of) two, both with Ppxq of the eighth degree. Can you explain the qualitative
difference between the two?

We already met some elliptic curves in Lecture 1. They are omnipresent in
both geometry and number theory and we shall study them closely later on.

Figure 2.2: Another
hyperelliptic curve.

2.4 Our second example is a well known hypersurface, namely the deter-
minant. It is one of many interesting algebraic sets that appear as subsets
of matrix-spaces Mn,m “ Anm defined by rank conditions. The example is
about the determinant detpxijq of a “generic” n ˆ n-matrix; that is, one with
independent variables as entries. It is a homogenous polynomial of degree n.

We shall see that it is irreducible by a specialization technique. Look at
matrices like

A “

¨

˚̊
˚̊
˚̊
˚̊
˚̋

t y1 0 0 . . . 0
0 t y2 0 . . . 0

0
. . . . . . 0

0 . . . 0 t yn´2 0
0 . . . 0 0 t yn´1
yn . . . 0 0 0 t

˛

‹‹‹‹‹‹‹‹‹‚
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with a variable t’s along the diagonal, and variables yi’s along the first “supra-
diagonal” and yn in the lower left corner; in other words the specialization
consists in putting xii “ t, xi,i`1 “ yi for i § n ´ 1 and xn1 “ yn, and the rest of
the xij’s are put to zero.

It is not difficult to show that det A “ tn
´ p´1q

ny1 ¨ . . . ¨ yn and that this
polynomial is irreducible. A potential factorization detpxijq “ F ¨ G with F
and G both being of degree less than n must persist when giving the variables
special values, but as det A is irreducible and of degree n, we conclude that
there can be no such factorization.

K

Problem 2.1 With notation as in the example, show that the determinant
det A is given as det A “ tn

´ p´1q
ny1 ¨ . . . ¨ yn and that this is an irreducible

polynomial. M

Decomposition into irreducibles

From commutative algebra we know that ideals in Noetherian rings have a
primary decomposition. An ideal a in a Noetherina ring can be expressed as an
intersection

a “ q1 X q2 X . . . X qr

where the qi’s are primary ideals. Recall that primary ideals have radicals that
are a prime, so the ideals

?
qi are prime. They are called the primes associated

to a. Such a decomposition is not always unique. The associated prime ideals
are unique as are the components qi corresponding to minimal associated
primes, but the so called embedded components3 are not. For instance, one has 3 A primary compo-

nent qi is embedded
if

?
qi contains the

radical ?
qj of another

component qj.

px2, xyq “ pxq X px2, yq but also px2, xyq “ pxq X px2, xy, y2
q holds true.

Emmy Noether
(1882–1935)

German mathematician

2.16 Properties of ideals in the polynomial ring krx1, . . . , xns usually trans-
late into a properties of algebraic sets, and so also for the primary decom-
position. In geometric terms it reads as follows. Let Y “ Zpaq for an ideal
aÑ krx1, . . . , xns, and write down the primary decomposition of a:

a “ q1 X q2 X . . . X qr.

Putting Yi “ Zp
?
qiq, we find Y “ Y1 Y Y2 Y . . . Y Yr, where each Yi is an

irreducible closed algebraic set in An. If the prime
?
qi is not minimal among

the associated primes, say ?
qj Ñ

?
qi, it holds that Yi Ñ Yj, and the component

Yi contributes nothing to intersection and can be discarded.

2.17 A decomposition Y “ Y1 Y . . . Y Yr of any topological space is said
to be redundant if one can discard one or more of the Yi’s without changing Redundant decomposi-

tionsthe union. That a component Yj can be discarded is equivalent to Yj being
contained in the union of rest; that is, Yj Ñ

î
i‰j Yi. A decomposition that is

not redundant, is said to be irredundant. Irredudant decomposi-
tions
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Proposition 2.18 Any closed algebraic set Y Ñ An can be written as an irredun-
dant union

Y “ Y1 Y . . . Y Yr

where the Yi’s are irreducible closed algebraic subsets. The union is unique up to the
order of the Yi’s.

2.19 A decomposition result as in Proposition 2.18 above holds for a much
broader class of topological spaces than the closed algebraic sets. The class in
question is the class of so-called Noetherian topological spaces; they comply to Noetherian topological

spacesthe requirement that every descending chain of closed subsets is eventually
stable. That is; if tXiu is a collection of closed subsets forming a chain

. . . Xi`1 Ñ Xi Ñ . . . Ñ X2 Ñ X1,

it holds true that for some index r one has Xi “ Xr for i • r. It is easy to
establish, and left to the zealous students, that any subset of a Noetherian
space endowed with the induced topology is Noetherian. Notice also that
common usage in algebraic geometry is to call a topological space quasi-
compact if every open covering can be reduced to a finite covering. Quasi-compact

By common usage in
mathematics a compact
space is Hausdorff.
The “Zariski"-like”
spaces are far from
being Hausdorff,
therefore the notion
quasi-compact.

Lemma 2.20 Let X be a topological space. The following three conditions are equiva-
lent:

o X is Noetherian;

o Every open subset of X is quasi-compact;

o Every non-empty family of closed subsets of X has a minimal member.
The last statement
leads to the technique
called Noetherian
induction—proving
a statement about
closed subsets, one can
work with a minimal
“crook”; i.e. a minimal
counterexample.

Proof: Assume to begin with that X is Noetherian and let S be a family of
closed sets without a minimal elements. One then easily constructs a strictly
descending chain that is not stationary by recursion. Assume a chain

Xr Ä Xr´1 Ä . . . Ä X1

of length r has been found; to extend it just append any subset in S strictly
contained in Xr, which does exist since S has no minimal member.

Next, assume that every S has a minimal member and let tUiu be an open
covering of X. Let S be the family of closed sets being finite intersections of
complements of members of the covering. It has a minimal element Z. If Uj is
any member of the covering, it follows that Z X Uc

j “ Z, hence Uj Ñ Zc, and by
consequence U “ Zc.

Finally, suppose that every open U in X is quasi-compact and let tXiu be
a descending chain of closed subsets. The open set U “ Xz

ì
i Xi is quasi-

compact by assumption and covered by the ascending collection tXc
i u, hence it

is covered by finitely many of them. The collection tXc
i u being ascending, we
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can infer that Xc
r “ U for some r; that is,

ì
i Xi “ Xr and consequently it holds

that Xi “ Xr for i • r. o

The decomposition of closed subsets in affine space as a union of irre-
ducibles can be generalized to any Noetherian topological space:

Theorem 2.21 Every closed subset Y of a Noetherian topological space X has
an irredundant decomposition Y “ Y1 Y . . . Y Yr where each is Yi is a closed and
irreducible subset of X. Furthermore, the decomposition is unique.

The Yi’s that appear in the theorem are called the irreducible components of Y. Irreducible components

They are maximal among the closed irreducible subsets of Y.
Proof: We shall work with the family S of those closed subsets of X which
can not be decomposed into a finite union of irreducible closed subsets; or if
you want, the set of counterexamples to the assertion in the theorem—and of
course, we shall prove that it is empty!

Assuming the contrary—that S is non-empty—we can find a minimal
element Y in S because X by assumption is Noetherian. The set Y itself can
not be irreducible, so Y “ Y1 Y Y2 where both the Yi’s are proper subsets
of Y and therefore do not belong to S. Either is thus a finite union of closed
irreducible subsets, and consequently the same is true for their union Y. We
have a contradiction, and S must be empty.

As to uniqueness, assume that we have a counterexample; that is, two
irredundant decomposition such that Y1 Y . . . Y Yr “ Z1 Y . . . Y Zs and such that
one of the Yi’s, say Y1, does not equal any of the Zk’s.

Since Y1 is irreducible and Y1 “
î

k
`
Zk X Y1

˘
, it follows that Y1 Ñ Zk for some

k. A similarly argument gives Zk “
î

i
`
Zk X Yi

˘
and Zk being irreducible, it

holds that Zk Ñ Yi for some i, and therefore Y1 Ñ Zk Ñ Yi. By irredundancy we
infer that Y1 “ Yi, and hence Y1 “ Zk. Contradiction. o

Problem 2.2 Let X be a topological space and Z Ñ X be an irreducible com-
ponent of X. Let U be an open subset of X. Assume that U X Z is nonempty.
Show that Z X U is an irreducible component of U. M

2.22 You should already have noticed the resemblance of the condition to be
Noetherian for topological spaces and rings—both are chain conditions—and
of course that is where the name Noetherian spaces comes from. When X is a
closed algebraic set in An, the one-to-one correspondence between the prime
ideals in the coordinate ring ApXq and the closed irreducible sets in X, yields
that X is a Noetherian space; indeed, Hilbert’s basis theorem implies that
ApXq is a Noetherian ring, so any ascending chain tIpXiqu of prime ideals cor-
responding to a descending chain of tXiu of closed irreducibles, is stationary.
We have

Proposition 2.23 If X is a closed algebraic subset of An, then X is a Noetherian
space.

There are examples of
non-noetherian rings
with just one maximal
ideal, so an ascending
chain condition on
prime ideals does
not imply that the
ring is Noetherian.
However, by a theorem
of I.S. Cohen, a ring
is Noetherian if all
prime ideals are finitely
generated.
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Hypersurfaces once more and some examples

It is often difficult to prove that an algebraic set X is irreducible, or equiva-
lently that the ideal IpXq is a prime ideal. This can be challenging even when
X is a hypersurface.

Generally, to find the primary decomposition of an ideal a difficult. In
addition to the problems of finding the minimal primes and the correspond-
ing primary components, which frequently can be attacked by geometric
methods, one has the notorious problem of embedded components. They are
annoyingly well hidden from geometry.

If X “ Zp f q is a hypersurface in An, there will be no embedded com-
ponents since the polynomial ring is a ufd. Indeed, one easily sees that
p f q X pgq “ p f gq for polynomial without common factors. Hence one infers by
induction that

p f q “ p f a1
1 q X . . . X p f ar

r q,

where f “ f a1
1 ¨ . . . ¨ f ar

r is the factorization of f into irreducibles, and observes
there are no inclusions among the prime ideals p fiq.

There is a vast generalization of this. A very nice class of rings are formed
by the so called Cohen–Macaulay rings. If the coordinate ring ApXq is Cohen–
Macaulay, the ideal IpXq has no embedded components. This is a part of the
Macaulay’s unmixed theorem—which even says that all the components of
IpXq have the same dimension.

Examples

2.5 (Homogeneous polynomials) Recall that a polynomial f is homogenous if all Homogeneous polynomi-
alsthe monomials that appear (with a non-zero coefficient) in f are of the same

total degree. Recollecting terms of the same total degree, one sees that any
polynomial can be written as a sum f “

∞
i fi where the fi’s are homogeneous

of degree i; and since homogeneous polynomials of different total degrees are
linearly independent, such a decomposition is unique.

If a homogeneous polynomial f factors as a product f “ a ¨ b, the polynomi-
als a and b will also homogeneous. (Sometimes this can make life easier if you
want e.g. to factor f or to show that f is irreducible.) Indeed, if a “

∞
0§i§d ai

and b “
∞

0§j§e bj with ai’s and bj’s homogeneous of degree i and j respec-
tively and with ad ‰ 0 and be ‰ 0, one finds

f “ ab “

ÿ

i`j†d`e
aibj ` adbe

Since the decomposition of f in homogeneous parts is unique, it follows that
f “ aebd.

2.6 The polynomial f pxq “ x2
1 ` x2

2 ` . . . ` x2
n is irreducible when n • 3 and
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the characteristic of k is not equal to two. To check this, we may assume n “ 3.
Suppose there is a factorization like

x2
1 ` x2

2 ` x2
3 “ pa1x1 ` a2x2 ` a3x3qpb1x1 ` b2x2 ` b3x3q.

Observing that a1 ¨ b1 “ 1 and replacing ai by a1{a1 and bi by bi{b1, one may
assume that a1 “ b1 “ 1 and the equation takes the shape

x2
1 ` x2

2 ` x2
3 “ px1 ` a2x2 ` a3x3qpx1 ` b2x2 ` b3x3q.

Putting x3 “ 0, and using the factorization x2
1 ` x2

2 “ px1 ` ix2qppx1 ´ ix2q, one
easily brings the equation on the form

x2
1 ` x2

2 ` x2
3 “ px1 ` ix2 ` a3x3qpx1 ´ ix2 ` b3x3q,

from which one obtains a3 “ b3 and a3 “ ´b3. Since the characteristic is
not equal to two, this is a contradiction. If k is of characteristic two, however,
x2

1 ` x2
2 ` x2

3 is not irreducible; it holds true that x2
1 ` x2

2 ` x2
3 “ px1 ` x2 ` x3q

2.

2.7 (Monomial ideals) An ideal a is said to be monomial if it is generated by Monomial ideals

monomials. Such an ideal has the property that if a polynomial f belongs
to a, all the monomials appearing in f belong to a as well. To verify this one
writes f as a sum f “

∞
Mi of monomial terms4 and let tNju be monomial 4 A monomial term is of

the form a ¨ M where
a is a scalar and M a
monomial.

generators for a. Then one infers that

f “

ÿ

i
Mi “

ÿ

j
PjNj “

ÿ

j,k
AkjNj

where Pj are polynomials whose expansions in monomial terms are Pj “∞
k Akj. Since different monomials are linearly independent (by definition of

polynomials), every term Mi is a linear combination of the monomial terms
AkjNj corresponding to the same monomial, and hence lies in the ideal a.

2.8 Monomial ideals are much easier to work with than general ideals. As
an easy example, consider the union of the three coordinate axes in A3. It is
given as the zero locus of the ideal a “ pxy, xz, yzq, and one has

pxy, xz, yzq “ px, yq X px, zq X pz, wq

Indeed, one inclusion is trivial; for the other it suffices to show that a mono-
mial in px, yq X px, zq X py, zq belongs to pxy, xz, yzq. But xnymzl lies in px, yq X

px, zq X py, zq precisely when at least two of the three integers n, m and l are
non-zero, which as well is the requirement to lie in a.

K
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2.3 Polynomial maps between algebraic sets

The final topic we approach in this chapter are the so called polynomial maps
between closed algebraic sets. This anticipates the introduction of “mor-
phisms” between general varieties in the next section, but it is still worthwhile
to mention it here. Polynomial maps between algebraic sets are conceptually
much simpler than morphisms, and in concrete cases one works with poly-
nomials. In the end, the two concepts of polynomial maps and morphisms
between closed algebraic sets turn out to coincide.

The coordinate ring

2.24 Let X Ñ An be a closed algebraic set. A polynomial function (later on they
Polynomial functionswill also be called regular functions) on X is just the restriction to X of a polyno-

mial on An; that is, it is a polynomial q P krx1, . . . , xns regarded as a function
on X. Two polynomials p and q restrict to the same function precisely when
the difference p ´ q vanishes on X; that is to say, the difference p ´ q belongs to
the ideal IpXq. We infer that the polynomial functions on X correspond exactly
the elements in the coordinate ring ApXq “ krx1, . . . , xns{IpXq.

X �
�

//

q

✏✏

An

q
~~

k

Polynomial maps

2.25 Now, given another closed algebraic subset Y Ñ Am and a map f : X Ñ Y.
Composing f with the inclusion of Y in Am, we may consider f as a map
from X to Am that takes values in Y; and as such, it has m component func-
tions q1, . . . , qm. We say that f is a polynomial map if these components are Polynomial maps

polynomial functions on X. The set of polynomial maps from X to Y will be
denoted by HomA↵pX, Yq.

Example 2.9 We have already seen several examples. For instance, the
parametrization of a rational normal curve Cn is a polynomial map from
A1 to Cn whose component functions are the powers ti. K

Proposition 2.26 Polynomial maps are Zariski continuous.

Proof: Assume that f : X Ñ Y is the polynomial map. Given a polyno-
mial function on Y. Clearly f ˝ q is a polynomial function on X, and hence
f´1

pZpqqq “ Zpf ˝ qq is closed in X, and consequently, for any closed set
Zpq1, . . . , qmq, we find that the inverse image f´1Zpq1, . . . , qrq “

ì
i f´1Zpqiq is

closed. o

Examples

We conclude this lecture with a few examples to illustrate different phenom-
ena surrounding polynomial maps . One example to warn that images of
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polynomial maps can be complicated, followed by two examples to illustrate
that important and interesting subsets naturally originating in linear algebra
can be irreducible algebraic sets.

Example 2.10 Images of polynomial maps can be complicated. In general
they are neither closed nor open. For example, consider the map f : A2

Ñ A2

given as fpu, vq “ pu, uvq. Pick a point px, yq in A2. If x ‰ 0, it holds that
fpx, x´1yq “ px, yq so points lying off the y-axis are in the image. Among
points with x “ 0 however, only the origin belongs to the image. Hence the
image is equal to the union A2

zZpxq Y tp0, 0qu. This set is neither closed (it
contains an open set and is therefore dense) nor open (the complement equals
Zpxqztp0, 0qu which is dense in the closed set Zpxq, hence not closed).

The map f collapses the v-axis to the origin, and, consequently, lines paral-
lel to the u-axis are mappes to lines through the origin; the intersection point
with the v-axis is mapped to the origin. Pushing these lines out towards infin-
ity, their images approach the v-axis. So in some sense, the “lacking line” that
should have covered the v axis, is the “line at infinity”. K

u

v

f

x

y

Problem 2.3 Let f be the map in Example 2.10. Show that f maps lines
parallel to the u-axis (that is, those with equation v “ c) to lines through the
origin. Show that lines through the origin (those having equation v “ cu) are
mapped to parabolas. M

Problem 2.4 Describe the image of the map f : A3
Ñ A3 given as fpu, v, wq “

pu, uv, uvwq. M

Example 2.11 (Determinantal varieties) Determinantal varieties are as the
name indicates, closed algebraic sets defined by determinants. They are much
studied and play a prominent role in mathematics. In this example we study
one particular instance of the species.

The space M2,3 “ Homkpk3, k2
q of 2 ˆ 3-matrices may be consider to be the

space A6 with the coordinates indexed like the entries of a matrix; that is, the
points are like

˜
x11 x12 x13
x21 x22 x23

¸
. (2.1)

We are interested in the subspace W of matrices of rank at most one. For a
2 ˆ 3-matrix to be of rank at most one, is equivalent to the vanishing of the
maximal minors (in the present case there are three5 maximal minors and all 5 The three are

x11x22 ´ x12x21,
x11x23 ´ x13x21,
x12x23 ´ x13x22

three are quadrics). This shows that W is a closed algebraic set.
To see it is irreducible we express W as the image of an affine space under a

polynomial map. Indeed, any matrix of rank at most one, can be factored as

a “

˜
a1
a2

¸
pb1, b2, b3q.
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So W is the image of A5
“ A2

ˆ A3 under the map—which clearly is
polynomial—that sends the tuple pa1, a2, b1, b2, b3q to the matrix paibjq. K

Problem 2.5 Show that rank one maps can be factored as in the example
above. Hint: The linear map corresponding to the matrix has image of dimen-
sion one and can be factored as k3 a

// k i
// k2 M

Problem 2.6 Show that the ideal generated by the three minors of the matrix
in (2.1) is a prime ideal in krxijs. M

Example 2.12 (Quadratic forms) Recall that a quadratic form is a homogeneous
Quadratic formspolynomial of degree two. That is, one that is shaped like Ppxq “

∞
i,j aijxixj

where both i and j run from 1 to n. In that sum aijxixj and ajixjxi appear as
separate terms, but as a matter of notation, one organizes the sum so that
aij “ aji. Coalescing the terms aijxixj and ajixjxi, the coefficient in front of xixj
becomes equal to 2aij. For instance, when n “ 2, a quadratic form is shaped
like

Ppxq “ a11x2
1 ` 2a12x1x2 ` a2

22x2
2.

The coefficient matrix of the form is the symmetric matrix A “ paijq. Then one
can express Ppxq as the matrix product

Ppxq “ xAxt

where x “ px1, . . . , xnq.
The set of such forms—or of such matrices—constitute a linear space which

we shall denote by Sn. It has a basis x2
i and 2xixj so in our language Sn is

isomorphic to an affine space AN whose dimension N equals the number of
distinct monomials xixj; that is N “ npn ` 1q{2. The coordinates with respect to
this basis, are denoted by aij.

We are interested in the subspaces Wr Ñ AN where the rank of A is as most
r. They form a descending chain; that is Wr´1 Ñ Wr; and clearly Wn “ AN and
W0 “ t0u.

The Wr’s are all closed algebraic subsets, and the aim of this example is to
show they are irreducible:

Proposition 2.27 The subsets Wr are closed irreducible algebraic subset of AN.

Proof: That the Wr’s are closed, hinges on the fact that a matrix is of rank at
most r if and only if all its pr ` 1q ˆ pr ` 1q-minors vanish.

To see that the Wr’s are irreducible, we shall use a common technique.
Every matrix in Wr can be expressed in terms of a “standard matrix” in a a
continuous manner.

By the classical Gram-Schmidt process, any symmetric matrix can be diago-
nalized. There is a relation

BABt
“ D
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where B is an invertible matrix and where D is a diagonal matrix of a special
form. If the rank of A is r, the first r diagonal elements of D are 1’s and the
rest are 0’s. Introducing C “ B´1, we obtain the relation

A “ CDCt.

Allowing C to be any n ˆ n-matrix, not merely an invertible one, one obtains in
this way all matrices A of rank at most r. Rendering the above considerations

Jacob Steiner
(1996–1863)

Swiss mathematician

into geometry, we introduce a parametrization of the locus Wr of quadrics
of rank at most r. It is not a one-to-one map, several parameter values corre-
spond to the same point, but it is a polynomial map and serves our purpose,
to prove that Wr is irreducible. We define a map

F : Mn,n Ñ AN

byt letting it send an n ˆ n-matrix C to CDCt. The map F is a polynomial map
because the entries of a product of two matrices are expressed by polynomials
in the entries of the factors, and by the Gram-Schmidt process described above,
its image equals Wr. Hence Wr is irreducible. o

Giuseppe Veronese
(1854–1917)

Italian mathematician

To get a better understanding of how a form of rank r is shaped, one intro-
duces new coordinates tyiu adapted to a form specific with matrix A “ BDBt

by the relations yB “ x, which is legitimate since B and therefore Bt is invert-
ible. Then xAxt

“ yBt ABtyt
“ yDyt. So, in view of the shape of D, expressed

in the new coordinates the quadratic form Ppxq has the shape:

Ppyq “ y2
1 ` . . . ` y2

r .

Of special interest are the sets W1 of rank one quadrics. By what we just
saw, these quadrics are all squares of a linear form in the variables xi’s (re-
member that y1 is a linear form in the original coordinates, the xi’s); that is,
one has an expression

Ppxq “ p

ÿ

i
uixiq

2
“

ÿ

i
u2

i x2
i `

ÿ

i†j
2uiujxixj.

This gives us another parametrization of W1, namely the one sending a linear
form to its square. The linear forms constitute a vector space of dimension n
(one coefficient for each variable), so "the square" is map

Figure 2.3: The Roman
surface—a projection of
a real Veronese surface

n : An
Ñ AN (2.2)

sending pu1, . . . , unq to the point whose coordinates are all different products
uiuj with i § j (remember we use the basis for the space of quadrics made up
of the squares x2

i and the cross terms 2xixj, in some order). When n “ 3 we
get a mapping of A3 into A6 whose image is called the cone over the Veronese
surface.
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The Veronese surface is a famous projective surface living in the projective
space P5 (we shall study these spaces closely in subsequent lectures). The
real points of the Veronese surface be can be realized as projection into R3, at
least if one allows the surface to have self intersections. The surface depicted
in the margin is parametrized by three out of the six quadratic terms in the
parametrization (2.2) above, and is the image of the unit sphere in R3 under
the map px, y, zq fiÑ pxy, xz, yzq. This specific real surface is often called the
Steiner surface after the Swiss mathematician Jacob Steiner who was the first
to describe it, but also goes under the name of the Roman surface since Steiner
was in Rome when he discovered it. K

Problem 2.7 Show that the map v above in (2.2) is not injective, but satisfies
np´uq “ npuq. Show that if npuq “ npu1

q, then either u “ u1 or u “ ´u1. M

Problems

2.8 Show that an irreducible space is Hausdorff if and only if it is reduced to
single point.

2.9 Endow the natural numbers N with the topology whose closed sets apart
from N itself are the finite sets. Show that N with this topology is irreducible.
What is the dimension?

2.10 Show that any countable subset of A1 is Zariski-dense.

2.11 Let X be an infinite set and Z1, . . . Zr Ñ X be proper infinite subsets of
X such any two of them intersect in at most a finite set. Let T be the set of
subsets of X that are either finite, the union of some of the Zi’s and a finite set,
the empty set or the entire set X. Show that T is the set of closed sets for a
topology on X. When is it irreducible?

2.12 Let X Ñ A4 be the union of the four coordinate axes. Determine the ideal
IpXq by giving generators. Describe the Zariski topology on X.

2.13 Let a be the ideal a “ pxz, xw, zy, wyq in the polynomial ring krx, y, z, ws.
Describe the algebraic set W “ Zpaq in A4 geometrically, and show that the
primary decomposition of a is

a “ px, yq X pz, wq.

2.14 Continuing the previous exercise, let b be the ideal b “ pw ´ ayq with
a a non-zero element in k, and let X “ Zpbq. Describe geometrically the
intersection W X X. Show that the image c of the ideal a ` b in krx, y, zs under
the map that sends w to ay is given as

c “ pxz, xy, zy, y2
q,

and determine a primary decomposition of c. What happens if a “ 0?
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2.15 Let two quadratic polynomials f and g in krx, y, z, ws be given as f “

xz ´ wy and g “ xw ´ zy. Describe geometrically the algebraic subset Zp f , gq

and find a primary decomposition of the ideal p f , gq.

2.16 Let f “ y2
´ xpx ´ 1qpx ´ 2q and g “ y2

` px ´ 1q
2

´ 1. Show that
Zp f , gq “ tp0, 0q, p2, 0qu. Determine the primary decomposition of p f , gq.

Figure 2.4: The curves
in problem 2.16.

2.17 Let a be the ideal pwy ´ x2, wz ´ xyq in krx, y, z, ws. Show that the primary
decomposition of a is

a “ pw, xq X pwz ´ xy, wy ´ x2, y2
´ zxq.

2.18 Let a “ pwz ´ xy, wy ´ x2, y2
´ zxq. Show that Zpaq is irreducible and

determine IpXq.

2.19 Show that any reduced6 algebra of finite type over k is the coordinate
6 Reduced means that
there are no non-zero
nilpotent elements.

ring of a closed algebraic set.

2.20 Show that any integral domain finitely generated over k is the coordinate
ring of an irreducible closed algebraic set.

2.21 Show that the multiplication map Mn.m ˆ Mm,k Ñ Mn,k is a polynomial
map.

2.22 Let Wr be the subset of Homkpkn, km
q “ Mn,m “ Anm of maps of rank at

most r. Show that Wr is irreducible.

M
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Lecture 3

Sheaves and varities

Hot themes in Lecture 3: Sheaves of rings— regular function—rational
functions—affine varieties—general varieties—morphisms—morphisms into
affine varieties—the Hausdorff axiom—products of varities.

A central feature of modern geometry is that a space of some geometric
type comes equipped with a distinguished set of functions. For instance,
topological spaces carry continuous functions and smooth manifolds carry
C8-functions.

There is a common way of axiomatically introducing the different types of
“functions” on a topological space, namely by the so called sheaves of rings.

There are many variants of sheaves involving all kinds of structures other
than ring structures. They are omnipresent in modern algebraic geometry—
and there is a vast theory about them. However, we confine ourselves to
“sheaves of functions” in this introductory course. Our sole reason to intro-
duce sheaves is that we need them to give a uniform and clear definition of
varieties, which are after all our main objects of study. So we cut the story to
a bare minimum (those pursuing studies of algebraic geometry will certainly
have the opportunity to be well acquainted with sheaves of all sorts, and hope-
fully it will be a help already having seen some sheaves when meeting the full
crowd).

Jean Leray (1906–1998)
French mathematician

Figure 3.1: A sheaf

Sheaves were invented by the french mathematician Jean Leray during his
imprisonment as a prisoner of war during WWII. The (original) french name1 1 In Norwegian one

says “knippe” which
is close to the meaning
of the French word
faisceau. When sheaves
were introduced in
Norway, a discussion
arose among the
mathematicians about
the terminology, some
proposed “feså”!!

is faisceau.

3.1 Sheaves of rings

The introduction of sheaves is a two step processe. It turns out to be very
natural and fruitful to divide the sheaf-axioms into two parts. We begin with
defining presheaves. This is broader class than the sheaves which must abide to
further conditions.
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Presheaves

As a preparation to the intrduction on one introduces so-called presheaves.

3.1 Let X be a topological space. A presheaf of rings has two constituents. Presheaves

Firstly, one associates to any open subset U Ñ X a ring RXpUq, and secondly,
to any pair U Ñ V of open subsets a ring homomorphism

resV
U : RXpVq Ñ RXpUq,

subjected to the following two conditions:

o resV
V “ idRXpVq,

o resU
W ˝ resV

U “ resV
W ,

where the last condition must be satisfied for any three open sets W Ñ U Ñ V.

RXpVq
resV

U

$$

resV
W

✏✏

RXpUq

resU
W

zz

RXpWqThe elements of RXpUq are frequently called sections of RX over U, al-

sections of a sheaf
though they often have particular names in specific contexts. It is also com-
mon usage to denote RXpUq by GpU,RXq or by H0

pU,RXq (indicating that
there are mysterious gadgets Hi

pU,RX q around), but we shall stick to RXpUq.
The homomorphisms resV

U are called restriction maps. An alternative notation
for the restriction maps is the traditional f |U .

The two conditions above reflect familiar properties of functions (to fix
the ideas, think of continuous functions on X). The first reflects the utterly
trivial fact that restriction from V to V does not change a function, and the
second the fact that restricting from V to W can be done by restricting via any
intermediate open set U.

3.2 Students initiated in the vernacular of category theory will recognize a
presheaf of rings as a contravariant functor from the category of open subsets
of X with inclusions as maps to the category of rings. That absorbed, one
easily imagines what a presheaf with values in any given category is; for
instance, the commonly met presheaves of abelian groups. Giving such a
sheaf, amounts to giving an abelian group ApUq for every open U of X and
restrictions maps ApVq Ñ ApUq that are group homomorphisms, and of
course the two axioms must be fulfilled.

Sheaves

3.3 Many classes of functions comply to a principle that can be subsumed
in the phrase “Functions of the class are determined locally”. There are two
aspects of this principle. Given an open U in X and a covering tUiu of U
of open sets. Firstly, two functions on U that agree on each Ui, are equal
on U. Secondly, a collection of functions, one on each Ui, agreeing on the
intersections Ui X Uj, can be patched together to a give a global function on U.
The defining properties of function-classes obeying to this principle must be
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of a local nature; like being continuous or differentiable. But being bounded,
for instance, is not a local property, and the set of bounded functions do not in
general form sheaves.

This leads to two new axioms. A presheaf RX is called a sheaf of rings Sheaf of rings

when the following conditions are fulfilled: For every open U Ñ X and every
covering tUiuiPI of U by open subsets it holds true that:

o Whenever f , g P RXpUq are two sections satisfying resU
Ui

f “ resU
Ui

g for every
i P I, it follows that f “ g.

o Assume there are given sections fi P RXpUiq, one for each i P I, satisfying

resUi
UjXUi

fi “ res
Uj
UiXUj

fj

for each pair of indices i, j. Then there exists an f P RXpUq such that
resU

Ui
“ fi.

Example 3.1 The simplest examples of sheaves of rings are the sheaves of
continuous real or complex valued functions on a topological space X. K

Example 3.2 In our algebraic world it is also natural to consider the sheaf CX The sheaf CX of continu-
ous A1-valued functions.of continuous functions with values in A1 on a topological space X. Where, of

course, A1 is equipped with the Zariski topology, so that a function into A1 is
continuous if and only if the fibres are closed. Since A1

“ k we can consider
A1 being a field, and ring operations in CX can be defined pointwise. So that
the space of sections CXpUq—that this, the set of continuous maps U Ñ A1—is
a k-algebra equipped with pointwise addition and multiplication.

The sheaf CX is an ancilliary introduced to make the development of the
theory; the functions that really interests us are the polynomial functions. K

3.4 Assume that f : X Ñ Y is a continuous map between two topological
spaces. The two spaces carry their sheaves of continuous functions into A1,
respectively CX and CY. Composition with f gives us some kind of “map” f˚

between the two sheaves CY and CX; or rather a well organized collection of
maps, one would called it.

In precise terms, for any open U Ñ Y and any f P CYpUq one forms the
composition f˚

p f q “ f ˝ f|f´1U , which is a section in CXpf´1Uq. Clearly f˚

is a k-algebra homomorphism (operations are defined pointwise), and it is
compatible with the restriction maps: For any open V Ñ U it holds true that

f˚
p f q|f´1V “ f˚`

f |V
˘
.

In particular, one has a k-algebra homomorphism f˚ : CYpYq Ñ CXpXq between
the k-algebras of global continuous functions to A1.

This “upper star operation” is functorial in the sense that if f and y are
composable continuous maps, it holds true that py ˝ fq

˚
“ f˚

˝ y˚. Notice
the change of order of the two involved maps—the “upper star operation” is
contravariant, as one says.

f´1U �
�

//

f|
f´1U

✏✏

f˚p f q

��

X

f

✏✏

U

f

✏✏

�
�

// Y

A1



40 notes for ma4210— algebraic geometry i

3.5 Given a topological space X with a sheaf of rings R on it. It should be
intuitively clear what is meant by a subsheaf or rings R1

ÑR; namely, for every Subsheaves or rings

open subset U of X one is given a subring R1
pUq ÑRpUq that satisfies two

conditions. First of all, the different subrings R1
pUq must be compatible with

the restrictions; that is, for every pair of open subsets U Ñ V, the restriction
maps resV

U takes R1
pVq into R1

pUq. This makes R1 a presheaf, and the second
condition requires R1 to be a sheaf. The first sheaf axiom for R1 is inherited
from R, but the second imposes a genuine condition on R1. Patching data in
R1 gives rise to a section in R, and for R1 to be a sheaf, the resulting section
must lie in R1.
3.6 At a certain point we shall be interested in subsheaves of rings of the
sheaves CX of continuous A1-functions on topological spaces and isomor-
phisms between such. So let X and Y be topological spaces with a homeomor-
phism f : X Ñ Y given. Then the composition map f˚ maps CY isomorphically
into CX . If RY and RX are subsheaves of rings of respectively CX and CY, there
is a very natural criterion for when f˚ induces and isomorphism between RX
and RY—if it is true locally, it holds globally:

Lemma 3.7 If there is a basis tUiuiPI for the topology of X such that f˚ takes
RXpUiq into RYpf´1Uiq, then f˚ maps RX isomorphically into RY.

Proof: It suffices to see that f˚ maps RXpUq into RYpf´1Uq for every open
subset U Ñ X.

So, let U Ñ X be open, and take a section s in RXpUq Ñ CXpUq. It is sent
to a section f˚

psq P CYpf´1Uq. Now, there is subset J of the index set I so
that tUjujPJ is an open covering of U, and by assumption, f˚

ps|UJ q lies in
RYpf´1Ujq. Since f˚

ps|UJ q “ f˚
psq|f´1Uj

, these sections coincide on the

intersections f´1Uj X f´1Uj1 , and consequently they patch together to a section
in RY pf´1Uq. o

3.2 Functions on irreducible algebraic sets

In this section we shall work with an irreducible closed algebraic set X Ñ An.
It has a coordinate ring ApXq “ krx1, . . . , xns{IpXq, which is an integral domain.
The coordinate ring can easily be identified with the ring of polynomial func-
tions on X which we met in Lecture 2 (Paragraph 2.24 on page 31); that is, the
functions on X that are restrictions of polynomials in krx1, . . . , xns.

X �
�

//

a|X
  

An

a

✏✏

k

3.8 For points p P X we denote by mp the ideal in ApXq of polynomial func-
tions vanishing at p. It is a maximal ideal, and the Nullstellensatz tells us
it is generated by the elements xi ´ pi for 1 § i § m where the pi’s are the
coordinates of the point p.

Rational and regular functions on irreducible algebraic sets
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3.9 We shall denote the fraction field of ApXq by KpXq. It is called the rational
function field, or for short the function field of X, and the elements of KpXq are The field of rational

functions (kroppen av
rasjonale funkjsoner)

called rational functions. The name stems from the case of the affine line A1

Rational functions
(rasjonale funksjoner)

whose coordinate ring is the polynomial ring krxs, and whose function field
therefore equals kpxq; the field of rational functions in one variable—a class
of functions familiar from earlier days. Similarly, the function field of An is
the field kpx1, . . . , xnq of rational functions in n variables whose elements are
quotients of polynomials in the xi’s.

3.10 Properly speaking rational functions are not functions on X; they are
only defined on open subsets of X. However, a statement as that requires a
precise definition of what is meant by a function being defined at a point2. So 2 Remember those

endless problems in
calculus courses with
L’Hôpital’s rule?

let p P X be a point. One says that a rational function f P KpXq is defined at x,
or is regular at p, if f can be represented as a fraction f “ a{b of two elements

Regular functions
(regulære funksjoner)

in ApXq where the denominator b does not vanish at p; that is, it holds true
that b R mp. The subring of KpXq consisting of functions regular at p is just the
localization ApXqmp of ApXq at the maximal ideal mp. This ring is commonly
denoted by OX,p and called the local ring at p. The local ring at a point

(den lokale ringen i et
punkt)Example 3.3 An element f “ a{b with a, b P ApXq is certainly defined at all

points in the distinguished open set Xb where the denominator b does not
vanish. Be aware, however, that it can be defined on a bigger set; the stupid
example being a “ b. For a less stupid example see Example 3.4 below. K

3.11 To a rational function f P KpXq one associates the ideal a f of denominators The ideal of denominators
(nevneridealer)for f . It is defined by a f “ t b P ApXq | b f P ApXq u; so that a f consists of the

denominators that appear when expressing f as a fraction in different ways.
The role of a f is made clear by the following lemma:

Lemma 3.12 The maximal open set where the rational function f is defined, is the
complement of Zpa f q. A function f on X is regular if and only if it belongs to ApXq.

The last statement in the lemma says that the regular functions on X are
precisely the polynomial functions.
Proof: Let p P X be a point. If a f Ü mp, there is an element b P a f not
vanishing at p with f “ a{b for some a, hence f is regular at p. If f is regular
at p, one can write f “ a{b with b R mp, hence a f Ü mp. For the second
statement, the Nullstellensatz tells us that Zpa f q is empty if and only if 1 P a f ,
which is equivalent to f lying in ApXq. o

Lemma 3.13 Let b P ApXq. The regular functions on Xb equals ApXqb.
The ring ApXqb is the
localization of ApXq in
the element b; i.e. in the
multiplicative system
S “ t bi | i P N u.

Proof: Clearly functions of the form a{br are regular on the distinguished
open set Xb where b does not vanish. For the other way around: Assume that
f is regular on Xb. Because Xc

b “ Zpbq, this means that Zpa f q Ñ Zpbq. We infer
by the Nullstellensatz that b P

‘
a f , so f “ abr for some r and some a P ApXq,

which is precisely to say that f P ApXqb. o
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Example 3.4 Consider the algebraic set X “ Zpxw ´ yzq in A4. It is irreducible,
and one has the equality f “ x{y “ z{w in the fraction field KpXq. The
rational function f is defined on the open set Xy Y Xw which is strictly larger
than both Xy and Xw, and the maximal open set where f is defined, is not a
distinguished open set.

Indeed, assume it were, say it was equal to Xb for some b P ApXq (then
there would be an inclusion Xy Y Xw Ñ Xb). By lemma 3.12 above, it would
follow that a f “ pbq and hence py, wq Ñ pbq. Now letting A “ krx, y, z, ws{pxw ´

yzq, one would have A{py, wq “ krx, zs. Hence the prime ideal pz, wq would
be of height two, contradicting Krull’s Hauptidealsatz3 which says that the 3 We haven’t spoken

about Krull’s Hauptide-
alsatz yet, but we’ll do
in due course

principal ideal pbq is of height at most one. K

Example 3.5 The coordinate ring ApXq from the previous example is not
a ufd—in fact, it is in some sense the arche-type of a k-algebra that is not a
ufd—and this is the reason behind f not being defined on a distinguished
open subset. One has

Proposition 3.14 Let X Ñ An be a irreducible closed algebraic set, and assume
that the coordinate ring is a ufd. Then the maximal open subset where a rational
function f is defined, is of the form Xb.

Proof: Let f P KpXq be a rational function and assume let b1, b P a f be two
elements. That is, it holds true that f “ a{b “ a1

{b1 so that ab1
“ a1b, and we

may well cancel common factors and assume that a and b (respectively a1 and
b1 ) are without common factors (remember, ApXq is a ufd). Now, we can write
b “ cg and b1

“ c1g with c and c1 without common factors. It follows that
ac1

“ a1c and hence c is a factor in a and c1 one in a1. We infer that c and c1 are
units, and b and b1 are both equal to g up to a unit. Hence a f “ pgq. o

K

Example 3.6 When n • 2, any regular function on An
zt0u extends to An

and is thus a polynomial function. Indeed, the coordinate ring of An is the
polynomial algebra krx1, . . . , xns which is ufd, hence the maximal set where a
regular function is defined is of the form An

f , but when n • 2, An
zt0u is not of

this form (the ideal px1, . . . , xnq is not a principal ideal). K

The sheaf of regular functions on affine varieties

Time has come to define the sheaf OX of regular functions on X—remember, the The sheaf OX of regular
functionsassumption that X is an irreducible closed algebraic set in An is still in force.

The ring OXpUq associated to an open subset U Ñ X is simply defined by

OXpUq “ t f P KpXq | f is regular on U u “

£

xPU
OX,x,



sheaves and varities 43

and the restriction maps are just, well, the usual restrictions. The all the rings
OXpUq are subrings of the function field KpXq, and when U Ñ V are two open
subsets, the restriction from V to U is just the inclusion

ì
xPV OX,x Ñ

ì
xPU OX,x.

This gives us a presheaf of rings—the two presheaf axioms are trivially
verified— and shortly it will turn out to be a sheaf.

When working with the sheaf OX , one should have in mind that all sections
of OX are elements of KpXq and all restriction maps are identities. For a given
open subset U, the presheaf merely picks out which rational functions in KpXq

are regular in U. This simplifies matters considerably and makes the following
proposition almost trivial:

Proposition 3.15 Let X be an irreducible closed algebraic set. The presheaf OX is
a sheaf.

Proof: There are two axioms to verify. The first one is trivial: If U Ñ V are two
opens, the restriction map, just being the inclusion

ì
xPV OX,x Ñ

ì
xPU OX,x, is

injective.
As to the second requirement, assume first that f and g are regular on

opens subsets U and V respectively, and that f |UXV “ g|UXV . Then f “ g
as elements in KpXq. Next, let tUiu be a covering of U and assume given
sections fi of OX over Ui coinciding on the pairwise intersections. Since all the
intersections Uj X Ui are non-empty, the fi’s all correspond to the same element
f P KpXq, and since the Ui’s cover U, that element is regular in U. o

3.16 Notice that Lemma 3.12 on page 41 when interpreted in the context of
sheaves, says that the global sections of the structure sheaf OX is the coordi-
nate ring ApXq; in other words, one has OXpXq “ ApXq. In particular, when
X “ Am, one has OAm pAm

q “ krx1, . . . , xns.

3.3 The definition of a variety

In this section we introduce the main objects of study in this course, namely
the varieties. We begin by telling what an affine variety is, and subsequently
the affine varieties will serve as building blocks for general varieties. The
general definition may appear rather theoretical, but soon, when we come to
projective varities, there will be many examples illustrating its necessity and
how it functions in practice.

As alluded to in the introduction, varieties will be topological spaces en-
dowed with sheaves of rings of regular functions.

Affine varities

The definition of an affine variety which we are about to give, can appear un-
necessarily complicated. Of course, the model affine variety is an irreducible
closed algebraic set X endowed with the sheaf OX of regular functions, but the
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theory requires a slightly wider and more technical definition. We must accept
gadgets that in a certain sense are “isomorphic” to one of the models. An affine
variety is a pair pX,OXq where X is a topological space and OX a subsheaf of Affine varities

CX0 pUq f˚

»
// CXpf´1pUqq

OX0 pUq?
�

OO

»
// OXpf´1pUqq

?
�

OO

rings of the sheaf CX of continuous functions on X with values in A1. The pair
is subjected to the following condition: There is an irreducible algebraic set X0

and a homeomorphism f : X Ñ X0, so that the map f˚ : CX0 Ñ CX induces
an isomorphism between OX and OX0 . This means that for all open subsets
U Ñ X0 the map f˚ takes OX0pUq isomorphically into OX

`
f´1

pUq
˘
.

3.17 The distinguished open sets X f of an algebraic set X we met during
the second Lecture illustrate well the reason for this somehow cumbersome
definition of an affine variety. Per se—as open subsets of X—they are not
closed algebraic sets, but endowed with the restriction OX|X f of the sheaf of
regular functions as sheaf of rings, they turn out to be affine varieties:

Proposition 3.18 Let X be an irreducible closed algebraic set and let f P ApXq.
Then the pair pX f ,OX|X f q is an affine variety.

Proof: We need to exhibit a closed algebraic set W and a homeomorphism
f : W Ñ X f inducing an isomorphism between the sheaf of rings.

To this end, assume that X “ Zpaq for an ideal aÑ krx1, . . . , xns. The re-
quested W will be the closed algebraic subset W Ñ An

ˆ A1
“ An`1 that is the

zero locus of the following ideal4: 4 We already came
across this ideal
when performing the
Rabinowitsch trick, but
contrary to then, in
the present situation f
does not belong to a

b “ akrx1, . . . , xn`1s ` p1 ´ f ¨ xn`1q.

The subset W is contained in inverse image X ˆ A1 of X under the projection
onto An, and consists of those points there where xn`1 “ 1{ f px1, . . . , xnq. We
let f denote the restriction of the projection to W; it is bijective onto X f with
the the map a sending px1, . . . , xnq to px1, . . . , xn, 1{ f px1, . . . , xnqq as inverse. W �

�

//

f

✏✏

An`1

✏✏

Xf
�
�

//

a

OO

X �
�

// An

The salient point is that f˚ and a˚ are mutually inverse homomorphism
between ApWq and ApX f q. As a and f are mutually inverse, the only ting to
verify is that ApWq and ApX f q are mapped into each other.

A regular function g on W is a polynomial in the coordinates x1, . . . , xn`1,
and substituting 1{ f px1, . . . , xnq for xn`1, gives a regular function on X f since
ApX f q “ ApXq f (this is lemma 3.13 on page 41). So a˚ takes ApWq into ApX f q.

Figure 3.2: The set
W is the graph of the
function 1{ f with
f pxq “ xpx ´ 1qpx ´ 2q.

Similarly, if g is regular on X f , it is expressible in the form a{ f r where a is a
polynomial in x1, . . . , xn, and therefore g ˝ f is regular on W; indeed, it holds
true that

apfpx1, . . . , xn`1qq{ f pfpx1, . . . , xn`1qq
r

“ apx1, . . . , xnqxr
n`1.

To finish the proof, we have to show that f˚ takes the sheaf of rings OX f

into the sheaf of regular functions OW , but because of lemma 3.7 on page
40, it suffices to show that for any distinguished open set Xg Ñ X f and any
regular function h on Xg, the composite g ˝ f is regular on f´1Xg “ Wf˚g;
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but this is now obvious since f˚ is an isomorphism and ApXgq “ ApX f qg and
ApXf˚gq “ ApWqf˚pgq.

Figure 3.3: Projections
onto the x-axis, makes
the hyperbola xy “ 1 is
isomorphic to A1zt0u.

o

The set W in the proof is nothing but the graph of the function 1{ f embedded
in An`1. Two simple examples of the situation are depicted in the margin
(Figure 3.2 and 3.3) in both cases X “ A1. In the first figure the function f is
given as f pxq “ xpx ´ 1qpx ´ 2q, and in the second f is the coordinate x. In the
latter case X f “ A1

zt0u, and W is the hyperbola xy “ 1.

General prevarieties

To begin with we define a version of geometric gadgets called prevarieties,
which at least for us is provisional. One of the axioms that varieties must
fulfil—the so called Hausdorff axiom—is momentary lacking since its formu-
lation requires the concept of a morphism. Therefore the outline is first to
introduce prevarieties, then morphisms between such and finally define what is
meant by a variety.

Prevarieties are defined as follows: A prevariety is a topological space X Prevarieties

endowed with a subsheaf of rings OX of the sheaf CX such that

o X is an irreducible topological space;

o There is an open covering tXiu of X such that each pXi,OX|Xi q is an affine
variety.

The sheaf OX is called the structure sheaf of X, and the sections of OX over an The structure sheaf

open subset U are called regular functions on U. Regular functions

The first axiom can be weakened to requiring that X be connected, since
connectedness in the presence of the second axiom implies that X irreducible.

Problem 3.1 Show that a connected space having an open covering of irre-
ducible open sets is irreducible. M

Example 3.7 Assume U Ñ X is an open subset of a prevariety X. We may
endow U with the restriction of the structure sheaf OX to U; that is, we put
OU “ OX|U . Then pU,OUq will be a prevariety. In fact, this follows from the
slightly more general statement:

Proposition 3.19 A prevariety X has a basis for the topology consisting of open
affine subsets.

Proof: Let tXiu be an open affine covering of X as in the second axiom. If
U Ñ X is an open subsets of X, the sets Ui “ U X Xi form an open covering of
U. The Ui’s will not necessarily be affine, but we know that the distinguished
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open sets in Xi form a basis for its topology, and by proposition 3.18 on page
44 above they are affine varieties. Hence we can cover each of the Ui’s, and
thereby U, by affine opens. o

K

3.4 Morphisms between prevarieties

On the fly, we also define what is meant by a morphism between prevarieties Morphisms of varieties

(the usage will soon degenerate into the more practical term "maps of preva-
rieties”). Morphisms are always maps that conserve structures; in our present
context this means they are continuous maps that conserve the sheaves of
regular functions.

Assume that X and Y are two prevarieties. A continuous map from f : X Ñ

Y is called a morphism if for all open subsets U Ñ Y and all regular functions Morphisms

f on U, the function f ˝ f|f´1pUq is regular on f´1
pUq. This is equivalent to

requiring that the map f˚ from CY to CX sends the structure sheaf OY of Y
into the structure sheaf OX of X.

If X and Y are varieties, an isomorphism from X to Y is a morphism f : X Ñ Isomorphisms

Y which has an inverse morphism; that is, there is a morphism y : Y Ñ X such
that y ˝ f “ idX and f ˝ y “ idY.

Being a morphism is a local property of a continuous map f : X Ñ Y between
two prevarieties; that is, one can check it being a morphism on appropriate
open coverings. One has:

Lemma 3.20 Let X and Y be two prevarieties and let f : X Ñ Y be a continuous
map between them. Suppose one can find open coverings tUiuiPI and tViuiPI of
respectively X and Y such that f maps Ui into Vi’s, and such that f|Ui is a morphism
between Ui and Vi, then f is a morphism.

Proof: Let f be a regular function on some open V Ñ Y and let U Ñ X be an
open subset with fpUq Ñ V. To see that f ˝ f|U is regular in U, it suffices by
the patching property of sheaves, to show that its restriction to each Ui X U
is regular. But Ui X U maps into Vi, and by hypothesis f ˝ f|Ui is regular, and
because restrictions of regular functions are regular, it follows that f ˝ f|UiXU is
regular. o

Problem 3.2 Show that the composition of two composable morphisms is a
morphism. Show that morphisms to A1 are just regular functions. M

Maps into affine space

3.21 Given a prevariety X and a set f1, . . . , fm of regular functions on X.
Letting the fi’s serve as component functions one builds a mapping f : X Ñ
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Am by putting fpxq “ p f1pxq, . . . , fmpxqq. It is obviously continuous, and as
would be expected, f is a morphism.

Indeed, since being a morphism is a local property (Lemma3.20 above),
it suffices to check the defining property on the distinguished open sub-
sets of Am. So let U “ Am

b be one. Regular functions on U are (Lemma
3.13 on page 41) of the form g “ a{br where a is a polynomial and r a non-
negative integer. For points x in the inverse image f´1

pUq, it holds true that
bp f1pxq, . . . , fmpxqq ‰ 0, hence

g ˝ fpxq “ ap f1pxq, . . . , fmpxqq{bp f1pxq, . . . , fmpxqq
r

is regular in f´1
pUq.

On the other hand, if f : X Ñ Am is a morphism, the component functions
fi of f being the compositions fi “ xi ˝ f of the morphism f with the coordinate
functions, are morphisms. Hence we have proven the following proposition
whose content is the quite natural property that morphisms from a prevariety
X to the affine m-space Am are determined by giving regular component
functions:

Proposition 3.22 Assume that X is a prevariety. Sending f to f˚ sets up a
one-to-one correspondence between morphisms f : X Ñ Am and k-algebra homomor-
phisms f˚ : krx1, . . . , xms Ñ OXpXq.

3.23 This property may be interpreted in yet another way. There is standard
way of defining what is meant by a product in a general category, model on
the property of the Cartesian product of two sets that maps into it are given
by the two component maps. In our context, it goes as follows: If X and Y are
two prevarieties, a product of X and Y is triple consisting of a prevariety X ˆ Y The product of two

prevarieties (produktet av
prevariteter)

and two morphisms pX and pY from X ˆ Y to respectively X and Y, with the
property that given two morphism fX : Z Ñ X and fY : Z Ñ Y, there is a
unique morphism f : Z Ñ X ˆ Y such that fX “ pX ˝ f and fY “ pY ˝ f. In
other words, giving f is the same as giving the component morphism.

What we checked above is, when m “ 2, equivalent to saying that A2 is the
product of A1 in the category of prevarieties. The definition of a product of
two prevarieties generalizes mutatis mutandis to a product of a finite number
of prevarieties; and what we proved above is that Am is the m-fold product of
A1.

X

Z
f
//

fY
""

fX

<<

X ˆ Y

pY

✏✏

pX

OO

Y3.24 The Proposition 3.22 has an immediate generalization. We may replace
the affine n-space with any affine variety, and then we obtain the following :

Theorem 3.25 (Morphisms into affine varieties) Assume that X is a
prevariety and Y an affine variety. The the assignment f fiÑ f˚ sets up a one-to-
one correspondence between morphisms f : X Ñ Y and k-algebra homomorphisms
f˚ : ApYq Ñ OXpXq.
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Proof: Suppose that Y Ñ An. Giving a morphism f : X Ñ Y is the same as
giving a morphism f : X Ñ An that factors through Y. By proposition 3.22
above, giving a f : X Ñ An is the same as giving the algebra homomorphisms
f˚ : krx1, . . . , xns Ñ OXpXq, and f takes values in Y if and only if f pfpxqq “ for
all f P IpYq; that is, the composition map f˚ vanishes on the ideal IpYq. Hence
f takes values in Y if and only if f˚ factors through the quotient ApYq “

krx1, . . . , xns{IpXq. o

3.26 Specializing the prevariety X to be affine as well, we get the following
corollary, the main theorem for morphism of affine varieties:

Theorem 3.27 (Morphism of affine varieties) Assume that X and Y are
two affine varieties. Then f fiÑ f˚ is a one-to-one correspondence between morphisms
f : X Ñ Y and k-algebra homomorphisms f˚ : ApYq Ñ ApXq.

An immediate corollary is the following:

Theorem 3.28 Let X and Y be two affine varieties and f : X Ñ Y a morphism.
Then f is an isomorphism if and only if f˚ is an isomorphism. In particular, X and Y
are isomorphic if and only if ApXq and ApYq are isomorphic as k-algebras.

Example 3.8 The variety An
zt0u is not affine if n • 2. Indeed, by Exam-

ple 3.6 on page 42 the inclusion i : An
zt0u Ñ An induces an isomorphism i˚

between the spaces of global sections of the two structure sheaves. If An
zt0u

were affine, the inclusion would therefore have been an isomorphism after
Theorem 3.28 above, but this is of course not the case. K

3.29 In a categorical language Proposition 3.25 above says in view of exercise
2.20 on page 36 in Notes 2, that the category of affine varieties is equivalent
to the category of finitely generated k-algebras that are integral domains. So
the study of the affine varieties is in some sense equivalent to the study of
k-algebras; but luckily, the world is more versatile than that! There is the vast
host of projective varieties—beautiful, challenging and intricate and sometimes
even untouchable!

3.5 The Hausdorff axiom

The Hausdorff axiom is the third axiom required of varieties. Zariski topolo-
gies are, as we have seen, far from being Hausdorff, but some properties5 of 5 That is, properties

expressed in terms
of morphisms not
in terms continuous
maps.

Hausdorff spaces can be salvaged by this third axiom, so in some sense it is a
substitute for the topologies being Hausdorff.

3.30 A prevariety pX,OXq is called a variety if the following condition is
Varieties (varieteter)

fulfilled

o Given any two morphisms f, y : U Ñ X where U is a prevariety, the
set of points in U where f and y coincide is closed; that is, the subset
t x P U | fpxq “ ypxq u is closed.



sheaves and varities 49

Of course, one may as well require the set of points where f and y assumes
distinct values to be open.

3.31 The first we check is that affine varieties deserve having the term varietry
in their name:

Proposition 3.32 Any affine variety is a variety.

Proof: To begin with, observe that if f and g are two regular functions on a
prevariety U, the set where they coincide is closed. Indeed, the diagonal in
A1

ˆ A1
“ A2 being the zero locus of x1 ´ x2 is closed and the map U Ñ A2

given as x fiÑ p f pxq, gpxqq is continuos. Since preimages of closed sets by
continuous maps are closed, it follows that t x | f pxq “ gpxq u is closed.

Now, let X Ñ Am be affine, and assume that f and y map U into X. If the
coordinate functions on An are y1, . . . , ym, the compositions yi ˝ y and yi˝f are
regular functions on U. The set where f and y coincide is the intersection of
the subsets where each pair yi ˝ y and yi ˝ f coincide. By the initial observations
each of these subsets is closed, hence their intersection is closed. o

Z
f
//

y
// X

V
?
�

OO

//

// U
?
�

OO

Lemma 3.33 Assume that X is a prevariety such any two different points are
contained in an open affine subset. Then X is a variety.

Proof: Let Z be a prevariety and f and y two maps from Z to X. Let x P Z
be a point such that fpxq ‰ ypxq. Then by assumption there is an open affine
set U in X containing both fpxq and ypxq, and V “ f´1U X y´1U is an open
set in Z where x lie. Now U is a variety by proposition 3.32 above, hence the
set W Ñ V where the two maps y and f coincide is closed; but this means
that VzW is an open set in Z containing x and being entirely contained in the
complement of t z P Z | fpzq “ ypzq u. It follows that the complement of
t z P Z | fpzq “ ypzq u is open since x was an arbitrary member. o

Example 3.9 (A bad guy) This is an example of a prevariety X for which
the Hausdorff axiom is not satisfied. These “non separated prevarieties”, as
they often are called, exist on the fringe of the algebro-geometric world, you
very seldom meet them—although now and then they materialize from the
darkness and serve a useful purpose. Anyhow, this is the only place such
a creature will appear in this course, and the only reason to include it is to
convince you that the Hausdorff axiom is needed.

The intuitive way to think about X is as an affine line with “two origins. It
does not carry enough functions that the two origins can be separated—if a
function is regular in one, it is regular in both and takes the same value there.

A1zt0u

01

02

The underlying topological space is the set X “ pA1
zt0uq Y t01, 02u endowed

with the topology of finite complements. It has two copies of the affine line
A1 lying within it; either with one of the twin origins as origin; that is A1 “

pA1
zt0uq Y t01u and A2 “ pA1

zt0uq Y t02u. Both these sets are open sets
and their intersection A is given as A “ A1

X A2
“ A1

zt0u. Obviously, the



50 notes for ma4210— algebraic geometry i

Hausdorff axiom is not satisfied, because the two inclusions of A1 in X are
equal on A1

zt0u which is not closed in X.
To tell what regular functions X carries, let U Ñ X be any open subset.

There are two cases:

o The complement XzU contains both the twin origins: Then the ring OXpUq

of regular functions in U is the set of rational functions apxq{bpxq in one
variable with bpxq ‰ 0 for x P U—so the sheaf OX|A equals OA1 |A.

o One or both the twin origins belongs to U: Then OXpUq will be the set
of apxq{bpxq of rational functions in one variable such that bpxq ‰ 0 for
x P U X A and additionally bp0q ‰ 0.

So the point, is that when U is an open subset containing both 01 and 02 the
subsets U, Uzt01u and Uzt02u all carry the same regular functions.

We leave it as an exercise to students interested in the dark corners at the
fringes of the algebro-geometrical universe to fill in details and check that the
axioms for a prevariety are fulfilled. K

3.6 Products of varieties

An invaluable tool when working with varieties, is the unrestricted possibility
to form the product of two prevarieties. In this section we shall describe the
construction of such a product.

The definition of the product is by means of a “universal property” —or
phrased in a more pretentious manner, the product with its two projections
solves “a universal problem”. In this way the definition may be formulated in
any category, but wether objects have a product or not depends of course on
the category—here are by no means any thing close to general existence theo-
rems. This will be topical if one starts studying schemes. They have products,
but the underlying set of a product can be very different from the product of
the underlying sets of the factors. Prevarieties, however, behave more pleas-
antly, and their products will be the cartesian products of the underlying sets
of the involved prevarieties endowed with a Zariski topology and a sheaf of
rings.

3.34 The proof that products exist is in a natural way a three step process.
After having defined what we mean by a product, we construct the product of
affine varieties and give some of their properties. Based on this, the product
will be constructed for general prevarieties, and finally we show that the
product of to varieties, which a priori is just a prevariety, in fact is a variety.

The universal property of a product
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3.35 The product of two prevarieties X and Y is a prevariety X ˆ Y together
with two morphisms pX : X ˆ Y Ñ X and pY : X ˆ Y Ñ Y called the projections,
and the three must comply to the following condition:

o For any prevariety Z and any pair of morphisms fX : Z Ñ X and fY : Z Ñ

Y, there is a morphism f : Z Ñ X ˆ Y such that fX “ pX ˝ f and fY “ pY ˝ f.
Moreover, f is uniquely defined by these conditions.

X

Z
f

//

fY
&&

fX

88

X ˆ Y

pY

✏✏

pX

OO

Y
In a more laid-back language, the product has the constituting property that
giving a morphism into it is the same thing as giving the two component
morphisms.

As usual with objects defined by universal properties, the product is
uniquely defined up to a unique morphism. For the benefit of the students
we offer a proof of this, and remark that the argument does not refer to any
property specific for varities and is valid in any category.

Proposition 3.36 The product is unique up to a unique isomorphism.

Proof: Observe first that a morphism f : X ˆ X Ñ X ˆ Y such that pX ˝ f “ pX
and pY ˝ f “ pY must, by the uniqueness part of the definition, be equal to
idXˆY. So assume that W and W1 with projections pX , pY and p1

X , p1
Y are

X

X ˆ Y
f

//

pY
""

pX

<<

X ˆ Y

pY
||

pX

bb

Y

X

W
f

//

pY
""

pX

<<

W1

p1
Y

||

p1
X

bb

Y

two products of X and Y—i.e. they both have the universal property. By the
existence part there is a unique morphism f : W Ñ W1 such that p1

x ˝ f “ pX
and p1

Y ˝ f “ pY and a unique morphism y : W1
Ñ W with pX ˝ y “ p1

X and
pY ˝ y “ p1

Y.
From the observation at the top of the proof it ensues that y ˝ f “ idW1

and f ˝ y “ idW . Indeed, by symmetry it suffices to check the first. One has
pX ˝ y ˝ f “ p1

X ˝ f “ pX and ditto pY ˝ y ˝ f “ pY, and we can conclude that
y ˝ f “ idW1 . o

3.37 The main theorem we shall prove in this section is formulated as follows,
and as already explained, the second part will be establish first. The proof
occupies the rest this chapter.

Theorem 3.38 (Existence of products) Any two prevarieties X and Y has
a product X ˆ Y. It is a prevariety whose underlying set is the Cartesian product of
X and Y, and together with the two projections pX and pY it satisfies the universal
property.

o If X and Y are varieties, the product X ˆ Y is a variety.

o When X and Y are affine varieties, the product X ˆ Y will be affine, and it holds
true that the coordinate ring is given as ApX ˆ Yq “ ApXqbk ApYq.

The product of affine varieties

We start out by proving that products exist in the category of affine varities.
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3.39 Assume that X Ñ An and Y Ñ Am are two affine varieties and choose
coordinates x1, . . . , xn on An and y1, . . . , ym on Am. The product of X and Y
will be constructed as a closed algebraic subset of An`m, and to this end, we
let a be the ideal in the polynomial ring krx1, . . . , xn, y1, . . . , yms generated by
IpXq and IpYq. That is, we put

a “ p f1pxq, . . . , frpxq, g1pyq, . . . , gspyqq,

where the fipxq’s are generators for IpXq and the gjpyq’s for IpYq. Moreover, we
put W “ Zpaq. Notice that by general theory of tensor products of algebras, it
holds true that

krx1, . . . , xn, y1, . . . , yms{a » ApXqbk ApYq,

which is very near the statement about coordinate rings in the theorem; it
remains to be seen that a is a radical ideal.

For the moment W is just a closed algebraic subset, but in the final step
of the construction, which is the hardest part, it will turn out to be an affine
variety; i.e. it will be irreducible.

The first, and easy, step of the construction is to show that the subset W
of An`m satisfies the universal property among closed algebraic sets and
polynomial maps.

The two projection pX and pY are induced from the natural linear projec-
tions pn and pm mapping An`m onto An and Am respectively. They clearly
sends points in W to respectively X Ñ An and Y Ñ Am.

Lemma 3.40 The subset W has the cartesian product X ˆ Y as underlying set, and
together with the two maps pX “ pn|W and pY “ pm|W satisfies the universal
property of a product in the category of closed algebraic sets and polynomial maps.

Proof: If the point px1, . . . , xr, y1, . . . , ysq of An`m lies in W, it holds true that
fipx1, . . . , xrq “ 0 for all i and gjpy1, . . . , ysq “ 0 for all j by the definition of the
ideal a. Hence px1, . . . , xrq P X and py1, . . . , ysq P Y, and we can conclude that
W coincides with X ˆ Y.

Given two polynomial maps fX and fY from a closed algebraic set Z into
respectively X and Y. Since X Ñ An and Y Ñ Am, the two maps take values
in An and Am, and consequently z fiÑ pfXpzq, fYpzqq is a polynomial map
Z Ñ An`m with values in W. One easily convinces oneself that it solves the
universal problem. o

The next step is to establish that W is irreducible and is the product in the
category of prevarieties. The first lemma, about W being irreducible, holds for
a large class of topologies on the product X ˆ Y; the salient hypothesis being
that all the sets txu ˆ Y and X ˆ tyu are closed.

Lemma 3.41 Assume that X and Y are two irreducible topological spaces. Assume
X ˆ Y is equipped with a topology such that all sets of the form txu ˆ Y and X ˆ tyu

are closed. Then X ˆ Y is irreducible as well.
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Proof: Assume the product X ˆ Y can be expressed as a union X ˆ Y “ Z1 Y Z2

of two closed subsets Z1 and Z2. Let Xi “ t x P X | txu ˆ Y Ñ Zi u. It holds true
that Xi “

ì
yPY X ˆ tyu X Zi, and consequently the Xi’s are both closed sets.

For every x P X the set txu ˆ Y is contained in either Z1 or Z2 since Y is
irreducible, and it ensues that X “ X1 Y X2. Now, X is assumed to irreducible,
so either it holds that X1 “ X, and therefore that Z1 “ X ˆ Y, or X2 “ X, and
Z2 “ X ˆ Y. o

3.42 We now know that W is irreducible and hence may infer from Lemma 3.40
above that W is the product of X and Y in the category of affine varieties. A
straightforward gluing argument applied to maps into W, extends this to the
category of all prevarieties, and shows that W, indeed, is the product of X and
Y in the category of prevarieties;

Lemma 3.43 The set W together with the projections pX “ pn|W and pY “ pm|W
is the product of X and Y in the category of prevarieties.

Proof: As already observed, the closed algebraic set W is irreducible and it
merely remains to establish the universal property.

Given two morphisms fX and fY from a prevariety Z into respectively X
and Y. Cover Z by open affine sets Zi and consider the restrictions fX|Zi and
fY|Zi . Since W satisfies the universal property among affine varieties, they give
rise to morphisms fi : Zi Ñ W such that pX ˝ fi “ fX|Zi and pY ˝ fi “ fY|Zi .

On the intersections Zij “ Zi X Zj the morphism fi and fj must agree;
indeed, both are solutions to the universal problem posed by the morphism
fX|Zij and fY|Zij, and this solution being unique, it holds that fi|Zij “ fj|Zij .

The different fi’s therefore patch together, and we obtain a morphism f

with the requested property that pX ˝ f “ fX and pY ˝ f “ fY. o

3.44 The last thing to establish about the affine products is that the coordinate
rings are as announced:

Lemma 3.45 In the present setting ApX ˆ Yq “ ApXqbk ApYq.

Proof: Any element f in the tensor product ApXqbk ApYq can be represented
as f “

∞
gibhi where gi P ApXq and hi P ApYq, and we may assume that the

hi’s are linearly independent over k.
Assume that f is nilpotent and fix a point x0 in X. Considered as a function

of y, the element f px0, yq P ApYq will be nilpotent, and hence f px0, yq “∞
i gipx0qhipyq “ 0. Since the hi’s are linearly independent, it follows that

gipx0q “ 0 for all i. Now, the point x0 was an arbitrary point in X so that gi “ 0
as function on X, and we are done. o

Problem 3.3 Lemma 3.45 is a special case of the following result from
commutative algebra. If A and B are two reduced k-algebras finitely gen-
erated over the algebraically closed field k, then AbkB is reduced. Show this.
Hint: Adapt the proof of lemma 3.45. M
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Products of prevarieties

Let X and Y be two prevarieties. We shall work with affine open coverings
tXiu and tYiu of respectively X and Y.

The definition of the product as a prevariety requires the specification
of an underlying set, a topology on that set and a sheaf of rings on the that
topological space, and this must be constructed in a manner that the resulting
space has an open covering by affine varieties.

The underlying set of the product will be nothing but the cartesian product
X ˆ Y. To introduce the topology, we observe that X ˆ Y is the union of the
sets Uij “ Xi ˆ Yj, and requiring these to form an open covering, we obtain a
topology. Indeed, one declares a subset U to be open when U X Uij is open in
Uij for each pair of indices i and j.

Problem 3.4 Show that this gives a topology on X ˆ Y. Show that the induced
topology on the sets Uij coincides with the original topology, and that the
projections onto X and Y are continuous. M

It remains to define the structure sheaf on X ˆ Y. This is also pretty straight-
forward. We simply say that a function f which is continuous on an open set
U (i.e. a section of CXˆY) is regular at a point p P U if the restriction f |Uij is
regular at p for one (hence for all, see lemma 3.46 below) of the affine subsets
Uij that contain p. Next, we let OXˆY be the subsheaf of CXˆY whose sections
OXˆYpUq over an open U consists of the functions regular at all points p in U.
Since CXˆY is a sheaf, and since being regular is local property, one gets for
free that OXˆY is a sheaf of rings.

The following lemma ensures that OXˆY|Uij “ OXiˆYj , so that Uij is an
affine cover of X ˆ Y.

Lemma 3.46 The setting is as above. If p P Uij X Ukl, then f |Uij is regular at p if
and only if f |Ukl is regular at p.

Proof: Since the functions f |Uij and f |Ukl are both continuous, and since
being regular is a local property, we can finish the proof by observing that
pXi X Xlq ˆ pYj X Ykq is an open neighbourhood of p both in Uij and in Ukl on
which f |Uij and f |Ukl coincide. o

The final point in establishing that X ˆ Y is a product, is to verify that the
two projections are morphisms, and that the universal property is satisfied.
The underlying continuous map f associated to two maps fX and fY, is the
obvious one, namely the one defined by fpzq “ pfXpzq, fYpzqq, and it is a
matter of simple verifications to check that f so defined is a morphism. And
as usual, we leave the work to the zealous students.

Problem 3.5 Show that the projections pX and pY are morphisms as is the
map f described in the text above. M
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Consequences

The diagonal DX of a space X is the subset DX “ t px, xq | x P X u of X ˆ X. The diagonal (diagonalen)

More generally if f : X ÑÑ Y is a morphism the graph of f is the subset The graph of morphisms
(grafen til morphismer)Gf “ t px, yq | fpxq “ y u of the product X ˆ Y. Putting f “ idX we see that

DX “ GidX .

3.47 In topology a space is Hausdorff if and only if the diagonal is closed in
the product topology. This hinges on the observation that two open neigh-
bourhoods U and V of points x and y respectively, are disjoint precisely when
U ˆ V Ñ X ˆ Y does not meet the diagonal. In algebraic geometry a correspond-
ing statement holds. A prevariety X satisfies the Hausdorff axiom if and only
if the diagonal is closed in X ˆ X, but this time in the Zariski topology.

Proposition 3.48 A prevariety X is a variety if and only if the diagonal DX Ñ X ˆ

X is closed.

Proof: The diagonal being the equalizer of the two projections, it will be
closed when X is a variety. Assume then that DX is closed and let f, y : Z Ñ X
be two morphisms. Their equalizer t z | fpzq “ fpzq u is the inverse image of
DX by the morphism Z Ñ X ˆ Y whose components are f and y. Hence it is
closed. o

As an immediate corollary one has

Corollary 3.49 When X and Y are varieties and f : X Ñ Y is a morphism, the
graph Gf is closed in the product X ˆ Y.

3.50 The second application illustrates a general principle often referred to as
“reduction to the diagonal”. In its simplest form—formulated for sets—it is the
observation that the intersection U X V of two subsets U and V of a set X, is
naturally bijective to the intersection U ˆ C X DX. This relation persists when
U and V are open subsets of a prevariety X, but of course with the annotation
“bijective” replaced with “isomorphic”. A consequence is that the intersection
of two open affines in a variety is affine:

Proposition 3.51 Assume that U and V are open affine subsets of the variety X,
then the intersection U X V is affine

Proof: The intersection U X V is isomorphic to the intersection U ˆ V X DX,
but the product U ˆ V is affine and since DX is closed, x being a variety, it
ensues that U ˆ V X DX is closed in U ˆ V. Hence affine. o

Problem 3.6 Show that U X V is isomorphic to U ˆ V X DX whenever U and
V are open subsets of a prevariety X. M
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An epilogue

As an epilogue, we remind you that a variety has two ingredients: a topolog-
ical space X and the structure sheaf OX. Among the two the structure sheaf
is the main player, the Zariski topology having a more supportive role. For
instance, if X is an irreducible and Noetherian space whose only closed irre-
ducible sets are the points, the closed sets, apart form the entire space, are
precisely the finite subsets. This means that all such spaces are homeomor-
phic as longs as their cardinality is the same. So for instance, the affine lines
A1 over different countable6 fields are homeomorphic, and they are even 6 The algebraic closure

of finite fields Fq and
of the rationals Q are
all countable.

homeomorphic to the bad guys we just constructed.
Later on, after having introduced the concept of dimension, we shall see

that any irreducible space of dimension one fall in this category, so they are all
homeomorphic. But there is an extremely rich fauna of such varieties!

In higher dimensions the Zariski topologies play a more decisive role, but
still they do not distinguish varieties very well.

Problems

The rational cusp
y2 “ x3.

3.7 (Rational cusp.) Consider the curve C in A2 whose equation is y2
´ x3. Show

that C can be parametrized by the map f : A1
Ñ A2 defined as fptq “ pt2, t3

q.
Describe the map f˚ : ApCq Ñ ApA1

q. Show that f is bijective but not an
isomorphism. Show that the function field of C equals kptq.

The rational node
y2 “ x2px ` 1q.

3.8 (Rational node.) In this exercise we let C be the curve in A2 whose equa-
tion is y2

´ x2
px ` 1q. Define a map f : A1

Ñ A2 by fptq “ pt2
´ 1, tpt2

´ 1qq.
Show that fpA1

q “ C, and describe the map f˚ : ApCq Ñ ApA1
q. Show that f

is not an isomorphism, but induces an isomorphism A1
zt˘1u Ñ Czt0u. Show

that the function field of C equals kptq.

3.9 Let C be one of the curves from the two previous exercises. Show that,
except for finitely many, every line through the origin intersects C in exactly
one other point. What are the exceptional lines in the two cases? Use this
to give a geometric interpretation of the parametrizations in the previous
exercises.

3.10 (An acnode.) Consider the curve D given by y2
“ x2

px ´ 1q in A2. Make
a sketch of the real points of D (see the figure in the margin); notice that the
origin is isolated among the real points—such a point is called an acnode.
Show that pt2

` 1, tpt2
` 1qq is a parametrization of D. Exhibit a complex linear

change of coordinates in A2 that brings D on the form in problem 3.8 above.

An acnode at the origin
y2 “ x2px ` 1q.

3.11 Let R be a ufd. Show that any prime ideal of height one (that is a prime
ideal properly containing no other prime ideals than the zero ideal) is princi-
pal.
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3.12 Let X be a variety and let Y Ñ X be a closed irreducible subset. For any
open U Ñ X, let IYpUq be the subset of regular functions on U that vanish on
Y X U. Show that IYpUq is an ideal in OXpUq. Show that if V Ñ U are two open
sets, then resU

V takes IYpUq into IYpVq. Show that IY is a sheaf (of abelian
groups, in fact of rings if one ignores the unit element).

3.13 Let X be a prevariety and assume that Y Ñ X is a closed irreducible
subset. Show that Y can be given the structure of a prevariety in a unique way
so that the inclusion Y Ñ X is a morphism.

3.14 Let B be the presheaf of bounded continuous real valued functions on R.
Show that B is not a sheaf. Hint: It does not satisfy the second sheaf axiom.

3.15 Let X be a topological space and let A be a ring equipped with the
discrete topology. For any open set U Ñ X let ApUq be the set of continuous
functions U Ñ A. Show that ApUq is a sheaf.

3.16 (For fringy people.) Let X be any closed algebraic set and let Y Ñ X be a
proper closed subset. Construct a prevariety X^ containing unseparable twin
copies of Y and two different open subsets both isomorphic to X that intersect
along XzY.

3.17 Show that the algebraic closure of a countable field is countable.

3.18 Show that A2 is not the same as the product topology on A1
ˆ A1

3.19 Mimic the construction of “the bad guy” with A2 and the origin to get
an “even worse guy” X (cfr. exercise 3.16). Exihibit two affine open subsets of
X whose intersection equals A2

zt0u. Conclude that the hypothesis that X be a
varity in proposition 3.51 on page 55 can not be skipped.

M
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Lecture 4

Projective varieties

Hot themes in Lecture 4: Projective spaces—homogeneous coordinates
closed projective sets—homogenous ideals and closed projective sets—projective
Nullstellensatz—distinguished open sets—Zariski topology and regular functions—
projective varieties—global regular functions on projective varieties—morphism
from quasi projective varieties—linear projections—Veronese embeddings—
Segre embeddings.

Projective geometry arose in the wake of the discovery of the perspective
by italian renaissance painters like for instance Filippo Brunelleschi. In a
perspective drawing one considers bundles of light rays emanating from or
meeting at a point (the observers eye) or meeting at an apparent point at
infinity, the so-called vanishing point, when rays are parallel. Figures are
perceived the same if one is the projection of the other.

Figure 4.1: The discov-
ery of perspective in
art.

In the beginning projective geometry was purely a synthetic geometry (no
coordinates, no functions, merely points and lines). The properties of different
figures that where studied were the properties invariant under projection from
a point. Subsequently, an analytic theory developed and eventually became
the basis for the projective geometry as we know it in algebraic geometry
today.

The synthetic theory still persists, especially since some finite projective
planes are important combinatorial structures1. The simplest being the Fano 1 The axiomatics of the

synthetic projective
plane geometry is
exceedingly simple.
There are to sets of
objects, points and
lines, and there are
two axioms: Through
any pair of points there
goes a unique line, and
any two lines intersect
in a unique point.

plane with seven points and seven lines!
The projective spaces and the projective varieties are in some sense the

algebro-geometric counterparts to compact spaces, with which they share
many nice properties.

4.1 Non-compact spaces are on the other hand typically difficult to handle; if
you discard a bunch of points in an arbitrary manner from a compact space
(for instance, a sphere) it is not much you can say about the result unless you
know the way the discarded points were chosen, and moreover, functions
can tend to infinity near the missing points. Compact spaces and projective
varieties are in some sense complete, they do not suffer from the deficiencies
of these “punctured” spaces—hence their importance and popularity!

Figure 4.2: The Fano
plane; the projective
plane over the field
with two elements
P2pF2q.
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4.1 The projective spaces Pn

4.2 Let n be a non-negative integer. The underlying set of the projective n-space The projective n-spaces
Pn (de projektive
rommene)

Pn over k is the set of lines passing through the origin in An`1; or in other
words, the set of one-dimensional vector subspaces. Since any point, apart
from the origin, lies on a unique line in An`1 passing by 0, there is map

p : An`1
zt0u Ñ Pn,

sending a point to the line on which it lies. It will be convenient to denote by
rxs the line joining x to the origin; that is, rxs “ ppxq.

One may as well consider Pn as the set of equivalence classes in An`1
zt0u

under the equivalence relation for which two points x and y are equivalent
when y “ tx for some t P k˚.

Example 4.1 There is merely one line through the origin in A1, so P0 is just
one point. K

4.3 We shall begin with getting more acquainted with the projective spaces,
and subsequently equip Pn with a variety structure. This amounts to endow-
ing it with a topology (which naturally will be called the Zariski topology) and
telling what functions on Pn are regular; that is, defining the sheaf OPn of reg-
ular functions. Finally, we shall introduce the larger class of projective varieties.
They will be the closed irreducible subsets of Pn given the topology induced
from the Zariski topology on Pn and equipped with a sheaf of rings of regular
functions.

Homogeneous coordinates

4.4 Coordinates are of course very useful and desirable tools, but on Pn

there are no global coordinates. However, there is a good substitute. If rxs P

Pn corresponds to the line through the point x “ px0 : ¨ ¨ ¨ : xnq, we say
that px0 : ¨ ¨ ¨ : xnq are homogeneous coordinates of the point rxs—notice the Homogeneous coordinates

(homogene koordinater)use of colons to distinguish them from the usual coordinates in An`1. The
homogeneous coordinates of rxs depend on the choice of the point x in the line
rxs and are not unique; they are only defined up to a scalar multiple, so that
px0 : ¨ ¨ ¨ : xnq “ ptx0 : ¨ ¨ ¨ : txnq for all elements t P k˚. Be aware that p0 : . . . : 0q

is forbidden; it does not correspond to any line through the origin and thence
are not coordinates of any point in Pn.

4.5 Visualizing projective spaces can be quite challenging, but the following is
one way of thinking about them. This description of Pn will also be important
in the subsequent theoretical development and is an invaluable tool when
working with projective spaces.

Fix one of the coordinates, say xi, and let D`pxiq denote the set of lines
rxs “ px0. . . . : xnq for which xi ‰ 0. These sets are called the distinguished
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open subsets of Pn like their affine cousins. The subvariety Ai of An`1 where The distinguished open
subsets D`pxiq (åpne
basismengder)

xi “ 1 will also be useful. Every line rxs with xi ‰ 0 intersects the subvariety
Ai in precisely one point, namely the point px0x´1

i , . . . , xnx´1
i q. Thus there is

a natural one-to-one correspondence ai between the subsets D`pxiq of Pn and
Ai of An`1. Now, obviously the subvariety Ai is isomorphic to affine n-space
An (the projection that forgets the i-th coordinate is an isomorphism); hence
D`pxiq is in a natural bijective correspondence (later on we shall see it is an
isomorphism) with An. To avoid unnecessary confusion, let us denote the

An´1An

xi

xi“1coordinates on Ai by tj where j runs from 0 to n but stays different from i.
Then the bijection ai from D`pxiq to Ai is given by the assignment tj “ xjx´1

i ;
it has the restriction p|Ai of the canonical projection as inverse.

4.6 The complement of the basic open subset D`pxiq consists of the lines lying
in the subvariety of An`1 where xi “ 0; that is, the subvariety Zpxiq. This is
an affine n-space with coordinates2

px0, . . . , x̂i, . . . , xnq, and so the complement 2 A hat indicates that a
variable is missing.Pn

zD`pxiq is equal to the projective space Pn´1 of lines in that affine space. It
is called the hyperplane at infinity. Hyperplane at infinity

(hyperplanet i det
uendelige)

Be aware that the "hyperplane at infinity" is a relative notion; it depends
on the choice of the coordinates. In fact, given any linear functional lpxq in
the xi’s, one may chose coordinates so that the hyperplane lpxq “ 0 is the
hyperplane at infinity.

Examples

4.2 (The projective line) When n “ 1 we have the projective line P1. It consists
of a "big" subset isomorphic to A1 to which one has added a point at infinity.
Every point can be made the point at infinity by an appropriate coordinate
change.

The projective line over the complex numbers, endowed with the strong
topology, is the good old Riemann sphere we became acquainted with during
courses in complex function theory. Indeed, let px0 : x1q be the homogeneous
coordinates on P1. In the set D`px0q—which is isomorphic to A1; that is, to
C—one uses z “ x1{x0 as coordinate, where as in D`px1q the coordinate is
z´1

“ x0{x1; and we recognize the patching on D`px0q X D`px1q used to
construct the Riemann sphere.

Figure 4.3: The Hopf
fibration

The projection map p : C2
zt0u Ñ CP1 is interesting. Restricting it to the

unit sphere S3 in C2 one obtains a map S3
Ñ S2, which is very famous and

goes under the name of the Hopf fibration. It is easy to see that its fibres are
circles, so that p is a fibration of the three sphere S3 over S2 in circles.

The projective line over the reals R is just a circle, but notice there is only
one point at infinity. One uses lines and not rays through the origin, and so
there is no distinction between 8 and ´8.

4.3 (The projective plane) The variety P2 is called the projective plane. It has a
"big" open sutset A2

“ D`pxiq with a projective line at infinity "wrapped"
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around it.
The projective plane contains many subsets that are in a natural one-to-

one correspondence with the projective line P1. The set of one dimensional
subspaces contained in a fixed two dimensional vector subspace of A3 is such
a P1, and of course any two dimensional subspace will do. These subsets are
called lines in P2.

By linear algebra two different two dimensional vector subspaces of A3

intersect along a line through the origin, hence the fundamental observation
that the two corresponding lines in P2 intersect in a unique point. Two lines do
not necassarily meet in the "finite part"; that is, in the affine 2-space A2 where
xi ‰ 0. This occures if and only they have a common intersection with the line
at infinity, and trhen one says that the two lines meet at infinity. And naturally,
when they do not meet in the finite part, they are experienced to be parallel;
hence "parallel" lines meet at a common point at infinity.

The projective plane over the reals, is a subtle creature. After having picked
one of the coordinates xi, we find a big cell of shape D`pxiq in P2, which is
bijective to R2, enclosed by the line at infinity; a circle bordering the affine
world like the Midgard Serpent. Again, be aware that in constructing P2 one
uses lines through the origin and not rays emanating from the origin. This
causes P2 to be non-orientable—tubular neighbourhoods of the lines are in
fact Möbius bands.

Figure 4.4: A Möbius
band in the real projec-
tive plane.

K

The Zariski topology and projective varieties

One may use the projection map p : An`1
zt0u Ñ Pn to equip Pn with a

topology: We declare a subset in X Ñ Pn to be closed if and only if the inverse
image p´1

pXq is closed in An`1
zt0u. Since the operation of forming inverse

images behaves well with respect to intersections and unions (i.e. commutes
with them), these sets are easily seen to fulfill the axioms for the closed sets of
a topology. Naturally, this topology is called the Zariski topology on Pn. It is the The Zariski topology

(Zariski topologien)quotient topology with respect to the equivalence relation on An`1 giving Pn.

4.7 Polynomials on An`1 do not descend to functions on Pn unless they are
constant—non-constant polynomials are not constant along lines through the
origin. However, if F is a homogeneous polynomial it holds true that Fptxq “

tdFpxq where d is the degree of F, so if F vanishes at a point x, it vanishes
along the entire line joining x to the origin. Hence it is lawful to say that F is
zero at a point rxs P Pn; and it is meaningful to talk about the zero locus in Pn

of a set of homogeneous polynomials. A homogeneous ideal a in krx0, . . . , xns

is generated by homogeneous polynomials, and we can hence speak about the
zero locus Z`paq in Pn as the common set of zeros of the generators. The zero locus of a

homogeneous idealIn the same spirit as one defined the basic open sets D`pxiq, one defines the
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distinguished open subset D`pFq “ t rxs P Pn
| Fpxq ‰ 0 u for any homogeneous Distinguished open

subsetspolynomial F. All these sets are open in Pn, their complements being the
closed sets Z`pFq.

Problem 4.1 Let aÑ krx0, . . . , xns be an ideal. Show that a is homogeneous if
and only if it satisfies either of the following two equivalent properties:

a) A polynomial f pxq belongs to a precisely when f ptxq lies there for all scalars
t P k.

b) The zero set Zpaq in An`1 is a cone; that is, if x P Zpaq, then the whole line
through x and the origin is contained in Zpaq. M

4.8 A homogeneous ideal a also has a zero set Zpaq in the affine space An`1,
and since homogeneous polynomials vanish along lines through t0u, it clearly
holds that p´1Z`paq “ Zpaq X An`1

zt0u. Thus the closed sets of the Zariski
topology on Pn are the exactly subsets of type Z`paq with a being a homo-
geneous ideal in krx0, . . . , xns. Such a subset X is called a closed projective
subset and the topology induced from the Zariski topology on Pn is called the Closed projective subset

(lukkede projektive
mengder)

Zariski topology on X. If additionally X is an irreducible space, it is said to be
a projective variety. And an open subset of a projective variety is said to be a Projective varieties

(projektive variteter)quasi projective variety.
Quasi projective varieties
(kvasiprojektive variteter)

The affine cone CpXq over a projective variety X is defined as the closed

The affine cone over a
projective variety (affine
kjegler)

subset CpXq “ p´1X Y t0u. It is a cone in the sense that it contains the line
joining any one its points to the origin; or phrased differently, if x P CpXq then
tx P CpXq for all scalars t P k. The inverse image p´1X will now and then
be called the punctured cone over X and denoted by C0pXq; so that C0pXq “ The punctured cone (den

punkterte kjeglen)CpXq X pAn`1
zt0uq.

In this story there is one ticklish point. The maximal ideal m` “ px0, . . . , xnq

vanishes only at the origin in An`1, and so it defines the empty set in Pn;
indeed, for no point in Pn do all the coordinates xi vanish. Hence m` goes
under the name of the irrelevant ideal. The irrelevant ideal (de

irrelevante idealet)
Problem 4.2 Show that if a and b are two homogeneous ideals, then a ¨ b and
a ` b are homogeneous, and it holds true that Z`pa ¨ bq “ Z`paq Y Z`pbq and
Z`pa ` bq “ Z`paq X Z`pbq. M

The big open subsets

4.9 Since p obviously is continuous, the Zariski topology makes the projective
spaces irreducible. It also clear that the "big" affine subsets D`pxiq where
xi ‰ 0 are open subsets, their complements—the hyperplanes at infinity—
being the closed sets Z`pxiq. In Paragraph 4.5 the subsets Ai of An`1 where
the i-th coordinate equals one were introduced, and we demonstrated that the
restriction p|Ai was a bijection between Ai and D`pxiq; now we go one step
further:
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Proposition 4.10 The restriction p|Ai of p is a homeomorphism bewteen Ai and
D`pxiq.

The proof of this needs the process of homogenization of a polynomial which, Homogenization of poly-
nomials (homogenisering)when the variable xi is fixed, is a systematic way of producing a homogeneous

polynomial f h from a polynomial f . If d is the degree of f , one puts

f h
px0, . . . , xnq “ xd

i f px0x´1
i , . . . , xnx´1

i q. (4.1)

For example, if f “ x1x3
2 ` x3x0 ` x0, one finds that relative to the variable x0

one has

f h
px0, x1, x2, x3q “ x4

0
`
x1x´1

0 px2x´1
0 q

3
` x3x´1

0 ` 1
˘

“ x1x3
2 ` x3x3

0 ` x4
0.

The net effect of the homogenization process is that all the monomial terms
are filled up with the chosen variable so that they have the same degree. To
verify that f h in (4.1) is homogeneous of degree d, let t be any scalar. Each
fraction xjx´1

i is invariant when the variables are scaled, and the front factor
xd

i changes by the multiple td. The important relation f |Ai “ f h
|Ai , which is

easy to establish (just put xi “ 1) holds true as well.
Proof of Proposition 4.10: Now, we come back to the proof of the propo-
sition. The restriction p|Ai is, as already observed, continuous, so our task is
to show that the inverse is continuous, or what amount to same, that p|Ai is a
closed map.

Since any closed subset of Ai is the intersection of sets of the form Z “

Zp f q X Ai, and p being bijective takes intersections to intersections, it suffices
to demonstrate that ppZp f q X Aiq is closed in D`pxiq for any polynomial f on
Ai. But this is precisely what the homogenization f h is constructed for. Indeed,
the subset Zp f h

q of An`1 is a closed cone satisfying Zp f h
q X Ai “ Zp f q X Ai,

and this means that ppZp f q X Aiq “ Z`p f h
q X D`pxiq. o

Example 4.4 When trying to understand a variety in Pn it is often useful to
consider the different “pieces” X X D`pxiq. Since D`pxiq is isomorphic to an
affine space An, one my apply affine techniques to study X X D`pxiq.

For example this technique sheds considerable light on plane conics. The
projective conic xy ´ z2

“ 0 becomes the hyperbola px{zqpy{zq “ 1 in the A2

which equals D`pzq and have x{z and y{z as coordinates, but it materializes
as the parabola y{x ´ pz{xq

2 in D`pxq which is an A2 whose coordinates are
y{x and z{x. So the difference between the hyperbola and the parabola is just a
matter of perspective! They are both affine parts of the same projective curve.
In other words and with Example 1.5 on page 17 in mind, all conics are up to
the choice of coordinates the same when considered as living in the projective
plane P2 over C. K
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Problems

4.3 Let V Ñ An`1 be a linear vector subspace of dimension m ` 1. Show that
V is a cone and that the corresponding projective variety PpVq is isomorphic
to Pn. It is called a linear subvariety of Pn. Show that if W is another linear Linear subvarieties

(linrære underbarieteter)subspace of dimension m1
` 1 and m ` m1

• n, then PpVq and PpWq has a
non-empty intersection which is a linear subvariety.

4.4 Show that two different lines in P2 meet in exactly one point.

4.5 Show that n hyperplanes in Pn always have a common point of intersec-
tion. Show that n general hyperplanes meet in exactly one point.

4.6 Let p0, . . . , pn be n ` 1 points in Pn and let v0, . . . , vn be non-zero vectors ly-
ing on the corresponding lines in An`1. Show that the pi’s lie on a hyperplane
if and only if the vi’s are linearly dependent.

4.7 Let f px0, x1, x2, x3q “ x3
0x2 ` x2

3x1 ` 1. Determine f h with respect to each of
the four variables.

4.8 In this exercise n “ 2 and the coordinates are x0 and x1. Let f px0q “

px0 ´ aqpx0 ´ bq. Determine f h and make a sketch of Zp f q X A1 and the cone
Zp f h

q

4.9 Show that any affine variety is quasi projective.

4.10 How doe the circles and the ellipses fit into the picture described in
Examples 4.4 and 1.5?

M

The sheaf of regular functions on projective varieties.

Although polynomials on An`1 do not descend to functions on Pn, certain
rational functions do. To describe these, assume that a and b are two polyno-
mials both homogeneous of the same degree, say d. Although none of them
define a function on the projective space Pn, their fraction do, at least at points
where the denominators do not vanish. Indeed, letting x and tx be two points
on the same line through the origin, we find

aptxq

bptxq
“

tdapxq

tdbpxq
“

apxq

bpxq

whenever bpxq ‰ 0. The function apxq{bpxq thus takes the same value at all
points on the line rxs, and this common value is the value of apxq{bpxq at rxs.
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4.11 This observation leads to the definition of the sheaf of regular functions The sheaf of regular
functions on Pn (knippet
av regulære funksjoner)

on Pn, or more generally to the notion of regular functions on any closed
projective set X Ñ Pn, hence to the sheaf OX of regular functions on X.

A function f on an open subset U of X is said to be regular at a point p P U Regular functions
(regulære funksjoner)if there exists an open neighbourhood V Ñ U of p in X and homogenous

polynomials a and b of the same degree such that bpxq ‰ 0 throughout V and
such that the equality

f pxq “
apxq

bpxq

holds for x P V. For any open U in X, we let OXpUq be set of functions regular
at all points in U, and we let the restriction maps just be the restrictions. Sums
and products of regular functions are regular so OXpUq is a k-algebra, and the
restriction maps are k-algebra homomorphisms. Moreover, a regular function
in OXpUq is invertible if and only if it does not vanish at any point in U.

Example 4.5 If the index i is fixed, the functions xj{xi are regular on the basic
open subset D`pxiq of Pn. K

Obviously OX is a presheaf on X, and the first sheaf-axiom is trivially ful-
filled (it always is, when the sections are set-theoretical functions with some
extra properties). Also the second sheaf-axiom is easy to establish: If a regular
function is given for each member of an open covering tUiu of an open subset
of X and if they coincide on the intersection Ui X Uj, they patch together as
continuous functions into A1, and since being regular is a local condition, the
resulting function is regular (it restricts to regular functions on each of the
members of the open covering tUiu). Hence OX is a sheaf on X.

Problem 4.11 Show in detail that OXpUq is a k-algebra. M

Problem 4.12 Given an open U Ñ X and a continuous function f : U Ñ

A1. Let C0pUq be punctured cone over U and denote by pU : C0pUq Ñ U
the (restriction of the) projection. Show that f is regular if and only if the
composition f ˝ p is regular on C0pUq. M

4.12 It is of interest to compare regular functions on closed subsets of a closed
projective set and on the surrounding set. At least locally there is a reasonable
answer. Assume that Y Ñ X is a Zariski-closed subset of the closed projective
set X and that U Ñ X is open. The following lemma is almost tautological:

Lemma 4.13 (Restriction and local extension) Restrictions of regular
functions are regular and regular function can locally be extended: If f is a regular
function in the open set U Ñ X and Y Ñ X is closed, the restriction f |UXY is regular in
Y X U. Any functions on U X Y regular at a point p P Y extends to a regular function
on some open neighbourhood V of p in X.
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Projective varieties are varieties

In the end of this section we shall establish that projective varieties are vari-
eties. For this, there will be two steps, and in the first we content ourself to
see that they are prevarieties. The projective varieties have been equipped with
a topology and a sheaf of rings, so what is left, is to check they are locally
affine. To this end, we shall show that the distinguished open subsets D`pxiq

are isomorphic to affine n-space An—more precisely the regular functions
xj{xi will serve as affine coordinates. This resolves the matter for the projective
space itself, and for a closed subset X Ñ Pn the sets X X D`pxiq will do (closed
subsets of affine space are affine). Ai

�
�

//

»
p|A1

$$

p´1D`pxiq

✏✏

�
�

// An`1zt0u

p

✏✏

D`pxiq �
�

// Pn

4.14 In Paragraph 4.5 on page 60 we introduced the subvariety Ai of An`1

where the i-th coordinate xi equals one, and there we established that p|Ai

is a homeomorphism between Ai and D`pxiq (Proposition 4.10). Here we
shall accomplish the description and prove it is an isomorphism of varieties.
There is a natural inverse map a. If xi ‰ 0, we may send a point x with
homogeneous coordinates px0 : ¨ ¨ ¨ : xnq to the point px0x´1

i , . . . , xnx´1
i q which

obviously is independent of any scaling of the xi’s. It has the i-th coordinate
equal to one, and hence lies in Ai.

Proposition 4.15 The projection p|Ai is an isomorphism between Ai and D`pxiq.
The inverse map is the map a above; that is, apx0, . . . , xnq “ px0{xi, . . . , xn{xiq.

Notice, the last sentence says that the distinguished open D`pxiq subset is an
affine n-space on which the n functions x0{xi, . . . , xn{xi serve as coordinates.
Proof: The two maps p|Ai and a are clearly mutually inverse and both are
homeomorphisms (Proposition 4.10 on page 64), so what is left, is to check
that they are morphisms.

That p|Ai is a morphism is almost trivial: Let f be regular at p and repre-
sent f in some open neighbourhood U of p as f pxq “ apxq{bpxq with a and
b homogeneous polynomials of the same degree and with b being non-zero
throughout U. One simply has f ˝ p|Ai “ a{b|Ai , which is regular on Ai X p´1U
as b does not vanish along p´1U.

To prove the a is a morphism, let f be regular on an open set U Ñ Ai and
represent f as f “ a{b with a and b being polynomials and b not vanishing in
U. To obtain f ˝ a one simply plugs in xjx´1

i in the j-th slot (this automatically
inserts a one in slot i) and one arrives at the expression

f ˝ apx0 : ¨ ¨ ¨ : xnq “ apx0x´1
i , . . . , xnx´1

i q{bpx0x´1
i , . . . , xnx´1

i q.

We already observed that the fractions xjx´1
i are regular throughout D`pxiq,

and as the regular functions form a ring with non-vanishing functions being
invertible, it follows that f ˝ a is regular in U. o

4.16 This was the warm up for Pn, and the general case of a projective variety
is not very much harder—in fact it follows immediately:



68 notes for ma4210— algebraic geometry i

Proposition 4.17 Assume that X Ñ Pn is an irreducible closed projective set.
Then Vi “ D`pxiq X X equipped with the sheaf OX|Vi is an affine variety.

Proof: Closed irreducible subsets of affine varities are affine varities. o

We have almost establishes the following all important theorem:

Theorem 4.18 Irreducible, closed projective sets are varieties when endowed with
the Zariski topology and the sheaf of regular functions.

Proof: Let the set in question by X Ñ Pn. The only thing that remains to be
proven is that X satisfies the Hausdorff axiom. By Lemma 3.33 on page 49,
if suffices to exhibit an open affine subset containing any two given points.
This is no big deal: Given two distinct points in X, there is linear form l on
An`1 that does not vanish at either. Hence both lie in the basic open subset
D`plq X X, which is affine by Proposition 4.17 above. o

The following corollary is with Proposition 4.15 above in mind, merely an
observation

Corollary 4.19 Let F be a homogeneous form on An`1. The open set D`pFq X

D`pxiq is affine. When the coordinates xj{xi on D`pxiq are used, D`pFq X D`pxiq

corresponds to the distinguish open set DpFd
q of An where Fd

“ Fpx0{xi, . . . , xn{xiq.

The projective closure

For any polynomial f P krx0x´1
i , . . . , xnx´1

i s it holds true that Zp f h
q X D`pxiq “

Zp f q. Assume that X is a subvariety of one of the basic open sets D`pxkq and
let a is the ideal in krx0x´1

1 , . . . , xnx´1
k s defining it. Let A be the homogeneous

ideal
A “ t f h

| f P a u

where f h
“ xd

k f is the homogenization of the polynomial f of degree d from
krx0x´1

k , . . . , xnx´1
k s. Then Z`pAq is the closure of X in Pn. Indeed,

4.2 The projective Nullstellensatz

4.20 The correspondence between homogeneous ideal in the polynomial ring
krx0, . . . , xns and closed subsets of the projective space Pn is as in the affine
case governed by a Nullstellensatz.

There are however, some differences. In the projective case the ideals must
be homogeneous, and there is a slight complication concerning the ideals
with empty zero locus. Just as in the affine case if 1 P a, the zero locus of a is
of course empty, but neither do ideals whose zero set in An`1 is reduced to
the origin (that is, Zpaq “ t0u) have zeros in the projective space—the tuple
p0; . . . ; 0q is forbidden and is not the homogenous coordinates of any point. In



projective varieties 69

other words, ideals a whose radical equals the irrelevant ideal m`, do not have
zeros in Pn.

4.21 A simple and down to earth and, not the least, a geometric way of think-
ing about the interplay between the affine and the projective Nullstellensatz, is
via the affine cone CpXq “ p´1X Y t0u over a closed set X Ñ Pn (recall the pro-
jection map p : An`1

zt0u Ñ Pn that sends a point to the line joining it to the
origin). This sets up one-to-one correspondence between closed non-trivial3 3 Formally, a cone in

An`1 is a subset closed
under homothety; that
is, if x P C, then tx P C
for all scalars t P K.
Clearly the singleton
t0u comply to this
definition, so t0u is a
cone. It is called the
trivial cone or the null
cone.

cones in An`1 and non-empty closed subsets in Pn;

Lemma 4.22 Associating the affine cone CpXq to X gives a bijection between closed
non-empty subsets of Pn and closed non-trivial cones in An`1. The bijection respects
inclusions, intersections and unions.

Proof: Let C Ñ An`1 be a non-trivial cone and denote by C0 the punctured
cone; that is, the intersection C0 “ CpXqzt0u of C and An`1

zt0u. There are
two points to notice; firstly, C0 is nonempty, and if it is closed in An`1

zt0u, its
closure in An`1 satisfies C0 “ C (the origin can not be the only point on a line
where a polynomial does not vanish), and secondly, p´1ppC0q “ C0. It follows
that C is closed in An`1 if and only if C0 is closed in An`1

zt0u, and by the
definition of the Zariski topology on Pn, we infer that C is closed if and only
if ppC0q is closed in Pn. This shows that the correspondence of the lemma is
surjective, and it is injective since it ppp´1Cq “ C because p is surjective.

The last statement in the lemma is a general feature of inverse images. o

4.23 To any closed subset X Ñ Pn, we let IpXq be the ideal in the polynomial
ring krx0, . . . , xns generated by all homogeneous polynomials that vanish in X.
It is clearly an homogeneous ideal, and one has IpXq “ IpCpXqq. Combining
the bijection in Lemma 4.22 above with the bijection between homogeneous
radical ideals and closed cones from the affine Nullstellensatz4, one arrives at 4 A closed subset

C Ñ An`1 is a cone if
and only if the ideal
IpCq is homogeneous.
Indeed, C is a cone
precisely when a
polynomial f pxq
vanishes along X if and
only if f ptxq does for
all t P k.

the following version of the Nullstellensatz in a projective setting:

Proposition 4.24 (Projective Nullstellensatz) Assume that a is a homo-
geneous ideal in krx0, . . . , xns.

o Then Z`paq is empty if and only if 1 P a or a is m`-primary; that is, mN` Ñ a for
some N.

o If Z`paq ‰ H, it holds true that IpZ`paqq “
?
a.

o Associating IpXq with X sets up a bijection between closed non-empty subsets
X P Pn and proper, radical homogeneous ideals I in krx0, . . . , xns different from the
irrelevant ideal.

o The subset Z`paq is irreducible if and only if the radical
?
a is a prime ideal.

Proof: We already have argued for most of the statements; what remains, is
to clarify when Z`paq is empty, and this happens precisely when Z`paq Ñ t0u.
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There are two cases: Either Zpaq “ H or Zpaq “ t0u, which by the Affine
Nullstellensatz correspond to respectively 1 P a or

?
a “ Ipt0uq “ m`.

For the last statement, it is quite clear (and therefore left to the zealous
students to verify) that X is irreducible if and only if the cone CpXq over X is
irreducible. o

4.3 Global regular functions on projective varieties

One of the fundamental theorem of affine varieties states that the space OXpXq

of global sections of the structure sheaf of an affine variety X —that is, the
space of globally defined regular function—is equal to the coordinate ring
ApXq. This is space is quite large and in many ways completely determines
the structure of the variety.

For projective varieties the situation is quite different. The only globally
defined regular functions turn out to be the constants (Theorem 4.26) below).
True, one has the coordinate ring SpXq “ ApCpXqq of the cone over X, but most
elements there are not functions on X, not even the homogeneous ones.

By assumption X will be irreducible, and the same is then true for the cone
CpXq. The ring SpXq “ ApCpXqq is therefore an integral domain and has a
fraction field which we shall denote by K. One calls SpXq the homogeneous
coordinate ring of X. It is a graded ring because the ideal IpXq is homogeneous, Homogeneous coordinate

ringsand it has a decomposition into homogeneous parts SpXq “
À

i•0 SpXqi, where
SpXqi denotes the subspace of elements of degree i. The fraction field K of
SpXq is not graded, but the fraction of two homogeneous elements from SpXq

has a a degree, namely deg ab´1
“ deg a ´ deg b.

Problem 4.13 Let S be a graded ring. Show that the set T consisting of the
homogeneous elements in S is a multiplicative system and that the localization
ST is a graded ring. Show ST is an integral domain when S is, and in that case
the homogeneous piece of degree zero pSTq0 is a field. M

Problem 4.14 Let S “ krx0, x1s and let T be the multiplicative system
T “ t xi

1 | i P N u. Show that the homogeneous piece pSTq0 of degree zero
of ST equals krx0x´1

1 s. Show furthermore that the decomposition of S into
homogeneous pieces is given as

S “

à

iPZ

krx0x´1
1 s ¨ xi

1.

M

Problem 4.15 If X Ñ Pn is a projective variety. Show that the rational func-
tion field K “ kpXq equals pSpXqTq0 with notation as in Problem 4.14. M

All regular function on open sets in CpXq are elements of K, and two are
equal as functions on an open if and only if they are the same element in K.
The ground field k is contained in K as the constant functions on CpXq.
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As gentle beginning let us consider the case of the projective space Pn itself.
So let f be a global regular function on Pn. Composing it with the projection
p : An`1

zt0u Ñ Pn we obtain a regular function f ˝ p on An`1
zt0u. In example

3.6 on page 42 in Notes 3 we showed that every regular function on An`1
zt0u

is a polynomial, hence f ˝ p is a polynomial. But f ˝ p is also constant on
lines through the origin, and therefore must be constant. We thus arrive at the
following:

Proposition 4.25 It holds true that OPn pPn
q “ k.

For a general projective variety the same is true, but considerably more
difficult to prove. One has

Theorem 4.26 The only globally defined regular functions on a projective variety
X Ñ Pn are the constants. In other words, it holds true that OXpXq “ k.

Proof: Let f be a global regular function on X. Composed with the projection
it gives a global regular function one the punctured cone CpXqzt0u which we
still denote by f . It is an element in the function field K of the cone CpXq.

Let Di be the distinguished open set in CpXq where xi ‰ 0; that is, in earlier
notation Di “ CpXqxi . We know5 that the coordinate ring ApDiq satisfies 5 Lemma 3.3 one page 6

in notes 2.ApDiq “ SpXqxi so that for each index i the function f has a representation
f “ gi{xri

i for some gi P SpXq and some natural number ri. The function f
being constant along lines through the origin, it must be homogeneous of
degree zero; in other words, gi is homogeneous and deg gi “ ri.

So we have xri
i f “ gi, and the salient point is that gi lies in the homoge-

neous part SpXqri . It follows that hxri
i f P SpXqri`j for all elements h of SpXq

that are homogeneous of degree j.
Now, chose an integer r so big that r °

∞
i ri. Then any monomial M of

degree r contains at least one of the variables, say xi, with an exponent larger
than ri, and consequently M f P SpXqr. In other words, multiplication by f
leaves the finite dimensional vector space SpXqr invariant. It is a general fact
(for instance, use the Cayley-Hamilton theorem), that f then satisfies a relation
of the type

f m
` am´1 f m´1

` . . . ` a1 f ` a0 “ 0

where the ai are elements in the ground field k. This shows that f P K is
algebraic over k, and since k is algebraically closed by assumption, f lies in k
and is constant. o

4.27 An important consequence of the theorem is that morphisms of pro-
jective varieties into affine ones necessarily are constant. Indeed, if X Ñ Pn

is projective and Y Ñ Am is affine, the component functions of a morphism
f : X Ñ Y Ñ Am must all be constant according to the theorem we just proved.
Hence we have
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Corollary 4.28 Any morphism from a projective variety to an affine one is
constant.

Another consequence is the following:

Corollary 4.29 A variety X which is both projective and affine, is reduced to a
point.

Proof: The coordinate functions are regular functions on a subvariety X Ñ An,
and according to the theorem they must be constant when X is projective. o

4.4 Morphisms from quasi projective varieties

When it comes to morphism between affine varities the picture is quite clear
. The main theorem (Theorem 3.27 on page 48) tells us they are just given as
ring homomorphism between the coordinate rings; or if the target variety is
contained in the affine space An a morphism is simply given by n regular
component functions on the source.

When it comes to morhisms between projective (or quasi projective ones)
the picture is not so clear. However many morphisms are easily defined as
set-theoretical maps, and for experienced geometers it is pretty obvious they
are morphism, but at least once in a lifetime one should check in detail it is the
case. So we offer a little simplistic lemma in that direction.

A simplistic lemma

4.30 Let X and Y be two quasi-projective varieties and let f : X Ñ Y be a set-
theoretical map (but highly suspected to be a morphism). Assume we know
that f fits into a diagramme shaped like

C0pXq
F
//

pX
✏✏

C0pYq

pY
✏✏

X
f

// Y

(4.2)

where C0pXq and C0pYq are the punctured cones over respectively X and Y,
and where the two vertical maps are the usual projections and where F is a
morphism; in other words, f lifts to a morphism between the punctured cones.
Then it follows that f is a morphism. Usually it is not difficult to check this
case by case, but it is worthwhile doing it once and for all, hence the following
little lemma:

Lemma 4.31 With the setting as in the diagramme (4.2) above, the map f is a
morphism.
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Proof: Assume that X is open in a subvariety of the projective space Pn

and that px0 : . . . : xnq are homogenous coordinates in Pn. Then the sets
Ui “ D`pxiq X X form an open covering of X, and it suffices to see that
each restriction f|Ui is a morphism. Earlier (in Paragraph 4.5 on page 60)
we defined a natural map ai : D`pxiq Ñ An`1

zt0u, which is a section of the
canonical projection p over D`pxiq. Its basic property is being an isomorphism
between D`pxiq and and the (affine) linear subvariety Ai of An`1 where
xi “ 1. (Recall that aipx0 : . . . : xnq “ px0x´1

i , . . . , xnx´1
i q). Restricted to the Ai X C0pXq �

�

// C0pXq F
//

pX

✏✏

C0pYq

pY

✏✏

Ui
�
�

//

bi »

OO

X
f

// Y

open subset Ui of X the section ai gives an isomorphism bi : Ui » Ai X C0pXq

satisfying pX ˝ bi “ idX . It follows that

f|Ui “ f ˝ pX ˝ bi “ pY ˝ F ˝ bi,

and since the three maps to the right are morphisms, f|Ui is one as well. o

4.32 Examples of maps frequently met in projective algebraic geometry and
fitting into the scenario of Lemma 4.31 are when the morphism F is given as
Fpxq “ p f0pxq, . . . , fmpxqq with the components fi’s homogeneous polynomials
of the same degree. The set X can be the open subset of Pn where the fi’s
do not vanish simultaneously; that is, X “ Pn

zZ`p f0, . . . , fmq, or any quasi
projective set contained therein. And Y might be the entire projective space
Pm, or any quasi projective subvariety Y so that the cone C0pYq contains the
image of F.

On X the morphism F descends to the map fprxsq “ p f0pxq : . . . : fmpxqq

between the quasi-projective varieties X and Y. Because the fi’s all have the
same degree, say d, it holds true that

p f0ptxq, . . . , fnptxqq “ ptd f0pxq, . . . , td fnpxqq

for any non-zero scalar t, and therefore fprxsq does not depend on the repre-
sentative of rxs. Moreover, the homogeneous coordinates p f0pxq : . . . : fmpxqq

are legitimate because in X not all of the fi’s vanish at the same time.

4.33 Different morphisms F might fit into the diagramme (4.2) paired with
the same map f. The components of F may for instance be changed by a
common factor, and this does not change the map f. Notice however, that the
set where f is defined; that is, the variety X in the diagramme, is susceptible
to change. It might grow, and it might shrink, depending on the behaviour
of the common factor. Certainly, a common factor might introduce common
zeros, in which case the set X will shrink.

But the situation might also improve, and the set where f is defined can
grow. When the fi’s are rational functions, the morphism F is not defined
where one of them has a pole, but multiplying through by the least common
multiple of their denominators, yields a lifting F whose components are
polynomials and thus extends f beyond the set of poles.
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Linear projections

4.34 As one can guess from the name, projections are central in projective ge-
ometry, and they are examples of rational maps coming out from the scenario
of the little lemma.

A projection is a surjective, rational map p : Pn
// Pm which in the stag- Projection

ing of the little lemma 4.31 is induced by a surjective, linear map F : An`1
Ñ

Am`1. One assumes m † n, since the case m “ n would go under another
label and rather be called a linear isomorphism or automorphism. The set
where the projection p is not defined, is the projective linear space Ppker Fq

corresponding to the kernel of F. So the punctured

4.35 The archetype of a projection is induce by the map An`1
Ñ Am`1 that

forgets some n ´ m of the coordinates, say the last ones. The projection is then
described by px0 : . . . : xn`1q fiÑ px0 : . . . : xmq, and the common zeros of the
components is the linear subspace V where the m ` 1 first coordinates vanish;
that is, where xi “ 0 for 0 § i § m. The subspac PpVq is often called the centre Centre of a projection

PpVq of the projection.
In its simplest form—projection from a point— a projection just forgets one

of the coordinates, the archetype being px0 : ¨ ¨ ¨ : xnq to px0 : ¨ ¨ ¨ : xn´1q, which
is well defined away from the point p0 : . . . : 0 : 1q.

4.36 Common practice is to identified the target space Pm with the linear
subvariety of PpWq of Pn where W Ñ An`1 is given by the equations xm`1 “

xm`2 “ . . . “ xn “ 0. Notice that this a complementary subspace to the centre
V; that is, kn`1

“ V ‘ W.
The geometric interpretation of the projection from a point p onto a PpWq,

is as follows. Take a point in Pn not in the centre PpVq; that is, a one di-
mensional subspace L of kn`1 not lying within V. The subspace V ` L of
kn`1 spanned by V and L intersects W in a line; indeed, this follows from
the classical dimension formula from linear algebra which yields, since
W ` V ` L “ kn`1, that dimpV ` Lq X W “ dimpV ` Lq ` dim W ´ pn ` 1q “ 1.
And ppLq is that intersection.

In particular, if one projects from a point p, the target variety is a hyper-
plane on which p does not lie, and the image of a point x P Pn is the intersec-
tion of the line throug x and p with H.

4.37 When one wants to study a variety by means of projections, it is of
course of decisive importance to be able to describe the projected variety. It
is in general difficult to find the equations of the projected variry in terms of
the equations of the variety, this amounts to eliminating the variables that the
projection forgets.

However, if the varity is given on parametric form, it is trivial to describe
the projection.
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Examples

4.6 (Projecting the twisted cubic) The twisted cubic C it the image of P1 under
the map pu : vq Ñ pu3 : u2v : uv2 : v3

q (which is a morphism according to
Lemma 4.31). Consider the projection from P3 to P2 with centre p0 : 0 : 0 : 1q

which just forgets the last coordinate. The image of a point pu3 : u2v : uv2 : v3
q

is pu3 : u2v : uv2
q when u ‰ 0, but when u “ 0 the point coincides with

the centre and the projection is not defined. However, one may discard the
common factor u and obtain a genuine parametrization pu : vq Ñ pu2 : uv : v2

q

of the projection of C. This is the conic y2
“ xz. Observe that the projection

decreases the degree by one, due to the fact that the centre of projection lies on
C.

4.7 We continue with the twisted cubic but change the centre of he projection
to p0 : 0 : 1 : 0q; that is, the projection forgets the third coordinate. The effect
on a point pu3 : u2v : uv2 : v3

q is to send it to the point pu3 : u2v : v3
q in P2.

This time the projection is defined all along P1, and one easily checks that the
the equation of the image is y2

“ x2z; that is, the image is the well-known
standard cusp. Notice that the degree is conserved, but the image aquires a
singular point.

4.8 (The quadric in P3) In this example we project the quadric Q in P3 with
equation xy ´ zw “ 0 from the point p “ p0 : 0 : 0 : 1q, which lies on Q. The
lines z “ x “ 0 and z “ y “ 0 both lie on Q, and they intersect in the point p.
The entire first line is mapped to the point p1 “ p0 : y : 0q P P2 and the second
to the point p2 “ px : 0 : 0q. So each of these two lines are collapsed to a point.
Off these two lines the projection is one to one. If q “ px : y : zq is a point in
P2 with z ‰ 0, there is exactly one point on the quadric Q projecting to q the
coordinates of which are px : y : z : xy{zq.

To summarize, projecting a quadric Q from a point q on it collapses the two
lines L1 and L2 on Q passing through q to two different points p1 and p2 in P2.
The projection induces an isomorphism from QzL1 Y L2 to P2

zL; that is, P2

deprived of the line L through p1 and p2, but the image of Qztqu, but includes
the two points p1 and p2 as well.

K

Problems

4.16 Let the projection P3 to P2 be given as px : y : z : wq fiÑ px : x ` z :
w ` yq. Determine the centre and describe the projection of the twisted cubic
parametrized as pu : vq fiÑ pu3 : u2v : uv2 : v3

q. Hint: The key words is
"rational node" (see Problem 3.8 on page 56).
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4.17 Find points in P4 such that the projection of the rational normal quartic
pu4 : u3v : u2v2 : uv3 : v4

q projects onto a twisted cubic.

4.18 Describe (by giving an equation) the image of the rational normal quartic
under the projection P4

// P2 that forgets the third and the forth coordi-
nate. Accomplish the same task but with the projection that forgets the second
and the forth coordinate.

4.19 Let Cd be the rational normal curve in Pd whose parametrization is

fdpu : vq “ pud : ud´1v : . . . : uvd´1 : vd
q.

Let p : Pd
ztqu Ñ Pd´1 be the projection with centre q “ p0 : 0 : . . . : 0 : 1q.

Prove that q P Cd and that the closure in Pd´1 of ppCdztquq is equal to Cd´1.

M

4.5 Two important classes of subvarieties

A closed embedding of a variety X in another variety Y is a morphism i : X Ñ Y Closed embeddings

whose image is closed and which induces an isomorphism between X and its
image ipXq.

Example 4.9 The parametrization of the conic C “ Z`py2
´ zxq in P2 is a

closed embedding of P1 in P2 given as pu, vq fiÑ pu2 : uv : v2
q. Indeed, it has

the map that sends px : y : zq to pyz´1 : yx´1
q as inverse. It is good exercise to

check this in detail (use the little Lemma 4.31). K

Another simple lemma

The next lemma will be useful at a few occasions when checking that certain
morphisms are closed embeddings. The proof is almost trivial and is left as an
exercise. It is however a special case of a more general lemma (which we offer
as a side dish, see lemma ?? below).

4.38 Given a map f : X Ñ Y. A map s : Y Ñ X the other way around is said to
be a left section, for short a section, of f if s ˝ f “ idX. When f is a morphism, Sections of morphisms

we will also require s to be a morphism.

X

X

idX

OO

f
// Y

s

__

Lemma 4.39 Assume that the morphism An
Ñ An`m has a section that is a

projection. Then f is a closed embedding.

Proof: After a coordinate change on An`m, the map f appears as the graph
of a morphism An

Ñ Am. The details are left to the zealous students. o
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4.6 The Veronese embeddings

This is a class morphisms of Pn into a larger projective space PN given by all
the monomials of a given degree d in n ` 1 variables. There are

`n`d
d

˘
such

monomials, so the number N is given as N “
`n`d

d
˘

´ 1. These Veronese
embeddings6 deserve their name; they are closed embeddings. They depend 6 They also go under

the monstrosity of
a name the d-uple
embeddings.

on two natural numbers n and d, and the corresponding embedding will be
denoted by Fn,d, or most often just by F with n and d tacitly understood.

Example 4.10 We already met some morphisms of this type. The parametriza-
tions of the rational normal curves are of this shape with n “ 1. They are
morphisms f from P1 into Pd which are expressed as

fpx0 : x1q “ pxd
0 : xd´1

0 x1 : . . . : x0xd´1
1 : xd

1q

in the homogeneous coordinates px0 : x1q of P1. Conics in P2 and the twisted
cubic for instance, are prominent members of this clan. K

Example 4.11 The Veronese surface is another example of the sort with n “ 2 The Veronese surface
(Veronese-flaten)and d “ 2. In this case the embedding of P2 into P5 is given as

fpx0 : x1 : x2q “ px2
0 : x2

1 : x2
2 : x0x1 : x0x2 : x1x2q

in terms of the homogeneous coordinates px0 : x1 : x2q on P2. Notice that
the maps in both these examples are morphisms according to the little lemma
(Lemma 4.31 on page 72). K

The definition

4.40 To fix the notation let I be the set of sequence I “ pa0, . . . , anq of non-
negative integers such that

∞
i ai “ d; there are N ` 1 of them. The sequences

I from I will serve as indices for the monomials of degree d; that is, when I
runs through I , the polynomials MI “ xa0

0 . . . xan
n run through the monomials

of degree d in the xi’s. We let pmIq for I P I , in some order, be homogeneous
coordinates on the projective space PN .

4.41 The Veronese embedding with parameters n and d is then the map Fn,d : Pn
Ñ Veronese embeddings

(Veronese-embeddingene)PN that sends the point x “ px0 : . . . : xnq to the point in PN whose homoge-
neous coordinates are given as mIpfpxqq “ MIpxq; that is,

mIpFn,dpxqq “ xa0
0 . . . xan

n ,

when I “ pa0, . . . , anq. The monomials MI are homogeneous of the same
degree d and do not vanish simultanously anywhere. The mapping Fn,d is a
therefore morphism as follows from Lemma 4.31 on page 72. But much more
is true:

Proposition 4.42 The Veronese map Fn,d is a closed morphism and induces an
isomorphism between Pn and its image Fn,dpPn

q; that is, Fn,d is a closed embedding.
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Proof: To simplify notation we let F stand for Fn,d. There are three salient
points in the proof.

Firstly, the basic open subset Di “ D`pxiq of Pn where the i-th coordinate
xi does not vanish, maps into one of the distinguished open subsets of PN ,
namely the one corresponding to the pure power monomial xd

i . To make the
notation simpler we let mi denote the corresponding homogeneous coordi-
nate7 on PN ; so that F maps Di into D`pmiq. The first of these distinguished 7 That is, mi corre-

sponds to mI with I
being the sequence
I “ p0, 0, . . . , d, . . . , 0q
having a d in slot i and
zeros everywhere else.

open subsets Di is isomorphic to An, with the fractions xjx´1
i as coordinates,

and the second to AN with mIm´1
i as coordinates.

Secondly, although the n ` 1 basic open subsets D`pmiq do not cover the
entire PN , they cover the image FpPn

q. Hence it suffices to see that for each
index i the restriction F|Di has a closed image and is an isomorphism onto its
image.

The third salient point is that the restrictions F|Di : An
Ñ AN have sections

that are linear projections. Once this is establishes, we are through in view
of Lemma 4.39 above. To exhibit a section, we introduce the n monomials
Mij “ xjxd´1

i where j ‰ i and we denote the corresponding homogenous
coordinates by mij. Then mijpFpxqqmipFpxqq

´1
“ xjx´1

i , and the projection
onto the affine space An corresponding to the coordinates mijm´1

i is a section
of the map F|Di , and we are through! o

Two corollaries

4.43 Even if the Veronese varieties are specific varieties, they are of general
theoretical interest. As an illustration we offer two corollaries.

Corollary 4.44 Let f px0, . . . , xnq be a non-zero homogeneous polynomial. Then
the distinguished open subset D`p f q of Pn is affine.

Proof: Let d be the degree of f , and let F “ Fn,d be the Veronese embedding
of Pn in PN . The point is that the locus Z`p f q in Pn becomes a linear section in
FpPn

q. It will be equal to Z`pLq X FpPn
q where L is the linear expression in

the mI ’s sharing coefficients with the expression of f in terms of the MI ’s; that
is, if f “

∞
IPI aI MI one has L “

∞
IPI aImI . Indeed, it then holds true that

f px0, . . . , xnq “ Lpx : . . . : xnq, at least up to non-zero scaling.
The distinguished open set D`p f q is the complement of Z`p f q and hence

the intersection of FpPn
q with the complement of Z`pLq which is the dis-

tinguished open subset D`pLq of PN and isomorphic to AN . Consequently
FpD`p f qq, which is isomorphic to D`p f q, is closed in AN , and hence it is
affine. o

Corollary 4.45 Let X Ñ Pn be a subvariety which is not a point, and let f px0, . . . , xnq

be a homogeneous polynomial. Then Z`p f q X X is not empty.
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Proof: Assume that X X Z`p f q “ H. Then X Ñ D`p f q; but D`p f q is affine and
therefore X being closed in D`p f q is affine. So X is both affine and projective.
Corollary 4.29 on page 72 applies, and X is a point. o

4.7 The Segre embeddings

4.46 The second kind of closed embeddings we shall describe are named after
one of the great Italian geometers Corrado Segre. They are embeddings of the
products Pn

ˆ Pm of two projective spaces into the projective space Pnm`n`m.
These products are thus projective, and subsequently we get the important
corollary that products of projective varieties are projective.

Corrado Segre
(1863–1924)

Italian mathematician.

4.47 With px0 : . . . : xnq and py0 : . . . : ymq being homogeneous coordinates
on the projective spaces Pn and Pm respectively, the Segre maps (or the Segre

Segre maps (Segre-
avbildningens)

embeddings as they also are called as they turn out to be embeddings) are the
maps with component functions all the products xiyj. In other words, they are
the maps

S : Pn
ˆ Pm

Ñ Pnm`n`m

that send the pair ppx0 : . . . : xnq, py0 : . . . : ymqq to the point whose homoge-
neous coordinates are the all possible products xiyj; one thus has

Spppx0 : . . . : xnq, py0 : . . . : ymqqq “ px0y0 : . . . : xiyj : . . . : xnymq,

with the products xiyj listed in some order. This definition is legitimate since
a simultaneous scaling of either the xi’s or the yj’s results in a simultaneous
scaling of the product xiyj. Moreover, at any point of the product Pn

ˆ Pm at
least one of the xi’s and one the yj’s do not vanish, and then the corresponding
product does not vanish either. That S is a morphism is clear (?). The image of
S is called a Segre varity and denoted Sn,m Segre varities (Segre-

variteter)
4.48 The double index invites the represent of the image points as the pm ` 1q ˆ

pn ` 1q-matrix that is the product of the column vector formed by the yi’s and
the row vector formed by the xj’s:

py0, . . . , ymq
t
px0, . . . , xnq “

¨

˚̊
˚̊
˝

x0y0 x1y0 . . . xny0

x0y1 x1y1 . . . xny1
...

...
...

x0ym x1ym . . . xnym

˛

‹‹‹‹‚
. (4.3)

and subsequently it is natural to introduce homogeneous coordinates tij on
Pnm`n`m indexed by pairs i, j with 0 § i § n and 0 § j § m and think about
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the tij as the entries of a pm ` 1q ˆ pn ` 1q-matrix M “ ptijqij.

M “

¨

˚̊
˚̊
˝

t00 t10 . . . tn0

t01 t11 . . . tn1
...

...
...

t0m t1m . . . tnm

˛

‹‹‹‹‚
. (4.4)

Obviously the matrix in (4.4) has rank one, and its 2 ˆ 2-minors are quadric
polynomials which all vanish along the image Sn,m. We shall see that the Segre
varieties are precisely the locus where these minors vanish. Even the stronger
assertion that the homogeneous prime ideal IpSn,mq is generated by the minors
holds true, but we shall prove this. Finally, S will be an isomorphism between
Pn

ˆ Pm and Sn,m

4.49 The matrix representation places the Segre varieties in a broader perspec-
tive. The are members of the larger family of so-called determinantal varieties. Determinantal varieties

(determinatvarieter)They are closed subvarieties defined by the minors of the matrix M of fixed
given size r r.

(See also Example 2.11 on page 32 where we treated the affine case of
2 ˆ 3-matrices: We embedded P1

ˆ P2 into P5.)

4.50

Proposition 4.51 The Segre map S is a closed embedding of the product Pn
ˆ Pm

into Pnm`n`m. The image of S is the locus where the all the 2 ˆ 2-minors of the matrix
M in (4.4) vanish.

Proof: Fix a pair of indices µ and n with 0 § µ § n and 0 § n § m. On the set
U “ D`pxµq ˆ D`pynq the coordinate tµn “ xµyn is non-zero and S sends U into
the distinguished open set D “ D`ptµnq. It will be sufficient to prove that the
restriction S|U is a closed embedding of U into D. Indeed, by an appropriate
choice of coordinates, any pair points in Pn

ˆ Pm lies in D`pxµq ˆ D`pynq, and
for an injection being a closed embedding is a local question.

Now, U is an affine space An`m with coordinates xix´1
µ and yjy´1

n where
0 § i § n but i ‰ µ, and 0 § j § m but j ‰ n. The distinguished open subset
D is the affine space Amn`n`m whose coordinates are tijt´1

µn . Moreover, the
restriction of the Segre map to the distinguished open subset U is given by the
relations xix´1

µ “ pxiynqpxµynq
´1

“ tint´1
µn and yjy´1

n “ pxµyjqpxµynq
´1

“ tjnt´1
µn ,

so that the restriction S|U is a map

S|U : An`m
Ñ Anm`n`m

having a projection as a section; namely the projection that forgets all coordi-
nates but tint´1

µn and tµjt´1
µn for 0 § i § n and 0 § j § m with i ‰ µ and j ‰ µ.

By Lemma 4.39 it follows that S|Uµn is a closed embedding and hence that S is
one as well. o
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4.52 A spin off of the proof is that the Segre variety Sn,m is equal to the locus
where all the 2 ˆ 2-minors of M vanish. Take a point in Pn`m`nm where
the all the 2 ˆ 2-minors of M vanish, and assume that coordinate tµn ‰ 0.
Putting xi “ tint´1

µn and yj “ tµjt´1
µn one finds tijtµn “ tµjtµn and it follows that

tijt´1
µn “ tint´1

µn tnjt´1
µn “ xiyj and our point lies in the image.

Corollary 4.53 The product of two projective varieties is projective.

Proof: Let the two projevtive varities be X and Y with X closed in Pn and Y
in Pm. By xxx X ˆ Y is closed in Pn

ˆ Pm which in its turn is isomorphic to a
closed subvariety of Pmn`n`m via the Segre embedding. o

Example 4.12 (The quadric in P3) The Segre map embeds the product P1
ˆ P1

into the projective space P3 as the quadric surface Z`px0x3 ´ x1x2q (where
the xi’s of course are homogeneous coordinates on P3). Indeed, using ho-
mogeneous coordinates pt0 : t1q and pu0 : u1q on the two factors, the Segre
embedding will, after the products tiuj have been ordered, send the point
ppt0 : t1q, pu0 : u1qq to the point

pt0u0 : t0u1 : t1u0 : t1u1q.

Points of this shape obviously satisfy the relation

x0x3 ´ x1x2 “ pt0u0qpt1u1q ´ pt0u1qpt1u0q “ 0. (4.5)

and image is contained in the hypersurface Z`px0x3 ´ x1x2q. To see they are
equal, let px0 : x1 : x2 : x3q be the homogeneous coordinates of a point p in
the hypersurface. One of the coordinates xi must be non-zero, and we may as
well assume it to be x0. Then p is image of the point q “ ppx0 : x1q, px0 : x2qq;
indeed, in view of the relation (4.5) we find

Spqq “ px2
0 : x1x0 : x0x2 : x1x2q “ px2

0 : x1x0 : x0x2 : x0x3q.

K

Problem 4.20 This exercise is about a coordinate free approach to the Segre
embeddings. Let V and W be two vector spaces ofer k. Inside VbkW one has
the subset D of decomposable tensors; i.e. those of shape vbw with v P V
and w P W, which also are called rank one tensors. Show that D a cone and
that the projection of Dzt0u into PpVbkWq is the Segre varaity PpVq ˆ PpWq.
Hint: Under the isomorphism HomkpW, Vq » W˚

bkV linear maps og rank
one correspond to decomposable tensors. M
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Lecture 5

Dimension

Hot themes in Lecture 5: Krull dimension and dimension of spaces—Finite
maps, Lying–Over and Going–Up—Noether’s Normalization Lemma—Transcendence
degree and dimension—The dimension of An—Maximal chains in varities—
Varieties are catenary—The dimension of a product—Krull’s Principal Ideal
Theorem—reduction to the diagonal—Intersections in projective space

For general topological spaces if can be surprisingly subtle to define the
concept of dimension, and there is no completely satisfying notion. Manifolds
of course, have a dimension (or at least each connected component has). They
are locally homeomorphic to open sets in some euclidean space, and the
dimension of that space is constant along connected components, and can
serve as the dimension of the component.

Noetherian topological spaces as well, have a dimension, and in many
instances it is very useful. It is fundamental invariant of a variety, equally im-
portant as the dimension is for a vector space. General topological spaces may
have an infinite dimension, even Noetherian spaces might, but for varieties the
dimension behaves well and stays finite.

The notion is inspired by the concept of the Krull dimension of a Noetherian
ring, and it resembles vaguely one of our naive conception of dimension. For
example, in three dimensional geometric gadgets, called threefolds, we may
imagine increasing chains of subgadgets of length three; points in curves,
curves in surfaces and surfaces in the threefold.

The definition we shall give works for any topological space, but the ensu-
ing dimension carries not much information unless the topology is “Zariski-
like”.

A very useful tool when establishing the basic theory of dimension is one
of Emmy Noehter’s grand theorems, the Normalization Lemma which states
that every variety is a finite cover of an affine space. Coupled with with the
Lying–Over and the Going–Up Theorems of Irvin S. Cohen and Abraham
Seidenberg the Normalization Lemma leads to the result that the dimension of
a variety X and the transcendence degree of the function field KpXq coincide.
We’ll formulate and prove the Normalization Lemma in the geometric context
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we work; that is, over an algebraically closed field. However ita remains true,
and the poof is mutatis mutandis the same, over any field.

5.1 Definition of the dimension

5.1 The deliberations of the introduction materialize in the following defi-
nition. In the topological space X we consider strictly increasing chains of
non-empty closed and irreducible subsets:

X0 Ä X1 Ä . . . Ä Xr, (5.1)

and we call r (that is, the number of inclusions in the chain) the length of the
chain. The dimension dim X of X is to be the supremum of the set of r’s for The dimension of a

topological space (dimen-
sjonen til et topologisk
rom)

which there is a chain as in (5.1).
One says that the chain is saturated if there is no closed irreducible subset

Saturated chains (mettede
kjeder)

strictly in between any two of the Xi’s; that is, if Z is a closed and irreducible
subset such that Xi Ñ Z Ñ Xi`1, then Z “ Xi or Z “ Xi`1. Moreover, we shall
call a saturated chain maximal if it neither can be lengthened upwards nor Maximal chains (maksi-

male kjeder)downwards. Clearly, the supremum over the lengths of saturated chains, or for
that matter, of the maximal chains, will be equal to the dimension of the space.
But be aware that maximal chains are not necessarily of maximal length, there
might be others that are longer, so their length is not necessarily equal to the
dimension of X.

5.2 Possibly the dimension of X can be equal to 8, and in fact, there are
Noetherian spaces for which dim X “ 8, although we shall not meet many.
There are even Noetherian rings whose Krull dimension is infinite; the first
example was constructed by Masayoshi Nagata, the great master of counterex-
amples in algebra.

Masayoshi Nagata
(1927–2008)

Japanese mathematician

Example 5.1 One do not need to go far to find Noetherian spaces of infinite
dimension. The following weird topology on the set N of natural numbers is
one example. The closed sets of this topology apart from the empty set and
the entire space, are the sets defined by Za “ t x P N | x § a u for a P N.
They form a strictly ascending infinite chain and are irreducible, hence the
dimension is infinite. On the other hand, any strictly descending chain is finite
so the space is Noetherian. We leave it as an exercise for the interested student
to check these assertions. K

Problems

5.1 The notion of dimension we introduced is only useful for “Zariski-like”
topologies. Show that any Hausdorff space is of dimension zero. Hint: What
are the irreducible subsets?
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5.2 Show that the only irreducible and finite topological space of dimension
one is the so-called Sierpiński space which is named after the Polish mathe-
matician Wacław Sierpiński. It has two points h and x with thu open and txu

closed.

5.3 Assume that Y “ Y1 Y . . . Y Yr is the decomposition of the Noetherian space
Y into irreducible components. Show that dim Y “ max dim Yi.

5.4 (Nagata’s example.) Let B “ krx1, x2, . . .s be the polynomial ring in count-
ably many variables, and decompose the set of natural numbers as a union
N “

î
i Ji of disjoint finite sets Ji whose cardinality tends to infinity with i.

Let ni be the ideal in B generated by the xj’s for which j P Ji, and let S the
multiplicative closed subset

ì
i Bzmi of B. Moreover, let mi be ni A. Nagata’s

examples is the localized ring A “ S´1B, and the aim of the exercise is to
prove that A is Noetherian, but of infinite Krull dimension.

We shall need the rational function field Ki “ kpxj|j R Jiq in the variables
whose index does not lie in Ji, and the polynomial ring Kirxj|j P Iis over Ki in
the remaining variables; that is, those xj for which j P Ji. Moreover, the ideal ai
will be the ideal in Kirxj|j P Iis generated by the latter; that is, ai “ pxj|j P Jiq.

a) Show that Bni » Kirxj|j P Iisai .

b) Prove that Ami “ Bni and conclude that each Ami is Noetherian with
dim Ami “ #Ji and hence that dim A “ 8.

c) Show that A is Noetherian. Hint: Any ideal is contained in finitely many
of the of the mi’s, and therefore finitely generated.

M

Basic properties of dimension

5.3 One immediately establishes the following basic properties.

Lemma 5.4 Assume that X is a topological space and that Y Ñ X is a closed sub-
space. Then dim Y § dim X. Assume furthermore that Y is irreducible and that X is
of finite dimension. If dim Y “ dim X, then Y is a component of X.

Proof: Any chain as (5.1) in Y will be one in X as well; hence dim Y § dim X.
For the second assertion, assume that dim Y “ dim X “ r, and let

Y0 Ä Y1 Ä . . . Ä Yr “ Y

be a maximal chain in Y. In case Y is not a component of X, there is a closed
and irreducible subset Z of X strictly bigger than Y, and we can extend the
chain to

Y0 Ä Y1 Ä . . . Ä Yr Ä Z.

Hence dim X • r ` 1, and we have a contradiction. o
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5.5 Our concept of dimension coincides, when X is a closed irreducible subset
of Am , with the Krull dimension of the coordinate ring ApXq. Indeed, the
correspondence between closed irreducible subsets of X and prime ideals in
ApXq implied by the Nullstellensatz, yields a bijective correspondence between
chains

X0 Ä X1 Ä . . . Ä Xr

of closed irreducible subsets and chains

IpXrq Ä . . . Ä IpX1q Ä IpX0q

of prime ideals in ApXq. Hence the suprema of the lengths in the two cases are
the same, and we have:

Proposition 5.6 Let X Ñ Am be a closed algebraic subset. Then dim X “

dim ApXq.

Given that the polynomial ring krx1, . . . , xns is of Krull dimension equal to
n, we know that dim An

“ n. This is of course what it should be, but it is
astonishingly subtle to establish, and this reflects the fact that if R is a ring
which is not Noetherian, the polynomial ring Rrts may have a Krull dimension
other than dim R ` 1. It holds tue that dim R ` 1 § dim Rrts § 2 dim R ` 1 and
there are examples showing that all possible values occur.

We shall give a proof that dim An
“ n depending on Noether’s Normaliza-

tion Lemma; see Theorem 5.34 on page 94 below.

Wolfgang Krull
(1899–1971)

German mathematician

5.7 Dense open subsets do not necessarily have the same dimension as the
surrounding space even when the surrounding space is irreducible, but it
cannot be bigger:

Proposition 5.8 Assume that X is an irreducible topological space and that U is
an open dense subset. Then dim U § dim X.

Proof: We are to see that dim U § dim X, so let

U0 Ä U1 Ä . . . Ä Ur

be a chain of closed irreducible subsets of U. By Lemma 2.10 on page 24 the
closures Ui are irreducible closed subsets of X and they satisfy Ui X U “ Ui.
Hence the chain tUiu form a strictly ascending chain of closed irreducible sets
in X, and it follows that r § dim X. Hence dim U § dim X since the chain was
arbitrary. o

5.9 In general strict inequality might be a in force in Lemma 5.8. The Sier-
piński space from Problem 5.2 on the previous page is a stupidly simple
example. It has merely two points, h which is open, and x which is closed.
Clearly thu is an open dense subset of dimension zero, whereas the Sierpiński
space itself is of dimension one since it has the maximal chain txu Ñ X of
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closed irreducible subsets. Typically, strict inequality in 5.8 occurs when all the
chains of maximal length are concealed from U by lying in the complement.

However, the situation is satisfactory for for varieties. As we shall establish
later, their dimension coincides with the transcendence degree of their func-
tion field, and consequently equality prevails in Proposition 5.8; open dense
subsets have the same function field as the surrounding variety (Corollary 5.36
on page 95).

5.10 The following little easy lemma turns out to be useful at a few occations.

Lemma 5.11 Assume that X is an irreducible topological space and that

Z0 Ä Z1 Ä . . . Ä Zr

is a chain of irreducible closed subsets in X of length r. If U is a non-empty open
subset of X such that U X Z0 ‰ H the the intersections tZi X Uu form a chain in U of
length r.

Proof: The sets Zi X U are irreducible (Lemma 2.10 on page 24) and closed
in U. Of course it holds true that Zi X U Ñ Zi`1 X U, and the assertion of the
lemma amounts to these inclusions being strict. Now, Zi X U is open in Zi,
and by Lemma 2.10 again, it is dense whenever non-empty. But since U by
assumption meets the smallest of the Zi’s, it meets all, and we conclude that
Zi X U “ Zi. From this ensues that each Zi X U is strictly contained in Zi`1 X U;
were they equal, the closures would be equal as well, but they are not. o

We do not yet know that open subsets of a variety X have the same dimen-
sion as X, but the lemma tells us that if dim X † 8, there are as least some
open affine subsets with the same dimension as X. Indeed, any open affine
meeting the smallest member of a chain of maximal length will do. In (the
hypothetical) case that X is of infinite dimension, one may similarly find open
affine subsets of arbitrary large dimension.

Problem 5.5 Find an example of an irreducible topological space X other
than the Sierpiński space that has an irreducible open subset U so that
dim U † dim X. M

The height of a prime ideal

5.12 Recall that if A is a ring and pÑ A is a prime ideal, the height of p is the The height of an ideal

length r of the longest strictly increasing chain of prime ideals

p0 Ä . . . Ä pr “ p

ending at p. It equals the Krull dimension of the localization dim Ap.

5.13 For any ring one has the inequality

dim Ap ` dim A{p § dim A. (5.2)
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Any saturated chain of prime ideals in A where the prime ideal p occurs, can
be split in two. The first part consists of the ideals in the chain contained in p

(this includes p itself); and the supremum of lengths of such chains is dim Ap.
The second part consists of the remaining ideals; that is, those containing p

(so p apperas in both parts), and the supremum of the lengths of those chains
equals dim A{p.

5.14 In many good cases there is even an equality

dim Ap ` dim A{p “ dim A. (5.3)

However to establish such an equality is slightly subtle—it requires that
p occurs in a chain of prime ideals in A of maximal length. Even for local
Noetherian integral domains this is not necessarily true (the first example was
found by Masayoshi Nagata). These examples are exotic creatures living on
the fringe of the Noetherian society. One would hardly meet them practising
mainstream algebraic geometry, and in the world of varieties they are absent.

As we shall prove later on, the equality (5.3) holds true for prime ideals
in the coordinate rings of affine (irreducible) varieties. Even more is true, all
maximal chains of closed irreducible subsets in an (irreducible) variety will
have the same length. However, if the closed algebraic set X has irreducible
components of different dimensions, the equality (5.3) does trivially not hold
for all prime ideals in ApXq. The dimension dim X being the larger of the
dimensions of the components, chains in the smaller components will be
shorter than dim X (see problems 5.6 and 5.7 below).

Problems

5.6 Let X “ Zpzx, zyq Ñ A3. Describe X and determine dim X. Exhibit two
maximal chains of irreducible subvarieties of different lengths. Exhibit a
hypersurface Z so that Z X X is of dimension zero.

5.7 Let X “ Zpxy, ypy ´ 1qq Ñ A2. Describe all chains of subvarieties in X.

5.8 Let A “ krx1, x2, x3s and let p and q be the two primeideals p “ px1q and
q “ px2, x3q. Let S multiplicative system S “ Azpp Y qq. Show that B “ AS is
a Noetherian semi-local domain with the two maximal ideals m “ pAs and
n “ qAS. Show that dim Am “ 1 and dim Bn “ 2, and conclude that A is a
Noetherian domain with two maximal chains whose lengths differ.

M

5.2 Finite polynomial maps

In the midst of this chapter devoted to dimension we insert a section about
finite morphisms or the slightly more general concept of finite polynomial
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maps. These maps play a significant role when the theory of dimension is
developed, in that two varieties related by a finite morphism have the same
dimension.

Images and fibres

5.15 Let f : X Ñ Y be a polynomial map between closed algebraic sets
(for some unclear reason the notion morphism is reserved for polynomial
maps between varieties). To understand a map it is of course important to
understand the fibres, and the following lemma gives a simple criterion for a
point to lie in a given fibre.

Lemma 5.16 Let f : X Ñ Y be a polynomial map between the two closed algebraic
sets X and Y and let x P X and y P Y be two points. Then fpxq “ y if and only if
f˚my Ñmx.

Proof: One has fpxq “ y, if and only if f pfpxqq “ 0 for all f P my; that is, if
and only if f˚

p f q “ f ˝ f P mx for all f P my. o

In other words, the fibre f´1
pyq of f over the a point y P Y is the closed

algebraic set in X given by the ideal f˚my. The fibre can of course be empty, in
which case f˚my “ ApXq, and the ideal f˚my need in general not be radical.

Problems

5.9 Let f : A1
Ñ A1 be the map fptq “ tn. For each point a P A1 determine

the ideal f˚ma and the fibre f´1
paq.

5.10 Let y : A2
Ñ A2 be the map ypx, yq “ px, xyq. Determine the ideals

y˚mpa,bq and the fibres y´1
pa, bq for all points pa, bq P A2.

5.11 Let y : A3
Ñ A3 be given as px, y, zq fiÑ pyz, xz, xyq. Find all fibres of y

and their ideals.

M

Dominant maps

Morphisms between varieties whose image is dense in the target, are called
dominant. They are somehow easier to handle than general morphisms be- Dominant morphisms

(dominerende avbild-
ninger)

tween varieties, and often proofs are reduced to the case of dominant maps.

5.17 Suppose that X and Y are varieties and that f : X Ñ Y is a dominant
morphism. Let f be a regular function on Y that does not vanish identically.
Then we may find an open dense set in U in Y where f does not have any
zeros. Since by assumption the image fpXq is dense in Y, the intersection
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U X fpXq is non-empty, and it ensues that f ˝ f does not vanish identically on
f´1

pUq. In other words, the composition map f˚ : ApYq Ñ ApXq is injective.
This leads to

Lemma 5.18 A morphism f : X Ñ Y between affine varieties is dominant if and
only if the corresponding homomorphism f˚ : ApYq Ñ ApXq is injective.

Proof: Half the proof is already done. For the remaining part, suppose that
the image fpXq is not dense. Then its closure Z in Y is a proper closed subset,
and IpZq is a non-zero ideal. Any function f in IpZq vanishes along fpXq, and
hence f˚

p f q “ f ˝ f “ 0. o

Finite maps

5.19 A polynomial map f : X Ñ Y between two closed algebraic sets X and Y
is said to be finite if the composition map f˚ : ApYq Ñ ApXq makes ApXq into a Finite polynomial maps

(endelige avbildninger)finitely generated ApYq-module.
More generally a morphism f : X Ñ Y between two varieties is said to be

finite if every point y P Y has an affine neighbourhood U such that the inverse Finite morphisms
(endelige morfismer)image f´1

pUq is affine and the restriction f|f´1pUq is a finite polynomial
map. One easily checks that the composition of two finite morphisms (or
polynomial maps) is finite.

5.20 Finite morphisms have the virtue of being closed, and hence they are
surjective when they are dominating. Equally important, their fibres are finite.
Moreover, as alluded to above, two affine varieties which are related by a
dominant finite morphism, have the same dimension.

5.21 The famous triplet of theorems of Irvin Cohen and Abraham Seiden-
berg—with the suggestive names Lying–Over, Going-Up and Going–Down—
are results about integral extensions of rings, and because finite extensions
of rings are integral, they imply at once the results about finite maps we are
about to present. These strong theorems are valid in a much broader context
than ours. Integral extensions are by no means always finite, just think about
the integral closure of the integers Z in the field Q of algebraic numbers. Even
the integral closure of a Noetherian domain in its fraction field needs not be a
finite module1. However, in our modest context of finite polynomial maps, no 1 Finally, it turns out

that the integral closure
of a domain of finite
type over a field is
finite.

heavier artillery than Nakayama’s lemma is needed.

5.22 Here comes the basic property of finite ploynomial maps. It is frequently
referred to as Going–Up although Lying–Over would be the proper name in
the Cohen–Seidenberg nomenclature.

Proposition 5.23 (Lying–Over) Let f : X Ñ Y be a finite polynomial map.
Then f closed. If it is dominating, it is surjective.

Z �
�

//

f|˚
Z
✏✏

X

f

✏✏

W �
�

// Y
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Proof: We begin with proving that f is surjective when it is dominating. So
assume there is a y in Y not belonging to the image of f. Then by Lemma 5.16
above, it holds true that my ApXq “ ApXq. Now ApXq being finite as an ApYq-
module, it follows from Nakayama’s lemma that ApXq is killed by an element
of the shape 1 ` a with a P my. The assumption that f be dominant ensures that
f˚ is injective, and since 0 “ p1 ` aq ¨ 1 “ f˚

p1 ` aq, it follows that a “ ´1. This
is absurd because a belongs to my which is a proper ideal.

To see that f is a closed map, let Z Ñ X be closed, and decompose Z into
its irreducible components Z “ Z1 Y . . . Y Zr. Then the image fpZq satisfies
fpZq “ fpZ1q Y . . . Y fpZrq, and it suffices to show that each fpZiq is closed.
That is, we may assume that Z is irreducible. Define W to be the closure of
fpZq, and observe that the restriction f|Z : Z Ñ W is a dominating and finite
map (any generating set for ApXq over ApYq reduces to one for ApZq over
ApWq). Hence, by the first part of the proof, it is surjective. In other words,
fpZq “ W, and fpZq is closed. o

ApXq // // ApZq

ApYq // //

f˚

OO

ApWq

f|˚
Z

OO

5.24 Not only are finite maps surjective, but any closed irreducible subset of
the target is dominated by a a closed irreducible subset of the source

Proposition 5.25 (Going–Up) let f : X Ñ Y be a dominating morphism
between two varieties and let Z Ñ Y be a closed and irreducible subset. Then there
exists a closed and irreducible subset W Ñ Y such that fpWq “ Z.

Proof: Consider f´1
pZq which is non-empty since f is surjective (proposi-

tion 5.23) and let W1, . . . , Wr be its components. Again by Proposition 5.23
the images fpWiq are closed and of course, their union equals Z. Since Z is
assumed to be irreducible, it ensues that for at least one index i it holds that
fpWiq “ Z. o

Lemma 5.26 Let f : X Ñ Y be a dominating finite morphism between varieties, and
suppose that Z Ä X is a proper and closed subset. Then fpZq is a proper subset of Y.

Proof: The proof is easily reduced to the case that both X and Y are affine.
Assume that fpZq “ Y and let f be any regular function on X vanishing along
Z. Since f˚ makes ApXq a finitely generated module over ApYq, there is a
relation

f r
` f˚

par´1q f r´1
` . . . ` f˚

pa1q f ` f˚
pa0q “ 0

where the ai’s are elements of ApYq, and we may assume that r is the least
integer for which there is such a relation. Obviously the relation implies that
f˚

pa0q “ a0 ˝ f vanishes along Z, but since fpZq is equal to Y, the composition
map f|

˚
Z is injective, and hence a0 “ 0. The integer r being minimal and ApXq

being an integral domain, we conclude that f “ 0, and Z “ X. o

5.27 We have now come to the result that justifies the little excursion into
the world of finite maps in the middle of a chapter dedicated to the Krull-
dimension. We do not yet know that varieties are of finite dimension, so some
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care must be taken to include the case of (the a posteriori non-exsitent) infinite
dimensional varieties, and we resort to Noetherian induction.

Proposition 5.28 (Going–Up II) Let f : X Ñ Y be a finite and dominating
morphism between varieties. Then dim X “ dim Y.

Proof: To begin with we take any chain

W0 Ä W1 Ä . . . Ä Wr (5.4)

in X and push it down to Y with the help of f. Each fpWiq is irreducible and
closed in Y after Lying–Over, and Lemma 5.28 ensures that strict inclusions are
preserved. Hence

fpW0q Ä fpW1q Ä . . . Ä fpWrq

is a chain of closed irreducible subsets of Y of length r. Taking the supremum
of lengths of chains as (5.4), gives dim X § dim Y. To establish the reverse
inequality, we shall lift chains in Y to chains in X by recursively climbing
down2 a given chain. Let a chain 2 It may sound para-

doxical that one uses
Going–Up to climbe
down, but it comes
from the transition
between ideals and
subvarieties reversing
inclusions.

Z0 Ä Z1 Ä . . . Ä Zr (5.5)

in Y be given, and suppose we have found a chain

Wn Ä Wn`1 Ä . . . Ä Wr

in W with fpWiq “ Zi. The restriction fn “ f|Wn is a finite map from Wn to Zn

and after Going–Up (Proposition 5.25) there is a closed irreducible subset of
Wn´1 of Xn such that fnpWn´1q “ Zn´1. In this way every chain (5.5) can be
lifted to a chain of the same length, and we conclude that dim Y § dim X o

Problems

5.12 We shall come back to a closer analysis of the fibres of finite polynomial
maps, but for the moment we content ourselves with this exercise. Let f : X Ñ

Y be a finite morphism (or polynomial map). Show that all fibres of f are
finite. Hint: Pick a point y in Y and argue that the ring ApXq{my ApXq is a
finite dimensional vector space over k hence has only finitely many maximal
ideals.

5.13 Show that the composition of two finite morphisms (or polynomial
maps) is finite. Show that the composition of two dominant composable
morphisms of varieties is dominant.

M



dimension 93

5.3 Noether’s Normalization Lemma

The Normalization Lemma

We now turn to one of the most famous results of Emmy Noether’s, her so-
called Normalization Lemma. We shall stated in our context of varieties which
means for algebras over an algebraically closed field. The proof however,
works mutatis mutandis for any domain of finite type over any infinite field,
and in fact, this general version will be useful for us at a later occasion. There
is also a slight twist to the proof below making it valid over finite fields as well
(which we shall not need).

5.29 The proof of the Normalization Lemma is an inductive argument, and
the basic ingredient is the induction step as formulated in the following
lemma:

Lemma 5.30 Let X Ñ Am be an affine variety whose fraction field KpXq has tran-
scendence degree at most m ´ 1; then there is a linear projection p : Am

Ñ Am´1 so
that p|X : X Ñ Am´1 is a finite morphism.

Proof: Let ApXq “ krT1, . . . , Tms{IpXq be the coordinate ring of X and denote
by Ti the image of Ti in ApXq. Since the transcendence degree of ApXq over k
is less than m, the m elements t1, . . . , tm can not be algebraically independent
and must satisfy an equation

f pt1, . . . , tmq “ 0,

where f is a polynomial with coefficients in k. Let d be the degree of f and let
fd be the homogeneous component of degree d. Put ui “ ti ´ ait1 for i • 2
where the ai’s are scalars to be chosen. This gives3 3 Recall that for any

polynomial ppxq
it holds true that
ppx ` yq “ ppxq `
yqpx, yq where q is a
polynomial of total
degree less than the
degree of f .

0 “ f pt1, . . . , tmq “ fdp1, a2, . . . , amqtd
1 ` Qpu1, . . . , umq

where Q is a polynomial whose terms all are of degree less that d in t1. Now,
since the ground field is infinite, a generic choice of the scalars ai implies
that fdp1, a2, . . . , amq ‰ 0 indeed, the complement of Zp fdp1, t2, . . . , tmqq in
Am´1 is even dense (see exercise for the case that k is merely assumed to be
infinite 5.14 below). Hence the element t1 is integral over kru2, . . . , ums and
by consequence, ApXq is a finite module over the algebra kru2, . . . , ums. The
projection Am

Ñ Am´1 sending pt1, . . . , tmq to pu2, . . . , umq does the trick. o

Problem 5.14 Let k be an infinite field and f pt1, . . . , tnq a non-zero poly-
nomial with coefficients from k. Show that f pa1, . . . , anq ‰ 0 for infinitely
many choices of ai from k. Hint: Use induction on n and expand f as
f pt1, . . . , tnq “

∞
i gipt1, . . . , tn´iqti

n. M

5.31 By induction on m one obtains the full version of the Normalization
Lemma:
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Theorem 5.32 (Noether’s Normalization Lemma) Assume that X Ñ Am

is a closed subvariety and that the function field KpXq is of transcendence degree
n over k. Then there is a linear projection p : Am

Ñ An such that the projection
p|X : X Ñ An is a finite map.

Proof: We keep the notation from the lemma with the coordinate ring of X
being ApXq “ krT1, . . . , Tms{IpXq and the ti’s being the images of the Ti’s in
ApXq, and proceed by induction on m. If m § n, the elements t1, . . . , tm must
be algebraically independent since they generate the field KpXq over k. But any
non-zero polynomial in IpXq would give a dependence relation among them,
so we infer that IpXq “ 0, and hence that X “ Am.

Suppose then that m ° n. By Lemma 5.30 above, there is a finite projection
f : X Ñ Am´1. The image fpXq is closed by Proposition5.23 on page 90 and
of the same transcendence degree as X since KpXq is a finite extension of
KpfpXqq. Applying the induction hypothesis to fpXq, we may find a finite
projection p : fpXq Ñ An. The composition p ˝ f is then a finite map X Ñ An.

o

5.33 An important corollary of the Normalization lemma is that the dimen-
sion of a variety coincides with the transcendence degree of its rational func-
tion field over the ground field.

Theorem 5.34 Let X by any variety. Then dim X “ trdegkKpXq.

In particular, the theorem states that the affine n-space An is of dimension
n. Indeed, the function field KpAn

q of the affine space is the field of rational
function kpx1, . . . , xnq in n variables which is of transcendence degree n over k.
We may also infer that the dimension of X is finite which was not a priori clear.
However, the field K(X) is a finitely generated extension of the ground field k
and we know a priori that the transcendence degree trdegk KpXq is finite.
Proof: There are two parts of the proof; the case of An and the general case,
and the latter is easily reduced to former bu way of the Normalization Lemma
and the Going–Up Theorem. Indeed, replacing X by some open dense and
affine subset that has the same dimension as X (which exists according to
Lemma 5.11 on page 87), we may assume that X is affine. Let n “ trdegkKpXq.
By the Normalization Lemma there is a finite map X Ñ An, hence dim X “

dim An
“ n in view of the Going–Up Theorem.

The case of An is done by induction on n; obviously it holds that A1 is one
dimensional (the ring krts is a pid). So assume that n ° 1 and let Z Ä An be
a maximal proper and closed subvariety sitting on top of a chain of maximal
length. Then dim Z “ dim An

´ 1 and trdegkKpZq § n ´ 1 because IpZq ‰ 0.
Noether’s Normalization Lemma gives us a finite and dominating morphism
Z Ñ Am, where m “ trdegkKpZq. By induction it holds true that dim Am

“ m
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and thus dim Z “ trdegkKpZq. This yields

dim Z “ dim An
´ 1 “ trdegkkpZq § n ´ 1,

and therefore dim An
§ n. The other inequality is trivial; there is an obvious

ascending chain of linear subspaces of length n in An. o

5.35 As promised in Pargraph 5.9 we now can give the following:

Corollary 5.36 Any dense open subsets of a variety has the same dimension as
the surrounding variety.

Proof: The variety and the open subset have the same function field. o

Example 5.2 A good illustration of the the perturbation process that the
proof of the Normalization Lemma is based on, is the classical hyperbola X
with equation uv “ 1 in the affine plane A2. The coordinate ring of X equals
kru, vs{puv ´ 1q which may be identified with the extension kru, 1{us of krus, the
hyperbola being the graph of the function 1{u. The inclusion krus Ñ kru, 1{us

corresponds to the projection of X onto the u-axis.
This map is not finite although its non-empty fibres consist of one point;

indeed, any relation 1{un
“

∞
i†n fipuq{ui with fi P krus would result in the

relation 1 “
∞

i†n fipuqun´1 whose right side vanishes for u “ 0.
However, perturbing u slightly, we obtain a subring over which kru, 1{us is

finite. The subring kru ` 1{us will do the job; indeed, kru, 1{us “ kru, u ` 1{us is
generated by u over kru ` 1{us and one has the integral dependence relation

u2
´ upu ` 1{uq ` 1 “ 0.

that shows that it is generated by 1 and u.
It is remarkable that almost any perturbation of u will work; that is, kru, 1{us

is finite over krau ` b{us as long as both the scalars a and b are non-zero. K

Problem 5.15 Show that kru, 1{us is a finite module over krau ` b{us for any
scalars a and b both being different from zero. M

u

v

v “ 1{u

Maximal chains in varieties

Our second application of the Noether’s Normalization Lemma we is to
establish that the Krull dimension of varieties, in contrast to that of many
other rings, behave descently in that all maximal chains have the same length.
In particular they will be catenary; all saturated chain connecting to given
irreducible closed subsets have the same length.

5.37 We start out by preparing the gorund with two lemmas. The first asserts
the highly expected fact that hypersurfaces in affine space An are of codimen-
sion one, a forerunner of the general Hauptidealsatz of Krull’s. In particular
they are maximal, closed irreducible and proper subsets.
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Lemma 5.38 The zero locus X “ Vp f q in An of an irreducible polynomial f is of
dimension n ´ 1.

Proof: The coordinate ring ApXq is given as ApXq “ krT1, . . . , Tns{p f q and the
function field KpXq as KpXq “ kpt1, . . . , tnq with the relaison f pt1, . . . , tnq “ 0
holding among the ti’s (with our usual convention that lower case letters
denote the classes of the upper case versions in force). At least one of the vari-
ables occurs in f , and we may as well suppose it is T1. Thence t2, . . . , tn will
be algebraically independent over k, and consequently we have trdegk KpXq “

n ´ 1. Indeed, any polynomial gpT2, . . . , Tnq that satisfies gpt2, . . . , tnq “ 0, is a
multiple of f and must therefore depend on T1. o

Lemma 5.39 Let X be a variety and Z a maximal proper irreducible subset. Then
dim Z “ dim X ´ 1

Proof: By Noether’s Normalization Lemma there is a finite surjective mor-
phism p : X Ñ An with n “ dim X. The image ppZq is irreducible and closed
(by Lying–Over), and we content that it is a maximal proper subset of this
kind. Indeed, if the closed and irreducible subset W were strictly contained be-
tween ppZq and An our set Z would be contained in one of the components of
p´1

pWq, say W0. By Lying–Over there is no inclusion relation between closed
irreducible sets that have the same image under a finite map; hence W0 lies
strictly between Z and X which contradicts the hypothesis that Z is maximal.
Hence ppZq is maximal in An and of dimension n ´ 1 by Lemma 5.38 above.
We finish the proof by Lying–Over which asserts that dim Z “ dim ppZq since
the restriction p|Z is finite. o

5.40 With the two previous lemmas up our sleeve the main theorem of the
section is easy to prove.

Theorem 5.41 All maximal chains in a variety are of same length.

Proof: The proof goes by induction on the dimension of X (which we have
shown is finite) and the case X “ 0 is trivial. Let Zr Ä X be the largest member
of a maximal chain

Z0 Ä Z1 Ä . . . Ä Zr´1 Ä Zr Ä X

of length r in X. The top member Zr is a maximal proper closed subvariety of
X, and therefore dim Z “ dim X ´ 1 after Lemma 5.39 above. The induction
hypothesis then takes effect and implies that dim Zr “ r ´ 1, and we can
conclude that dim X “ r. o

5.42 Localization of catenary rings are catenary so that rings of essentially
finitey type over k are catenary. In particular, such rings that are local will
have maximal chains all of the same length. However, if the rings not local this
not true any more. Problem xxx describes a semi-local ring with two maximal
ideals, one height one and the other of height two.
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The dimension of a product

The Normalization Lemma also gives an easy proof of the formula for the
dimension of a product. It hinges on the fact that the product of two finite
maps is finite, and by The Normalization Lemma the proof is then reduced to
the case of two affine spaces.

Proposition 5.43 Let X and Y be two varieties. Then dim X ˆ Y “ dim X `

dim Y.

Lemma 5.44 Let X, Y, Z and W be affine varieties. Let f : X Ñ Y and y : Z Ñ W
be two finite morphisms. Then the morphism f ˆ y : X ˆ Z Ñ Y ˆ W is finite.

Proof: We first establish the lemma in the special case when W “ Z and
y “ idZ. In that case the map pf ˆ idZq

˚ : ApYqbApZq Ñ ApXqbApZq is
just f˚

b idApZq. If a1, . . . , ar are elements in ApXq that generates ApXq as an
ApYq-module, the elements aib1 generates ApXqbApZq as a module over
ApYqbApZq, and we are through.

One reduces the general case to this special case by observing that f ˆ y is
equal to the composition

X ˆ Z
fˆidZ

// Y ˆ Z
idYˆy

// Y ˆ W,

and using that the composition of two finite maps is finite. o

Proof of Proposition 5.43: By replacing X by an open affine subset U and
Y by an open affine subset V we assume that X and Y affine; indeed U ˆ V
is dense in X ˆ Y , and dense open subsets have the same dimension as the
surrounding variety (Corollary 5.36 on page 95).

So assume that X and Y are affine. According to The Normalization Lemma
there are finite and surjective maps f : X Ñ An and y : Y Ñ Am with n “

dim X and m “ dim Y. Then f ˆ y : X ˆ Y Ñ An
ˆ Am is finite by lemma 5.44

above, and it is clearly surjective, hence dim X ˆ Y “ n ` m after Going–Up
(Proposition 5.28 on page 92). o

5.4 Krull’s Principal Ideal Theorem

5.45 This is another great German theorem, whose native name is Krull’s
Hauptidealsatz, but unlike the Nullstellensatz, it is mostly referred to by its
English name in the Anglo-Saxon part of the world. The simplest version
concerns the dimension of the intersection of a hypersurface with a variety X
in Am, and confirms the intuitive belief that the hypersurface cuts out a space
in X of dimension one less than dim X. This statement must be taken with a
grain of salt since the intersection could be empty, and of course, the variety X
could be entirely contained in the hypersurface in which case the intersection
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equals X, and the dimension does not drop. If X is not irreducible, the situa-
tion is somehow more complicated. The different components of X can be of
different dimensions and they may or may not meet the hypersurface.

5.46 The Hauptidealsatz applies to general Noetherian ring which are enor-
mulsy more delicate beings than the ones we meet in the world of varieties.
We state it in tis generality, but shall only prove a milder version relevant for
varieties.

Theorem 5.47 (The Principal Ideal Theorem) Let A be Noetherian ring
and let f P A be a non-zero element which is not a unit. Then the height of a minimal
prime of the principal ideal p f q is a most one.

There is standard proof found in most text books on commutative algebra;
for instance in Peskine’s book4 (Lemma 10.22 on page 138). There is also nice 4

proof of quite another flavour in Kaplansky’s text5 (xxx). 5

The Geometric Principal Ideal Theorem

5.48 We proceed directly to the version of the Principal Ideal Theorem most
actual for us. In his colourful and beautiful book Red Book6 David Mumford 6

gives a simple and straightforward proof of Krull’s Principal Ideal Theorem
in the context of varieties. It relies on Noether’s Normalisation lemma and
uses of the norm to relate hypersurfaces in the source and the target of a finite
map between affine varieties; a reminiscence of the so-called elimination
theory which was high fashion a century or so ago. Mumford attributes the
proof to John Tate. Since student sare supposed to have a background in
commutative algebra, we present this proof only in an Appendix, but here
comes the theorem:

Theorem 5.49 (Geometric Principal Ideal Theorem) Let X be a variety
and let f be regular function on X that does not vanish identically. If Zp f q is not
empty, it holds true for every component Z of Zp f q that dim Z “ dim X ´ 1.

B Ä L

Ä Ä

A Ä K5.50 The theorem asserts that irreducibel hypersurfaces are of codimension
one, but be aware that the converse is not true in general. There are plenty
varieties having irreducible subvarieties of codimension one that are not
hypersurfaces. For example in the coordinate ring A “ krx, y, z, ws{pxy ´ zwq of
X “ Zpxy ´ zwq in A4 one has the primary decomposition

pxq “ px, zq X px, wq,

so that Zpxq X X is the union of the two planes Zpx, wq and Zpx, zq. One may
prove that any hypersurface containing either of those planes can not irre-
ducible (see Exercise 5.16 below). The point is that A is not a ufd. From
Kaplansky’s criterion that a domain is a ufd if and only if “every prime (ideal)
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contains a prime (element)” one infers that in any variety whose coordinate
ring is not ufd, one may find irreducible subsets of codimension one that are
not hypersurfaces. Indeed, in the coordinate ring there will be prime ideals of
height one that are not principal.

5.51 There is no statement as clear and uniform as in Theorem 5.49 valid for
closed algebraic sets X (which may be reducible). It is not very difficult to
exhibit examples of situations where the codimension of Zp f q in X is equal to
any prescribed number.

Problems

5.16 Refering to the staging in Paragraph 5.50 above, let X Ñ A4 be X “

Zpxy ´ zwq. Show that for any hypersurface Zp f q in A4 containing the plane
Zpx, wq, the intersection X X Zp f q is reducible. Clearly Z(x,w) is a component of
Zp f q X X, the point is to show that there are others.

5.17 Let X Ñ Pn be a closed subvariety and assume that the cone CpXq is a
ufd. Show that any Z Ñ X of codimension one is of shape Zp f q X X for some
hypersurface Zp f q in Pn.

5.18 Give examples of a closed algebraic set and a regular function f on X
such that the codimension of Zp f q in X is equal to any prescribed number.
Hint: Use disjoint unions.

M

The case of several functions vanishing

5.52 The Principal Ideal Theorem is about the dimension of the locus with
one constraint; that is, the intersection of a variety X with one hypersurface.
However, it generalizes to the intersections of a variety X with a sequence
of hypersurfaces, or in a slightly more general staging, to the locus where
several regular functions vanish. Since imposing the vanishing of each one of
the functions increases the codimension with at most one, induction on the
number of functions easily gives the following:

Theorem 5.53 Suppose that X is a variety and that f1, . . . , fr are regular functions
on X. Then every component Z of the zero locus Zp f1, . . . , frq is of codimension at
most r in X; that is dim Z • dim X ´ r.

Proof: The proof goes by induction on r. Let W be a component of the locus
Zp f1, . . . , fr´1q that contains Z. By induction W is of codimension at most r ´ 1
in X; that is, dim W • dim X ´ r ` 1. Moreover, Z must be a component of
of W X Zp frq, and therefore either fr vanishes identically on W or dim W “
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dim Z ´ 1 by the Principal Ideal Theorem (Theorem 5.49 above). In the latter
case obviously dim Z • dim X ´ r, and in the former, we find Z “ W and
dim Z “ dim X ´ r ` 1 • dim X ´ r. o

System of parameters and fibres of morphisms

5.54 In commutative algebra one has the notion of a system of parameters in a system of parameters
(parametersystemer)local ring A. If the Krull dimension of A is n and the maximal ideal is m, such

a system is a sequence of elements f1, . . . , fn of n elements in m that generate a
m-primary ideal; or expressed in symbols, such that

‘
p f1, . . . , fnq “ m.

5.55 Translating this into geometry we let X be an affine variety of dimension
n and A the local ring OX, x of X at a point x P X. The elements f1, . . . , fn are
regular functions on X that vanish at x, and requiring them to constitute a
system of parameters in OX,x is to ask that

‘
p f1, . . . , fnqOX, x “ mxOX, x.

By the Nullstellensatz this is equivalent to asking that in a neighbour-
hood of x the only common zero of the fi’s is the point x. The zero locus
Zp f1, . . . , fnq thus has an irredundant decomposition into irreducibles shaped
as Zp f1, . . . , fnq “ txu X Z1 X . . . Y Zr, or in other words, x is an isolated point of
the zero set Zp f1, . . . , fnq.

5.56 A careful application of Krull’s Principal Ideal Theorem yields that for
affine varieties system of parameters are always exatnt.

Proposition 5.57 Let X be an affine variety of dimension n and x P X a point.
Then there exists regular functions f1, . . . , fn on X such that x is an isolated point in
Zp f1, . . . , fnq.

Proof: We shall recursively construct a sequence of regular functions f1, . . . , fn

on X all vanishing at x so that for all n with 1 § n § n, every component of
Xn “ Zp f1, . . . , fnq that contains x is of codimension n . Clearly this suffices
to establish the theorem; indeed, when n “ n that statement reads: all com-
ponents of Zp f1, . . . , fnq containing x are of dimensions zero; hence there can
only be one component which must be equal to txu.

Assume then that the functions f1, . . . , fn are found and let Z1, . . . , Zr be the
components of Xn “ Zp f1, . . . , fnq that contain x. Let furthermore p1, . . . , pr be
the corresponding prime ideals in ApXq. When n † n every one of the Zi’s is
of dimension at least one, and the pi’s are strictly contained in mx. Citing the
prime avoidance lemma we infer that p1 Y . . . pn à m, and hence we may find
functions fn`1 vanishing at x, but which do not vanish identically along any
of the Zi’s. It follows from the Principal Ideal Theorem that all components of
Zp fn`1q X Zi are of codimension one in Zi; that is, they are all of codimension
n ` 1 in X. o

Example 5.3 At any singularity it is (by definition) impossible to find a sys-
tem of parameters that generates the maximal ideal; the ubiquitous example
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being the plane cusp C given by the equation y2
´ x3

“ 0. In the coordinate ring
A “ krx, ys{py2

´ x3
q it holds y2

“ x3 and the maximal ideal m of the origin is
px, yq. One finds m2

“ px2, xy, y2
q “ px2

q.
Any function g suspect of being a generator for m can not vanish to the

second order at the origin, and hence it must be congruent ax ` by modulo m2

for some scalars a and b not both being zero. Thence pgq “ pax ` byq in A{m2.
In case a is non-zero, we may as well assume that b “ 1. When also b ‰ 0,

we find py ` axq “ px3
` axq “ px2

px ` aqq, and locally near the origin, that is in
the local ring OC,O at the origin, the function x ` a is invertible and the ideal
py ` axq becomes the ideal px2

q. Hence pgqOC,O “ m2OC,O. The other cases
when either a or b vanishes, are left to the zealous students. K

Problem 5.19 Assume that f1, . . . , fn is a system of parameters at the point
x of the affine variety X. Show that any component Z of Zp f1, . . . , frq has
codimension r for any 1 § r § n (regardless of the construction in the
proof). Show that any sequence of regular functions f1, . . . , fr that vanish at
x and with all components Z of Zp f1, . . . , frq satisfying codim Z “ r, can be
completed to a system of parameters at x. M

5.58 According to Theorem 5.53 above, the fibre over the origin of a dominant
map f : X Ñ Ar has all its components of dimension at least equal to dim X ´ r.
Indeed, the map has regular functions f1, . . . , fr as components, the fibre over
the origin is just Zp f1, . . . , frq and then 5.53 gives dim X ´ dim Z § r.

This observation can be generalised to fibres over any point of any vari-
ety, based on the fact that affine varieties unconditionally possess systems
of parameters at all points, and yields the estimate below. Strict inequality
commonly occur, but merely for special points belonging to a “small” subset.
In xxx we shall give a more precise statement

Proposition 5.59 Let f : X Ñ Y be a dominant morphism of varieties. For every
point x in Y and every component Z of the fibre f´1

pxq it holds true that

dim Z • dim X ´ dim Y.

Proof: Replacing Y by a neighbourhood of x need is, we may assume that Y
is affine. Let r “ dim Y. In Proposition 5.57 on the preceding page we showed
that affine varieties have a systems of parameters at every one of their points;
hence there are regular functions f1, . . . , fr on Y such that x is isolated in
Zp f1, . . . , frq. By further shrinking Y, we may assume that txu “ Zp f1, . . . , frq.
The fibre is then described as f´1

pxq “ Zp f1 ˝ f, . . . , fr ˝ fq, and by Krull’s
Principal Ideal Theorem every one of its components have a codimension at
most equal to r; that is,

dim X ´ dim Z § r “ dim Y,

and this gives the inequality in the proposition. o
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Problem 5.20 Show that x0 ´ x1, x2, x3 is a system of parameters at the origin
for Zpx0x1 ´ x2x3q. M

Problem 5.21 Gerenarlize the previous exercise in the following direction.
Let X Ñ Pn be a subvariety of dimension d. Assume that L1, . . . , Ld`1 are linear
forms whose intersection is a subspace of codimension d ` 1 that does not meet
X. Show that the Li’s form a system of parameters for the cone CpXq at the
origin. Finally, prove that such linear forms always can be found. M

Problem 5.22 Assume that X is a (irreducible) variety and that Y is a curve.
Show that all components of all fibres of a dominant morphism f : X Ñ Y are
of codimension one in X. M

5.5 Applications to intersections

5.60 The Principal Ideal Theorem has some important consequences for the in-
tersections of subvarieties both in the affine space An and the projective spaces
Pn. It allows us to give upper estimates for the dimension of an intersection of
two closed subvarieties expressed in terms of their dimensions.

And in the projective case, it also ensures that the intersection is non-empty
once a natural condition on the dimensions of the two is fulfilled.

A head on application of the Principal Ideal Theorem is futile since varieties
require several more equations than there codimension indicates, however an
interplay with a fabulous trick called the "Reduction to the diagonal" paves the
way.

5.61 The most striking result is that the intersection of two closed subvarieties
of Pn will be non-empty once their dimensions comply to the following very
natural condition. If X and Y designate the two subvarieties, then X X Y ‰ H

once
codim X ` codim Y § n. (5.6)

One can even say more, for any component Z of the intersection X X Y, the
following inequality holds

codim Z § codim X ` codim Y. (5.7)

For intersections of subvarities of the affine space An a similar inequality
holds true, but under the assumption that the intersection is non-empty; so in
that case, no common point is garanteed.

Problem 5.23 Give examples of projective varieties X and Y not satisfying
he inequality (5.6) and having an empty intersection. Hint: Take two linear
subvarieties PpVq and PpWq of Pn with dim PpVq ` dim PpWq † n (e.g. two
skew lines in P3). M
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Problem 5.24 Give examples of two closed subvarieties in affine space An

satisfying 5.6 but having an empty intersection. M

Reduction to the diagonal

5.62 The trick named "Reduction to the diagonal" is based the following
observation. Let X and Y be two subvarieties of An. The product X ˆ Y lies of
course as a closed subvariety of the affine space An

ˆ An
“ A2n, and clearly

the subset X X Y is equal to the intersection D X X ˆ Y, where D is the diagonal
in An

ˆ An. Moreover, it is not difficult to check that the two closed algebraic
sets are isomorphic; either use their respective defining universal properties or
resort to considering the defining ideals.

The salient point is that the diagonal is cut out by a set of very simple
equations. If the coordinates on corresponding to the left factor in An

ˆ

An
“ A2n are txui and those of the right factor tyiu the diagonal is given by

the vanishing of the n functions xi ´ yi. Hence we can conclude by Krull’s
Principal Ideal Theorem that any (non-empty) component Z of X X Y satisfies
dim Z • dim X ˆ Y ´ n but dim X ˆ Y “ dim X ` dim Y and we find

dim Z • dim X ` dim Y ´ n.

Summing up we formuate the result as a lemma

Proposition 5.63 Let X and Y be two subvarieties of An then any (non-empty)
component of the intersection X X Y satifies

codim Z § codim X ` codim Y.

Of course, it might very well happen that X X Y is empty, even for hypersur-
faces. As well, the strict inequality might hold; for example it could happen
that X “ Y!

Example 5.4 An inequality as in 5.63 does hold for subvarieties of general
varieties. For example, the two planes Z1 “ Zpx, yq and Z2 “ Zpz, wq in A4

intersect only in the origin. They are both contained in the quadratic cone
X “ Zpxz ´ ywq which is three-dimesional. Considered as subvarieties of X
they are of codimension one, but their intersection just being the origin, is of
codimension three. K

The projective case

5.64 The proof of the intersection theorem for projective space applies the
affine version to the affine cones over the involved varieties. We therefore
begin with a few observations about them. The natural equality CpX X Yq “

CpXq X CpYq is obvious, and if Z is a component of the intersection X X Y,
the cone CpZq will be a component of CpX X Yq. Passing to cones increases



104 notes for ma4210— algebraic geometry i

the dimensions by one; that is, for any variety X it holds that dim CpXq “

dim X ` 1. Then of course, it holds true that codimPn X “ codimAn`1 CpXq; that
is, the codimenion of X in Pn is the same as the codimension of its cone in
An`1. And thirdly, the most salient point is that intersection of cones always is
non-empty; they meet at least in the origin.

5.65 The following theorem is one of the cornerstones in projective geometry.
Whether two varieties intersect or not is as much a question of their size as of
their relative position: If they are "large enough", they intersect.

Proposition 5.66 Let X and Y be two projective varieties in the projective space
Pn. Assume that dim Y ` dim X • n. Then the intersection X X Y is non-empty, and
any component Z of X X Y satisfies

codim Z § codim X ` codim Y.

Proof: Firstly, if dim X ` dim Y • n then dim CpXq ` dim CpYq • n ` 2
and, as already noticed, the salient point is that the intersection CpXq X CpYq

is always non-empty: The two cones both contain the origin! Moreover, the
dimension of any component W of CpXq X CpYq satisfies dim W • dim CpXq `

dim CpYq ´ n ´ 1 “ dim X ` dim Y ´ n ` 1 • 1, and one deduces that the
intersection CpXq X CpYq is not reduced to the origin, and hence is the cone over
a non-empty subset in Pn.

Since the cone over over a projective variety and the variety itself have the
same codimension, respectively in Pn and An`1, we deduce directly from
Proposition 5.63 that

codim Z § codim X ` codim Y.

o

Problems

5.25 Given an example of a projective variety W of a given arbirtary dimen-
sion and two subvarieties X and Y of W with empty intersection, but which
satisfy

dim X ` dim Y “ dim W.

5.26 Let X “ Zppq and Y “ Zpqq be two closed subsets of the algebraic set
W and let iX and iY denote the inclusion maps. Show that the intersection
X X Y “ Zpp ` q) is characterised by the universal property that a pair of
polynomial maps fX : Z Ñ W and fY : Z Ñ W factors through X X Y if and
only if iX ˝ fX “ iY ˝ f.

5.27 Give a categorical proof of the isomorphism between X X Y and D X X ˆ X;
that is, a proof only relying on universal properties (and hence is valid in any
category where the involved players exist).
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5.28 Give a more mundane proof the isomorphism between X X Y and
D X X ˆ X using the ideals of the involved varieties.

M

5.6 Appendix: Proof of the Geometric Principal Ideal Theorem

The proof use the norm, so we begin with a general property related to finite
extension, principal ideal and norms.

5.67 For any finite extension A Ñ B of domains with A integrally closed in its
fraction field, there is a multiplicative map N : B Ñ A called the norm (see
Appendix 5.68 on the following page). If K and L designate the fraction fields
of respectively A and B, the norm Np f q is the determinant of the K-linear map
L Ñ L just being multiplication by f ; i.e. it sends a to f a. We shall need three
of its basic properties.

o The norm is multiplicative: Np f gq “ Np f qNpgq;

o For elements f P A it holds that Np f q “ f rL:Ks;

o f is a factor of Np f q; that is Np f q “ b f for some b P B.

5.68 The proof of Principal Ideal Theorem the hinges upon the following
lemma:

Lemma 5.69 In the setting just described, it holds true that
‘

f X A “
‘

Np f q for
any element f P B,

Proof: In view of f being a factor of Np f q , one inclusion is obvious, namely
that

‘
Np f q Ñ

‘
f X A. For the other, assume that g P

‘
f X A; that is g P A is an

element is on the form gs
“ a f for some a P B. Then gns

“ Npgs
q “ NpaqNp f q,

and hence g belongs to
‘

Np f q. o

Proof of the Principal Ideal Theorem: We begin with proving the
theorem under the additional assumption that Zp f q is irreducible, and subse-
quently reduce the general theorem to that case.

Citing the Normalizaton Lemma and putting n “ dim X, there is finite sur-
jective map p : X Ñ An which on the level of coordinate rings is manifested as
a finite extension ApAn

q Ñ ApXq. Let N : ApXq Ñ ApAn
q be the corresponding

norm map.
The map p clearly sends Zp f q into ZpNp f qq, and the crux of the proof

is that Zp f q dominates ZpNp f qq. Once this is established, Going–Up and
Lemma 5.38 above about hypersurfaces in affine spaces yield that dim Zp f q “

dim ZpNp f qq “ n ´ 1, and we shall be through. To prove that p|Zp f q is dominat-
ing, it suffices to show that the corresponding map

pp|Zp f qq
˚ : ApAn

q{p
‘

Np f qq Ñ ApXq{p
‘

f q
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between the coordinate rings is injective (Lemma 5.18 on page 90), but this is
to say that

‘
f X ApAn

q “
‘

Np f q, which is exactly the assertion in Lemma 5.69
above.

So to the reduction. Decompose Zp f q into the union of the irreducible
components

Zp f q “ Z1 Y . . . Y Zr,

and let Zn be one of the them. Pick an affine open suset U of X so that U X Zi “

H for i ‰ n but Zn X U ‰ H. Clearly the restriction f |U persists being neither
invertibel nor indetically zero, and obviously Zp f |Uq “ Zp f q X U “ Zn X U
is irreducible. In view of the first part, the equalities dim U “ dim X and
dim Zn “ dim Zn X U then accomplish the proof. o

Appendix appendicularis: The trace and the norm

5.70 The given in this appendix is a finite extension of domains A Ñ B with
A being integrally closed in its fraction field K. The fraction field L of B is
then a finite extension of K. Every element in L has a minimal polynomial
which us the monic polynomial of leats degree having f as a root. But just like
linear operators, it also has a characteristic polynomial, whose coefficients are
interesting invariants of the element. Especially the sub-leading (the leading
coefficient is one) and the constant term, up to sign, they are trace and the
norm of the elements.

5.71 So let f be an eøement in L. It induces a K-linear map r f s : L Ñ L simply
by multiplication; that is, the map that is given as r f spbq “ f b. Of course, when
f belongs to B, the subring B of L is invariant under r f s, and r f s becomes an
A-linear endomorphism of B.

The field L is a finite dimensional vector space over K, and the multiplica-
tion map r f s being K-linear, it has a characteristic polynomial:

Pf ptq “ detpt ¨ I ´ r f sq “ tn
` an´1tn´1

` . . . ` a1t ` a0

The coefficients of Pf pt lie in K, and the degree equals the degree rL : Ks

of the field extension. The coefficients an´1 and a0 attract special attention
and turn out to particular useful. The standard notation is tr f “ ´an´1 and
Np f q “ detr f s “ p´1q

na0, and yhey are called respectively the trace and the The trace of elements
(sporet til et element)norm of the element f . Both the trace and the norm depend on the extension
The norm (normen til
elementer)K Ñ K, and when emphasis on the extension is required one writes trL{Kp f q

and NL{Kp f q for the trace and the norm.

5.72 Well-known properties of linear maps translate into the basic properties
of the the norm and the trace

Proposition 5.73 One has

o The norm is multiplicative; that is Np f ¨ gq “ Np f q ¨ Npgq and Np1q “ 1. If f P K,
Npdq “ f rL:Ks

¨ Npgq
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o The trace is K linear, and trp1q “ rL : Ks.

Proof: Since obviously r f gs “ r f s ˝ rgs the norm is multiplicative, and if f P K,
the multiplication map r f s is just f times the identity idL. The trace is as alway
the sum the giagonal elements of the matrix of r f s in any K-basis for L grom
which the addititivity ensues, and also that the trace of the identiy equals the
dimension of L over K. o

In terms of eigenvalues (in some extension field of K) the trace equals the
sum and the norm the product.

Lemma 5.74 When A is Noetherian and integrally closed in K, the characteristic
polynomial of r f s has coefficients in A whenever f P B. In particular, the norm Np f q

and the trace tr f of an element from B belongs to A.

Proof: If B is a free A-module, this is pretty clear since in that case L has a
basis over K consisting of elements from B which also constitute a basis for
B over A. The matrix M of r f s with respect to that basis has entries in A and
hence the determinant detpt ¨ I ´ Mq belongs to the polynomial ring ArTs.
Now, the remaining two salient points of the proof are firstly that A equals the
intersection of all the dvr’s in K shaped like Ap where p is a height one prime
in A, and secondly, that any torsion free module over a dvr is free. o

The three properties of the norm described in Paragraph 5.67 on page 105
are just translations of properties of the determinant well known from linear
algebra. The determinant is multiplicative and hence the same holds for
the norm; i.e. Np f gq “ Np f qNpgq. When the element f belongs to A, the
multiplication map r f s is just f ¨ idL whose matrix in any basis is diagonal with
all entries along the diagonal equal to f , and it holds that detr f s “ f rL:Ks. For
the third feature in Paragraph 5.67, observe that if PpTq “ Tn

` an´1Tn´1
` . . . `

a1T ` p´1q
nNp f q is the characteristic polynomial of r f s, the Caley–Hamilton

theorem yields

Np f q “ p´1q
n`1

¨ f ¨ p f n´1
` an´1 f n´2

` . . . ` a1q. (5.8)

Separable and unseparable

We shall work in general situation where the polynomials have coefficients
in an arbitrary field K. Alølthough our ground field k is algebraically closed,
most of the application of this section will be to e.g. functions fields K(X) of
varieties, which are far from being algebraically closed. So we considers the
roots of f ptq in an algebraic closure K̄ of K

In the litterature a polynomial is said to be separable if the roots (in K̄) are
distinct — in a rather vague etymology the usage is explained by that they can
be separated.
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There is standard way of detecting multiple roots by use of the derivative.
A root a of the polynomial f ptq is not simple precisely when the derivative
f 1

ptq vanishes at a as well. Indeed, one may write f ptq “ pt ´ aq
mgptq where

gpaq ‰ 0. Leibnitz’ rule then yields

f 1
ptq “ mpt ´ aq

m´1
` pt ´ aq

mg1
ptq,

and we see that f 1
paq “ 0 if and only if m • 2.

A non-constant irreducible polynomial f ptq cannot share a common factor
with any other polynomial which is not a scalar multiple a f ptq. In particular if
a is a multiple root, px ´ aq would be a common factor of f and f 1, And unless
f 1 vanishes identically, this is impossible since their degrees are different.

Over fields of caracteristic zero the only polynomials with vanishing deriva-
tive are the constants, so in that case an irreducible f has distinct roots and
is hence separable. However, when K has characteristic p, this is not true any
more. For instance, the power tp has derivative ptp´1 which vanishes since
p “ 0 in K. More generally one finds applying the chain rule that

p f ptpn
qq

1
“ f 1

ptpn
q ¨ pntpv´1

“ 0.

Hence polynomials shaped like f ptpm
q have vanishing derivatives. And in fact

these are all.

Lemma 5.75 Let f ptq be a polynomial in Krts and assume that f 1
ptq is the zero

polynomial. Then K is of charavcteristic p and f ptq “ gptpn
q for some g P Krts and

n P N0.

Proof: Write f ptq “
∞

iPI aiti where I Ñ N are the indices with ai ‰ 0. Then
f 1

ptq “
∞

1§i§n i ¨ aiti´1, and since powers of t are linearly independent, it
follows that iai “ 0 for all i P I. Hence i “ 0, that is i is divisible by p and we
can write i “ pni mi. Letting n be the smaller of the ni’s and gptq “

∞
aitpni´nmi

or ai “ 0. o

Proposition 5.76 If k Ñ L is a separable extesnion, thet trace tr : L Ñ K is
surjective. Henve the bilonear form trpxyq is non degenerate on K.

Proof: By the Primitive Element Theorem there is an element a such that L “

Kpaq. Let Qptq be the minimal polynomial so that L “ Krts{pQptqq. Separability
means that the roots of Qptq in sn slrgsntriic clodsure K̄ are distinct (they can
be “separated”). It follows that pQptqq “ pt ´ b1q X . . . pt ´ bnq and The Chinese
Remainder theorem gives an isomorphism a

LbKK̄ “ K̄rts{pQptqq »

π

i
K̄.

Now, the multiplication map r f s is a K̄ map of LbKK̄, and a basis teiu induces
a basis eib1 of LbKK̄, so and the matrix of r f s in the two are of course equal,
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and the trace trL{Kbid “ trLbKK̄{K̄ is same whether f is considered a map of K
or of LbKK̄.

But the chinese basis shows that o

Geir Ellingsrud—versjon 1.1—13th February 2019 at 9:52am





Lecture 6

Rational Maps and Curves

Hot themes in Lecture 6: Rational maps—maximal set of definition—
function fields—birational maps and birational equivalence—normalisation—
non-singular curves—extension of rational maps on non-singular curves—
non-singular models of curves–function fields of transcendence degree one.

Two varieties X and Y over the field k are said be birationally equivalent if Birationally equivalent
varieties (Birasjonalt
ekvivalente varieteter)

they have isomorphic non-empty open subsets, that is one may find open
dense subsets U Ñ X and V Ñ Y and an isomorphism U » V. An open dense
subsets of a variety has the same function field as the surrounding variety, two
birationally equivalent varieties have isomorphic function field (as algebras
over the ground field), and during this lecture we shall see that the converse
also holds. The theory of varieties up to birational equivalence is thus basically
equivalent to the theory of fields finitely generated over the ground field.
6.1 Birational geometry did almost dominate algebraic geometry at a certain
period. The classification of varieties up to birational equivalence is a much
courser classification than classification up to isomorphism, and hence it is
a priori easier task (but still, challenging enough). However, for non-singular
projective curves, as we later shall see, the two are equivalent. Two such
curves are isomorphic if and only if they are birationally equivalent—that is, if
and only if their function fields are isomorphic over k.
6.2 Already for projective non-singular surfaces, the situation is completely
different. There are infinitely many non-isomorphic surface in the same
birational class (see example 6.4 below for a simple example of two), and they
can form a very complicated hierarchy. For varieties of higher dimension,
the picture is even more complicated, but the so called Mori Minimal Model
Program that as evolved during the last twenty years, shed some light on the
situation.

Shigefumi Mori (1951– )
Japanese Mathematician

6.3 Another important question is wether there are non-singular1 varieties 1 For the moment, we
have not spoken about
non-singular varieties,
but we shall shortly do;
see xxx

in every birational class; or phrased differently, whether every variety X is
birationally equivalent to a non-singular one—or has a non-singular model
as one also says. For curves this is no big deal. A curve X is non-singular if
and only if all its local rings are integrally closed in the function field KpXq,
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and by a normalization procedure, one achieves a non-singular model of
X. For surfaces it is substantially more complicated, but it was proven by
Zariski and xxx. In general it is not known whether it is true or not. When the
ground field is of characteristic zero, however, it holds true as demonstrated
by Heisuke Hironaka.

Heisuke Hironaka (1931–
)

Japanese Mathematician

6.1 Rational and birational maps

Just like we spoke about rational functions on a variety being function defined
and regular on a non-empty open subset, one may speak about rational maps

rational maps (rasjonale
avbildniger)

from a variety X to another Y. Strictly speaking, this is a pair consisting of an
open subset U Ñ X and a morphism f : U Ñ Y. Commonly a rational map is
indicate by a broken arrow like f : X 99K Y.

6.4 If V is another open subset of X containing U, an extension of f to V is

Extension of morphisms
(utvidelse av morfier)

a morphism y : V Ñ Y such that y|U “ f; it is common usage to say that f

is defined on V. An open subset U Ñ X is called a maximal subset of definition

Maximal subsets of
definition (maksimale
definisjons mengder)

for f if f is defined on U and cannot be extended to any strictly larger open
subset. The next proposition tells us that every rational map has a unique
maximal set of definition:

Proposition 6.5 Let X and Y be two varieties, and f : X 99K Y a rational map.
Then f has a unique maximal set of definition.

Proof: Since X is a Noetherian topological space, any non-empty collection of
open subsets has a maximal element. Hence maximal sets of definition exists,
and merely the unicity statement requires some work.

Let U Ñ X be an open subset where f is defined. Assume that V1 and V2 are
open subsets of X containing U and that both are maximal sets of definition
for f. Let the two extensions be f1 and f2. Both restrict to morphisms on
the intersection V1 X V2, and the salient point is that these two restrictions
coincide. Indeed, both f1 and f2 restrict to f on U, and because Y is a variety
the Hausdorff axiom holds for Y. Consequently, the subset of V1 X V2 where
f1 and f2 coincide, is closed; and since they coincide on U, which is dense in
V1 X V2, they coincide along the entire intersection V1 X V2. This means that f1
and f2 can be patched together to give a map defined on V1 Y V2, which is a
morphism (being a morphism is a local property). My maximality, it follows
that V1 “ V2. o

Problem 6.1 Give an example to show that the proposition does not hold
when X merely is a prevarietry. Hint: Take a new look at “the bad guy”
(Example 3.9 on page 49). M

Problem 6.2 Let f : P2 99K P2 be the map defined as fpx : y : zq “ px´1 :
y´1 : z´1

q. Show that f is birational. M
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Problem 6.3 Consider the map pu : vq fiÑ pu2v´2 : u3v´3 : 1q. Prove that
it is morphism on P1

ztp1 : 0qu. Prove that it can be extended to a morphism
P1

Ñ P2. M

Problem 6.4 Let f : P2 99K P2 be the rational map given by fpx : y : zq “ py2 :
xy : x2

q. Show that f is a morphism away from the point p “ p0 : 0 : 1q, and
that image is the conic C parametrized by pu2 : ´uv : v2

q. Show that line ax ` by
passing by p is mapped to the point pa2 : ´ab : b2

q. M

Functoriality

6.6 Dominant rational maps enjoy a weaker but similar functorial property
as morphisms do. “By composition” they induce in a contravariant way a
k-algebra homomorphism, but merely between the function fields of the two
involved varieties. f´1pVq

_
�

✏✏

f

!!

f ˝f

  

Uf
_
�

✏✏

f

""

V
f
//

_
�

✏✏

A1

X // Y

To be precise, assume that f : X 99K Y is the dominant, rational map, and
that f is defined on the open set Uf; that is, f : Uf Ñ Y is a morphism. For
any open V Ñ Y, the inverse image f´1

pVq is non-empty and open in Uf. A
member f of the function field KpYq is a regular function defined on some
open set Vf of Y. The composition f ˝ f is a regular function on f´1

pVf q and
hence defines an element in the function field KpXq. In this way we obtain
a homomorphism f˚ : KpYq Ñ KpXq. Of course constant functions map to
constant functions, and thence f˚ is a k-homomorphism.

An important property is that this construction is reversible:

Theorem 6.7 (Main Theorem on Rational maps) Given two varieties X
and Y and a k-algebra homorphism a : KpYq Ñ KpXq. Then there exists a (unique)
dominant rational map f : X 99K Y such that f˚

“ a.

Notice that the map a is not merely any field homorphism, but it must act
trivially on the field of constants k. The map f will be unique if one demands
that its source be the maximal subset to which it can be extended.
Proof: We begin by choosing an open and affine set in each of the varieties
X and Y. Call them U and V, with U Ñ X and V Ñ Y. They have coordinate
rings A “ OXpUq and B “ OYpVq, and the function fields KpXq and KpYq are
the fraction fields of A and B respectively. As U and V were randomly chosen,
there is no reason for the homomorphism a to send B into A, but replacing B
by an appropriate localization, we may arrange the situation for it to be true.

The k-algebra B is finitely generated over k and has generators b1, . . . , bs.
The images apbiq are of the form apbiq “ aia´1 with the ai’s and a all belonging
to A (the field KpXq is the fraction field of A and a a common denominator for
the apbiq’s). But then a sends B into the localized ring Aa.

KpYq a
// KpXq

B a
//

?
�

OO

Aa
?
�

OO

A
?
�

OO

Translating this little piece of algebra into geometry will finish the proof.
The localization Aa is the coordinate ring of the distinguished affine open
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subset Ua of U, and by the main theorem about morphisms between affine
varieties, there is a morphism f : Ua Ñ V with f˚ equal to a|V . Hence f

represents a rational and dominating map with the requested property that
a “ f˚ o

6.8 More generally, a dominant rational map can be composed with any
other rational map (whose source is the target of the given rational map) not
merely with rational functions. Indeed, assume that f : X 99K Y is dominant
and y : Y 99K Z is a rational map. Since the image of f is dense, it meets
any non-empty open set, in particular the largest set of definition Uy of y.
Hence f´1

pUyq is an open and non-empty subset of Uf. It follows that the
composition y ˝ f is a well-defined morphism on f´1

pUyq, hence defines a
rational map X 99K Z.

6.9 Thus varieties and dominant rational maps form a category. There is also
a modified category Ratk whose morphisms are equivalence classes of rational
and dominating maps. Two such being equivalent if they have the same target
and source and being equal on a open dense subset. Theorem 6.7 above tells
us that this category is almost equivalent to the category of finitely generated
field extensions of k and k-algebra homomorphisms.

6.10 A birational map is a rational map which has a rational inverse. To give Birational maps (bi-
rasjonale avbildninger)a birational map between two varieties X to Y is to give open sets U Ñ X and

V Ñ Y and an isomorphism f : U Ñ V, and when such a map is extant, one
says that X and Y are birationally equivalent. Be aware that the open set U Birationally equivalent

varieties (birasjonalt
ekvivalente varieteter)

might be smaller than the maximal set of definition Uf as in Example 6.1
below.

In the vernacular of category theory one would express this by saying they
are isomorphic in the category Ratk. The main theorem (Theorem 6.7 above)
tells us that X and Y are birationally equivalent if and only if their functions
fields KpXq and KpYq are isomorphic as k-algebras.

Examples

6.1 (A quadratic transform) It is pretty obvious that the map s from Problem 6.2
on page 112 given as spx : y : zq “ px´1 : y´1 : z´1

q is birational—it is
even its own inverse. Indeed, it is regular on the open set D`pxyzq where no
coordinate vanishes, and it maps D`pxyzq into itself. Clearly s2 is the identity
on D`pxyzq. The map s is called a quadratic transform. Quadratic transforms

(kvadratisk transfor-
masjon)

It is worth while understanding the map s better. Multiplying all compo-
nents by xyz we obtain the expression spx : y : zq “ pyz : xz : xyq, which
reveals that s is defined away from the three “coordinate points” ez “ p0; 0; 1q,
ey “ p0; 1; 0q and ex “ p1; 0; 0q, since if two coordinates do not vanish nei-
ther does their product. It also reveals that each of the three lines Lx “ Vpxq,
Ly “ Vpyq and Lz “ Vpzq are collapsed to the corresponding coordinate point.
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For instance, points on Lx are of the form p0 : y : zq and s maps them all to the
point pyz : 0 : 0q “ p1 : 0 : 0q “ ex (the equalities being valid whenever yz ‰ 0).

The map s can not be extended beyond P2
ztex, ey, ezu. Indeed, through each

of coordinate points pass two of the lines that are collapsed, and the two lines
are mapped to different points by s. Therefore, by continuity, we are left no
chance of defining s at coordinate points. So P2

ztex, ey, ezu is the maximal set
of definition for s.

Antonio Luigi Gaudenzio
Giuseppe Cremona

(1830–1903)
Italian mathematician

6.2 (Cremona groups) The map s form th previous example plays a main role in
the study of the group of birational automorphisms of P2; that is, the group of
birational maps from P2 to P2. In view of Theorem 6.7 on page 113 this group
is nothing but the Galois group of kpx1, x2q over k, and it is one of the so-called
Cremona groups named after the Italian mathematician Luigi Cremona. These

Cremona groups
(Cremona-grupper)

are the Galois groups of the rational function fields kpx1, . . . , xnq; often denoted
by Crnpkq. Except for n “ 1 and n “ 2 nothing much is known about these
groups. For n “ 1 it is just the group PGlp2, kq—every automorphism P1 is
linear. For n “ 2 there is a famous theorem of Max Noether’s (the father of
Emmy Noether) that any birational automorphism of P2 is a composition of
quadratic transforms and linear automorphisms; in other words, the Cremona
group Cr2pkq is generated by PGlp3, kq and the map s.

Max Noether
(1844–1921)

German mathematician

6.3 (Maps from P1) Any rational map P1
Ñ Pn is defined everywhere2; in

2 This example is a
forerunner for the
general theorem
asserting that any
rational map from
a regular curve into
a projective space
is in fact regular
everywhere.

other words, the maximal set of definition Uf of f is equal to the entire pro-
jective line P1. Chose homogeneous coordinates px0 : . . . : xnq on Pn and
let D`pxiq be one of the distinguished open sets that meet the image of Uf

under f. The variety D`pxiq is an affine n-space with coordinates xjx´1
i with

0 § j § n and j ‰ i.
The inverse image V “ f´1

pD`pxiq X fpUpqq is an open set, and the n
component functions of f|V are rational functions on P1 regular on V. They
may be brought on the form f j{ fi with 0 § j § n and j ‰ i, where the
polynomial fi is a common denominator of the f j’s and does not vanish on V.
At points in V the relation xjx´1

i “ f j f ´1
i holds.

The idea is to use the fk’s (now including fi) as the homogenous com-
ponents of a morphism F of P1 into Pn and define F by the assignment
Fpxq “ p f0pxq : . . . : fnpxqq. It might be that the n ` 1 polynomials fk have a
common factor, but it can be discarded, and we may assume that the fk’s are
without common zeros. Then it is easily checked (remember Paragraph 4.32
on page 73) that F is a morphism that extends f.

6.4 (The quadratic surface) In this example we use homogeneous coordinates
px : y : z : wq on the projective space P3. The quadric Q “ Z`pxz ´ ywq Ñ P3 is
birationally equivalent to the projective plane P2, but the two are not isomor-
phic. This is one of the simplest example of two non-isomorphic projective and
non-singular surfaces being birationally equivalent.

To begin with, the two are not isomorphic. They are not even homeomor-
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phic since any two curves3 in P2 intersect, but on the quadric there are fami- 3 A curve is a closed
subset of Krull di-
mension one; notice
that this is a purely
topological notion.

lies of disjoint lines (in fact, there are two such). For example the two disjoint
lines x “ y “ 0 and x ` z “ y ` w “ 0 both lie on Q.

Next, we exhibit a birational map f : Q 99K P2. It will be defined on the
open set U “ D`pwq X Q. In D`pwq » A3, where we by mildly abusing
the language, use coordinates named x, y and z, the equation of Q becomes,
y “ xz. It is almost obvious that the projection A3

Ñ A2 sending px, y, zq to
px, zq induces an isomorphism from Q X D`pwq to A2, but it is a rewarding
exercise for the students to check all details. Hint: The inverse map is given
as px, zq fiÑ px, xz, zq.

K

Problem 6.5 In this exercise the previous example is elaborated. Show that
the projection P3 99K P2 with centre p “ p0 : 0 : 0 : 1q is well defined on Qztpu

and when restricted to D`pwq X Q, becomes the isomorphism in the example.
Show that the plane Z`pyq meets Q along two lines passing by p, and that
these lines under the projection are collapsed to two different points in P2.
Hint: The projection is given as px : y : z : wq fiÑ px : y : zq. M

Problems

6.6 Let f : P2 99K P2 be the rational map that sends px0 : x1 : x2q to px2
2 :

x0x1 : x0x2q. Determine largest set of definition. Show that f is birational , and
determine what curves are collapsed.

6.7 Let f : P2 99K P2 be the rational map that sends px0 : x1 : x2q to px2
2 ´ x0x1 :

x2
1 : x1x2q. Determine the set largest set where f is defined. Show that f is

birational, and determine what curves are collapsed.

6.8 Let f : A2
Ñ A4 be the map defined by

fpx, yq “ px, xy, ypy ´ 1q, y2
py ´ 1qq.

a) Show that fp0, 0q “ fp0, 1q “ p0, 0, 0, 0q, and that f is injective on U “

A2
ztp0, 0q, p0, 1qu.

b) Show that f|U is an isomorphism between U and its image. Hint: f|U
takes values in V “ A4

zZpxq and the map V Ñ A2 sending pu, v, w, tq to pu, vq

is a left section for f|U .

c) Show that the image of f is given by the polynomials ut ´ vw, w3
´ tpt ´ wq

and u2w ´ vpv ´ uq.

M
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Blowing up

There is in some sense a “atomic” way of modifying a varietry but still obtain-
ing a birational one. Called the blowing up.

The simples example is the case of a point in P2. After having chosen
coordinaytes we assuem the point is p0 : 0 : 1q and we call the coordinates
px0 : x1 : x2q. Now the blown up plane will be a closed subvariety of the
product P2

ˆ P1. To define it we introduce coordinates y0 and y1 on P1 and we
consider the subset y1x0 ´ y0x1. In the Segre embedding of P2

ˆ P1 in P5 this is
just the linear section with the hyperplane which in n Sgere coodinates (as in
xxx) has equation t01 ´ t10.

Proposition 6.11 The projection p : ÄP2 Ñ P2 is birational. The fibre E “ p´1
ppq

is isomorphic to P1 and p is an isomorphism rpP2
qzE and P2

ztpu.

Proof: Indeed, the rational map y : P2 99K P1 that sends px0 : x1 : x2q to
px0 : x2q is a well defined morphism in P2

ztpu and hence gives a morphism
into P2

ˆ P1 sending x to px, ypxqq (which by the way is just the graph of y). In
coordinates

ypx0 : x1 : x2q “
`
px0 : x1q, px0 : x1 : x2q

˘

so ovbiously the Segre form t10 ´ t01 vanishes along the image. If q “
`
{y0 :

y1q, px0 : x1 : x2q
˘

is a point on the product where the form t01 ´ t10 vanishes, it
holds true that y1x0 “ y0x1, so that for instance if x0 ‰ 0 one may solve to get

q “
`
py0 : y0x1x´1

0 q, px0 : x1, : x2q
˘

“
`
px0 : x1q, px0 : x1 : x2q

since x0 ‰ 0 implies that y0 ‰ 0, and thus q lies in ÄP2.

o

6.2 Curves

In this section X will denote a curve; that is, a variety of dimension one. We
aim at establishing the basic facts of the birational geometry of curves.

Anticipating the general notion of non-singularity we shall say that a point
P P X is a non-singular point if the local ring OX,P is integrally closed in
the function field KpXq. For one-dimensional Noetherian rings, as the ring
OX,P is, being integrally closed in its the field of fractions is equivalent to
being a regular ring. This is one of the reasons why the theory for curves is
substantially easier than for general varieties—one obtains a non-singular
model just by normalizing X. Another reason is the fact rational maps from
a non-singular curve into a projective space is defined everywhere, that is to
say, it is a regular map. This result, which is a sort of upper class l’Hôpital’s
rule, has a counterpart in theory the general, similar to a theorem in complex
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analysis called Hartog’s theorem, which asserts that rational maps from
normal varieties are defined off closed subset of codimension at least two.

This implies that birational maps between projective non-singular curves
are isomorphisms, and consequently there is up to isomorphism only one
non-singular and projective curve in a birational class. In a nutshell, there is
no distinction between biregular and birational geometry of curves.

Another consequence of the extension property of rational maps between
curves is that every non-singular curve is isomorphic to an open set of a
non-singular projective curve (it could of course be equal to the whole ). In
particular, any finitely generated field of transcendence degree one over an
algebraically closed field k is the function field of a projective and non-singular
curve.

Discrete valuation rings

6.12 A Noetherian local ring A with dim A “ n and with maximal ideal
m is said to be regular if the maximal ideal can be generated by n elements; Regular local rings

(regulære lokale ringer)that is, by as many elements as the dimension indicates. Nakayama’s lemma
tells us that the minimal number of generators of m equals the so called
embedding dimension dimA{mm{m2 of A, so A is regular precisely when the
Krull dimension and the embedding dimension coincide. A general ring A is
regular if all the local rings Ap are regular.

6.13 When it comes to one-dimensional rings, which is our main concern in
this section, A is regular if and only if m is principal. This has many equiva-
lent formulations, we cite the few we shall need.

Proposition 6.14 Let A be a Noetherian local domain with maximal ideal m of
dimension one. Then the following are equivalent

o The maximal ideal m is principal;

o A is a pid and all ideals are powers of m;

o A is integrally closed.

Proof: With begin with establishing that the first assertion implies the second,
so let x a generator for the maximal ideal m and let aÑ A be a non-zero ideal.
Let n be the largest integer such that aÑmn. Krull’s intersection theorem
asserts that

ì
i m

i
“ 0, and the ideal a is therefore not contained in all powers

of m and such an n exists. Since a Ü mn`1, there is an a P ab such that a “ bxn

with b R m; that is, b is a unit since the ring is local. It follows that pxn
q Ñ a, and

we are done.
Every pid is a ufd and all ufd’s are integrally closed, and the third assertion

follows from the second.
Finally, assume that A is integrally closed in its fraction field K and let

x P m be any element. Since A is Noetherian and of dimension one, there is
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an element y P A not in pxq such that px : yq “ m. This means that yx´1mÑ A.
We contend that yx´1

“ A. If not, one would have yx´1mÑm and since m is a
finitely generated and faithful A-module it would follow that yx´1 is integral
over A. Hence it holds that yx´1

P A since A is integrally closed, and therefore
also y P pxq, which is not the case. o

6.15 A ring as in the proposition is also a discrete valuation ring. If t is a gen-
erator for the maximal ideal m, one calls t a uniformizing parameter of A. All Uniformizing parame-

ters (uniformiserende
parameter)

non-zero ideals in A are of the form ptn
q with n P N0, and therefore any

non-zero element in the fraction field K may be written as atn with a a unit
in A and n an integer. Indeed, if f P A and f ‰ 0, we let vp f q be the unique
non-negative integer such that p f q “ mnp f q, then f “ atvp f q with a being a
unit, and for a general non-zero element f g´1 of the function field, one finds
f g´1

“ atnp f q´npgq with a a unit.

6.16 The function v : Azt0u Ñ Z sending f to the unique integer such that
f “ atvp f q with a a unit, is called the valuation associated to A. It resembles Valuations (valuasjoner)

the well-known order function from complex function theory (recall that
every meromorphic function has an order at a point, positive if its a zero and
negative in case of a pole), and it share several of its properties. For instance,
the two following property hold true

o np f gq “ np f q ` npgq;

o np f ` gq • mintnp f q, npgqu,

with equality in the latter when np f q ‰ npgq. Any function Azt0u Ñ Z

satisfying these to properties is called a discrete valuation on pKq. Discrete valuations

6.17 Coming back to the geometric context, we let P be a non-singular point
of the curve X. A uniformizing parameter t at P is a rational function on X
which is regular at P and generates the maximal ideal mP. Another common
way of phrasing this is to say that t is regular and vanishes to first order
at P, or that t has a simple zero at P. Every function f can be expressed as
f “ atnPp f q with a a rational function on U that is regular and non-vanishing
at P. One may think about the valuation vPp f q as the order of f at P, either the
order of vanishing if f is regular at P or the oder of the pole if not.

Examples

6.5 Consider the elliptic curve C in A2 given by the equation y2
“ xpx2

´ 1q,
and let P “ p0, 0q. The local ring OC,P is then regular; in fact, its maximal ideal
is generated by the coordinate function y. The maximal ideal mP is generated
by x and y, and in the local ring OC,P the function x ´ 1 is invertible. So it holds
true that

x “ y2
{px2

´ 1q. (6.1)
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6.6 On the other hand, the local ring OD,P is not regular if D the rational node
with equation y2

´ x2
px ´ 1q. To see this let np be the ideal of P “ p0, 0q in OA2,P

and mP that of P in OD,P. They are both generated by x and y, and restriction
of functions induces a surjection q : nP{n2

P Ñ mP{m2
P. We contend that this is

an isomorphism. Therefore mP requires both generators x and y and is not
principal. Indeed, the kernel of q equals py2

´ x2
px ´ 1qqOA2,P X nP which is

simply contained in the square nP since y2
´ x2

px ´ 1q lies there. The situation
is well illustrated with the short exact sequence

0 // py2
´ x2

px ´ 1qq // OA2,P
// OC,P // 0.

K

Problems

6.9 Assume that n is a discrete valuation on a field K. Show that the set A “

t x P K | npxq • 0 u is discrete valuation ring by showing that t x P K | npxq ° 0 u

is a maximal ideal generated by one element.

6.10 Let q denote the origin in A1. The induces an injective map map
OA1,q Ñ OC,P. Show that the rextriction of nP to OA1,q is twice nq.

M

The extension lemma

6.18 We start with establishing the main property of curves in the present
context that any rational map from a curve into a projective varletry is defined
at all non-singular points of the curve.

One may think about this as an advanced form of “l’Hôpital’s” rule. The
tactics of the proof is first to realise the mapping in a neighbourhood of P as
the composition p ˝ F where p : An`1

zt0u Ñ Pn is the canonical projection,
and where the map F is represented as F “ pg0, . . . , gnq with the gi’s regular
functions near P, and then cancel out the common factors of the gi’s that
vanish at P.

Lemma 6.19 Let U be a curve and P P U a non-singular point. Assume that
f : UztPu Ñ Pn is a morphism. Then there exists a morphism y : U Ñ Pn extending
f.

Proof: The first observation is that it suffices to find an open U0 Ñ U contain-
ing P over which f extends. Indeed, if y0 : U0 Ñ Pn is such an extension, the
two morphisms y0 and f coincide on U0ztPu, and hence they patch together
to a morphism on U. It follows that we may assume U to be affine.
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Secondly, we may, possible after having renumbered the coordinates, as-
sume that the image fpUztPuq meets the basic open set D “ D`px0q; then the
inverse image V “ f´1

pDq is a non-empty open subset of U. The basic open
set D is an affine n-space with coordinates x1x´1

0 , . . . , xnx´1
0 , and the map f|V

is therefore given by n component functions regular on V. They are all rational
function on U, and may therefore be written as fractions fi “ gi{g0 of regular
functions on U.

Consider the morphism Fpxq “ pg0, g1, . . . , gnq from U into An`1. It is
well defined at the point P, but of course, it might be that it maps P to the
origin. However, if this is not the case, the composition p ˝ f is defined at
P and extends f to the neighbourhood of P where the gi’s do not vanish
simultaneously, and we will be done.

Now, the salient point is that we have the liberty to alter the morphism F
by cancelling common factors of the gi’s without changing the composition
p ˝ F: After such a modification the composition p ˝ F and the original
morphism f coincide where they both are defined. Indeed, it holds true that
phg0; . . . ; hgnq “ pg0; . . . ; gnq where both sets of homogeneous coordinates are
legitimate.

To get rid of common zeros the functions gi’s might have at the point P,
we introduce a uniformizing parameter t at P; that is, a regular function t on
some neighbourhood U0 of P which generates the maximal ideal of the local
ring OU,P. One may then write gi “ aiptqtni with the aiptq’s being regular
functions on U0 that do not vanish at P, and where the ni’s are non-negative
integers. Putting n “ mini ni, the differences µi “ ni ´ n will be non-negative,
and at least one will be zero so that the corresponding gi does not vanish at
P. Hence replacing the gi’s by git´n

“ aiptqtni´n we arrive at the requested
modification of F. o

Example 6.7 The assumption that P be a non-singular point is essential. For
instance, let U Ñ A2 be the “ordinary double point” given as U “ Zpy2

´

x2
p1 ´ xqq; and let fpx, yq “ yx´1. Then f is defined on Uzt0u but can not

be extend. We have depicted the situation over the reals; when the absolute
value }x} is small, }1 ´ x} is bonded away from zero, and the curve has two
distinct (analytic) components parametrized as y “ x

?
1 ´ x (the red one)

and y “ ´x
?

1 ´ x (the blue one). The function yx´1 approaches 1 when x
approaches zero along the red component, and it tends to ´1 when x goes to
zero while staying on the blue. This shows that there is not even a continuous
extension. K

The extension Theorems

Most of the work is done in proving the lemma , and we can collect the fruits.
Here comes the theorems:
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Theorem 6.20 (The Extension theorem) Let X be a curve and P P X a
non-singular point. Any rational map f : X 99K Y where Y is a projective variety, is
defined at P.

Proof: Assume the projective variety Y is a closed subvariety of Pm; that
is, Y Ñ Pm. Let U be a neighbourhood of P such that f is defined on UztPu.
By the extension lemma (lemma 6.19 above), the map f composed with the
inclusion Y into Pm extends to P, and the extension takes values in Y since Y
is closed in Pm. o

As is illustrated in Example 6.7 above it is paramount that P be a non-singular
point. If X has e.g. two different branches passing through P, the “limit” of f

at P along the two branches may be different.

Theorem 6.21 Assume that X and Y are two projective and non-singular curves
that are birationally equivalent. Then they are isomorphic.

Proof: Let U Ñ X and V Ñ Y be two open sets such that there is an isomor-
phism f : U 99K V. Since Y is projective and X is non-singular a repeated
application of theorem 6.20 above gives a morphism F : X Ñ Y extending f.
Similarly, there is morphism Y : Y Ñ X extending f´1. Finally, the Hausdorff
axiom holds for both X and Y, and one infers that F ˝ Y “ idY and Y ˝ F “ idX
since they extend f ˝ f´1

“ idV and f´1
˝ f “ idU respectively. o

Desingularization of curves

Every curves has a non-singular model. This is compairably easy due to the
fact that for curves being normal is the same as being non-singular. Howevert
it hinges on a non-trival result about normalization.

Theorem 6.22 (Finiteness of integral closure) Let A be a domain
finitely generated over the field k with fraction field K. For any finite field extension L
of K, the the integral closure B of A in L is a finite module over A.

In particular taking L “ K, we see that the integral closure of A in K is finite
over A. For domains other than those being finitely generated over a field, this
theorem is subtle, and in positive characteristic it is not generally true, even for
Noetherian domains.

6.23 Given X a variety we apply this to the coordinate ring ApXq of X letting
B be the integral closure of ApXq in the function field KpXq. The theorem tells
us that B is a finitely generated algebra over the ground field k, and thence
there is an affine variety rX whose coordinate ring equals B. The inclusion
ApXq Ñ B induces a morphism rX Ñ X, which is finite because B is a finite
ApXq-module, and since ApXq and B have the same fraction field, this mor-
phism is birational.
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Proposition 6.24 Any affine variety X has a normalisation rX; that is, a normal
affine variety and a finite birational morphism p : rX Ñ X. It enjoys the universal
property that any dominating morphism y : Y Ñ X whose source Y is normal, factors
through p; in other words, there is a morphism f : Y Ñ rX such that p “ y ˝ f.

Proof: Most is already accounted for, only the factorization remains. But
y is dominant and induces an injection KpXq Ñ KpYq, and because ApYq is
integrally closed in KpYq, any element in KpXq integral over ApXq belongs to
ApYq. It follows that Ap rXq Ñ ApYq and the ensuing morphism Y Ñ rX is the
requested map. o

6.25 Recall that by Lying–Over (Proposition 5.23 on page 90) finite maps are
closed, and they are surjective when dominating, so the same holds true for
the normalisation morphisms pX : rX Ñ X; they are closed and surjective.

6.26 Of course, one would desire a similar result for any variety not only for
affine ones, and indeed there is one. The proof consists of patching together
the normalizations of members of an open affine cover of X. We shall not go
through this time consuming process in general, but confine our attention to
curves. Owing to the extension theorem, there is a shortcut making the gluing
very easy in that case, which we learned from the book4 by Igor Shafarevich. 4

Theorem 6.27 Let X be a quasi-projective curve. Then X has a normalization.

Proof: The first reduction is to find a cover of X of just two affine opens,
U1 and U2. The curve X lies in some projective space Pm and we may chose
a hyperplane h1 not containing the curve. Then h1 cuts the curve in finitely
many points, and we choose a second hyperplane h2 avoiding those finitely
many points. Putting Ui “ D`phiq X X we obtain our two affine open subset
that cover X.

The next step is to introduce the normalization Vi of the Ui’s and the nor-
malization maps pi : Vi Ñ Ui . Moreover, we shall need an affine open subset
U Ñ X contained in U1 X U2 all whose points are non-singular. Then U lies
naturally in both the Vi’s as an open dense subset and pi|U “ idU for i “ 1, 2.

The idea is now to “glue” V1 and V2 together along U, and this will amount
to embedding them both in a variety W, with the the two embedding coincid-
ing on U, and taking their union inside W.

To construct a suitable W we begin with embedding each of the Vi’s in
some projective space, as big as one needs, and closing them up there, we
obtain two projective curves W1 and W2, having respectively V1 and V2 as
open dense subsets. Our W will be the product W1 ˆ W2.

Now we come to the point where The Extension Theorem helps us. The
Extension Theorem yields morphisms f1 : V1 Ñ W2 and f2 : V2 Ñ W1. Indeed,
there are natural inclusions U Ñ V1 and U Ñ V2 and since V1 is non-singular
and W2 projective, the inclusion of U into W2 extends to a morphism f1 : V1 Ñ

W2. And in an analogous way we find a morphism f2 : V2 Ñ W1.
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It follows that we have morphism V1 ãÑ W1 ˆ W2 and V2 ãÑ W1 ˆ W2

both being injective, one of the component maps being the inclusion Vi Ñ Wi.
The first one, for instance, is the map sending x to px, f1pxqq, and it factors as
V1 Ñ V1 ˆ W2 ãÑ W1 ˆ W2 where the first map identifies V1 with the graph of
f1. The graph is a closed subvariety and V1 is isomorphic to it. Closing up V1
in the product W1 ˆ W2 gives closed subvariety ÑV1 and since sV1 X V1 ˆ W2 “ V1,
we se that V1 is an open subvariety of sV1. Of course the same applies to V2 and
V2 is an open subvariety of ÑV2.

Since U is a common open dense set of V1 and V2, it holds true that sU “

ÑV1 “ ÑV2.
We contend that rX “ V1 Y V2 is a normalization of X. Since both Vi’s are

normal and they cover rX, it is normal. It is birational to X and the two maps
pi coincide on U, and hence patch together to a map rX Ñ X. o

6.28 In proof from the previous paragraph we realized the normalization rX
as an open dense subset of the closed subvariety sU of the projective variety
W1 ˆ W2. The variety sU is therefore a projective curve having rX as a dense
open subset, which can be all of sU, and in fact, when the original curve X is
projective this will the case. This leads to:

Theorem 6.29 If X is a projective curve, the normalization rX is projective as well.

Proof: Denote by pX : rX Ñ X the normalization map. In the remark preceed-
ing the theorem, we described the inclusion rX Ñ rU of rX as an open subset of
a projective curve. Let rU be the normalization of sU. The normalization map
p sU : rU Ñ sU induces a rational map into X and since X is projective and rU is
non-singular it extends to morphism y : rU Ñ X. By the universal property of
the normalization map fX : rX Ñ X the map y factors through rX; that is, there
is a map f : rU Ñ rX such that y “ f ˝ p. But p sU being surjective, it follow that
rX “ sU and rX is projective. o

The non-singular model

Theorem 6.30 (Fundamental theorem for curves) Given a field K of
transcendence degree one over k. Then there exists a non-singular projective curve
X,unique up to isomorphism, such that K » KpXq

Proof: Once we have found one curve whose function field is K we are happy
citing xxx, and to find one we appeal to the Theorem of the Primitive Element.
However, this requires the extension to be separable, but one we some work
one to find an appropriate x P K, one may realize K as a finite separable
extension of kpxq . Then there is an element f P X so that K “ kpxqr f s. That is
f satisfies an irreducible equation

yn
` apxqyn´1

` . . . ` a1pxqy ` a0pxq “ 0 (6.2)
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over krxs. When x and y are Interpreted as coordinates on the affine plane A2,
the equation (6.2) is the equation of an irreducible curve whose function field
is precisely K. o

Geir Ellingsrud—versjon 1.1—13th February 2019 at 9:52am





Lecture 7

Structure of maps

7.1 Generic structure of morhisms

7.1 Among the many nice applications of Noether’s Normalization lemma we
offer in this section a structure theorem for dominating morphisms between
varieties; or we should rather call it a generic structure theorem. Morphisms
can be utterly intricate, but over a sufficiently small (but dense) open subset of
the target they are to a certain extent well behaved and factors basically as the
composition of a projection and a finite map. Of course, finite morphisms are
complicated and complex creatures, and the complications are hidden in the
finite map.

Theorem 7.2 (Generic structure of dominant morphisms) Let
f : X Ñ Y be a dominant morphism. Then there exist open affine subsets U Ñ Y
and V Ñ X such that V maps into U and such that f|V factors as f|V “ p ˝ y where
p : An

ˆ U Ñ U is the projection and y : V Ñ An
ˆ U is a finite map.

Finite maps preserve dimensions by Going–Up (Proposition 5.28 on page 92)
from which ensues that n ` dim U “ dim V. Open dense sets have the same
dimension as the surrounding spaces, and the integer n appearing in the
theorem therefore equals the relative dimension dim X ´ dim Y.

X
f

// Y

V
y
//

?
�

OO

An ˆ U
p
// U
?
�

OO

Proof: We let L be the function field of X and K that of Y. Since f is domi-
nating, it gives rise to an extension K Ñ L. Chose any open and affine subset
U Ñ Y and denote its affine coordinate ring by A. Let V Ñ X be any open affine
subset mapping into U. The coordinate ring B of V then contains A and is
finitely generated as an A-algebra.

The algebra BK “ BbAK is a finitely generated algebra over K as B is
finitely generated over A. Noether’s Normalization lemma applies, and there
are elements w1, . . . , wn which are algebraically independent over K and are
such that BK is a finite module over K. We also pick generators z1, . . . , zr for
BK over Krw1, . . . , wns.

K Ä L

Ä Ä

Ah Ä Bh

Ä Ä

A Ä B

The basic trick is to replace U and V by smaller distinguished open affine
subsets, U by Uh and V by f|

´1
V pUhq “ Vh˝f|V

, where h is the product of all
denominators that might occur in the wi’s or in the generators zj’s for BK over
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Krw1, . . . , wns; the coordinate ring of Uh will be the localized ring Ah and that
of Vh˝f|v will be Bh.

Each wi may be written as wi “ bis´1
i with bi P B and si P Azt0u, and the

same for the zi’s, they are of the form zi “ cit´1
i with ci P B and ti P Azt0u.

As our element h we take the product of all the si’s and all the ti’s, then Ah is
obtained by adjoining the denominators s´1

i and t´1
i to A, and the wi’s and the

zi’s all lie in Bh. Moreover, Ahrw1, . . . , wns is contained in Bh, and Bh is a finite
module over it, and of course, the wi’s persist being algebraically independent
so that Ahrw1, . . . , wns is isomorphic to a polynomial ring over Ah. o

Actually, one has the slightly more general result.

Theorem 7.3 With the setting as in the theorem, there exists an open set U and a
finite covering of the inverse image f´1

pUq with affine open sets such each restriction
f|Vi factors as f|Vi “ p ˝ yi where yi : Vi Ñ An

ˆ U is finite.

Proof: Start with any finite affine and open covering Vi of f´1
pUq. Shrink U

sufficiently to work for all Vi. o

7.4 We have seen several instances of dominating morphisms having rather
complicates images. The projection of a quadratic surface in P3 from a point
on it for example, has an image P2

zL Y tp1, p2u where L Ñ P2 is a line and p1
and p2 are two points on the line. However, the images of dominant maps will
always contain a Zariski open set.

Corollary 7.5 The image of a dominant morphism contains a Zariski open set.

Proof: The open set U Ñ Y that appears in the theorem is contained in the
image of f since both finite maps and a projections are surjective. o

The dimension of fibres

A good concept of dimension should comply to the principle of being “addi-
tive along maps”. This holds for linear maps as we learned during courses
of linear algebra; the dimensions of the kernel and the image add up to the
dimension of the source. Since the dimension of differentiable manifolds is
governed by tangent spaces, and the derivative of a map is expressed as a
bunch of linear maps of tangent spaces, one expects a similar relation between
fibres, image and source.

7.6 So also in our world of varieties; the dimension is “additive along domi-
nant maps”, at least for the fibres over generic points; that is, for points belong-
ing to an open dense subset of the target variety. Without further hypotheses
on the varieties , there are not many limitations for the fibre dimensions over
the “bad” points, but there is one governing principle: The dimension is upper
semicontinuous. A consequence is a theorem of Claude Chevalley assert-
ing that the points whose fibres are of a given dimension, form a so-called
constructible set. Thus morphisms are not too wild.
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7.7 We begin with the generic case which is an easy corollary of the structure
theorem above.

Theorem 7.8 If f : X Ñ Y is a dominant morphism between varieties, there is an
open set U Ñ Y so that for for every x P U and every component Z of the fibre f´1

pxq

it holds true that
dim Z “ dim X ´ dim Y.

Proof: Let U be an open dense subset of Y as in the general version 7.3 of the
stucture theorem. For x P U and Z a component of f´1

pxq, at least one of the
members Vi of the covering meets Z. Then dim Z “ dim Z X Vi and the latter is
the fibre of f|Vi over x. Now one may factor f as

Vi // An
ˆ U // U

with one map being finite and the other a projection. It follows that f|ZXVi is a
finite dominant map Z X Vi Ñ An

ˆ txu, and by Going–Up (Proposition 5.28 on
page 92) we infer that dim Z “ n. o

7.9 For general point one has

Proposition 7.10 Let f : X Ñ Y be a dominant morphism of varieties. For every
point x in Y and every component Z of the fibre f´1

pxq it holds true that

dim Z • dim X ´ dim Y.

Proof: Replacing Y by a neighbourhood of x need is, we may assume that Y
is affine. Let r “ dim Y. In Proposition 5.57 on page 100 we showed that affine
varieties have a systems of parameters at every one of their points; hence there
are regular functions f1, . . . , fr on Y such that x is isolated in Zp f1, . . . , frq. By
further shrinking Y, we may assume that txu “ Zp f1, . . . , frq. The fibre is then
described as f´1

pxq “ Zp f1 ˝ f, . . . , fr ˝ fq, and by Krull’s Principal Ideal
Theorem every one of its components have a codimension at most equal to r;
that is,

dim X ´ dim Z § r “ dim Y,

and this gives the inequality in the proposition. o

Semi-contninuity of fibre dimension

7.11 An important part of the analysis of a morphism f : X Ñ Y is to under-
stand the partition of Y into the subsets where the fibres of f have a given
dimension. These sets can have a rather intricate topology, but the sets Wrpfq

where the fibre dimension is at least a given value r, are topologically simpler.
They turn out to be closed. Formally we define

Wrpfq “ t y P Y | dim f´1
pyq • r u.
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The dimension of an irreducible space is the supremum of the dimensions
of the different components, so a point y lies in Wrpfq when dim Z • r for
at least one component Z of the fibre f´1

pyq. With Proposition 7.10 above in
mind, it is clear that Wrpfq fills up the entire target Y when r is less than the
relative dimension dim X ´ dim Y

That Wrpfq is a closed subsets of Y is commonly referred to by saying that
the dimension is an upper semi-continuous function—or in the parlance of
geometers, that the fibre dimension increases upon specialization.

Proposition 7.12 (Principle of upper semi-continuity) Let f : X Ñ Y
be a morphism. Then Wrpfq is closed in Y.

Proof: We proceed by induction on dim Y and begin with picking an open
dense subset U of Y as in the structure theorem. The complement of U is the
union of a finite collection of closed irreducible sets tZiu, all of dimension
less than dim Y. Their inverse images f´1

pZiq are again unions of closed
irreducible subsets Zij of X. Clearly Wrpfq is the union of the sets Wrpf|Zij q

which are all closed in Zi by induction. They are thus closed in Y since the Zi’s
are, and it follows that Wrpfq is closed, being then a finite union of closed sets.

o

Constructible sets

7.13 In a topological space X a locally closed subset is a subset that is the inter- Locally closed sets (lokalt
lukkede mengder)section of an open and a closed set or in other words it is closed in an open set

or for that matter, open in a closed one. A subset of X is constructible set if is Constructible sets
(konstruktible mengder)the union of finitely many locally closed sets. A Boolean algebra B in X is a col-
Boolean algebras (Boolske
algebraer)lection of subsets of X that is closed under finite set-theoretical operations. It

contains the entire space and the empty set, finite unions and intersections of
members of B belong to B and the set theoretical difference of two members is
a member as well. The constructible sets form the smallest Boolean algebra to
which the opens sets belong.

Corollary 7.14 The locus where the fibres of the morphism f : X Ñ Y are of
dimension r is constructible, that is the finite union of locally closed subsets.

Proof: By the theorem the locus of points y in Y where dim f´1
pyq “ r equals

WrpfqzWr`1pfq wich is open in Wrpfq. o

7.15 The induction procedure from the proof of Proposition 7.12 above, with
minor modifications, yields the following characterization of images of mor-
phisms, which is due to Claude Chevalley.

Theorem 7.16 Let f : X Ñ Y be a morphism of varieties. Then the image fpXq is
constructible.
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Proof: Induction on dim Y. Since locally closed subsets of a closed subset
are locally closed in the surrounding space, we assume that the morphism
f is dominating. Pick an open subset U as in the structure theorem. The
complements is a finite union of components Zi, all having dimension less
than Y, and each inverse image f´1

pZiq is the finite union of components
Zij. By induction the image of f|Zij is constructible, and as fpXq “ U Yî

i,j f|Zij pZijq, we are through. o

Problem 7.1 Verify that the constructible sets form a Boolean algebra and
check that it is the smallest one containing the open sets. M

7.2 Properness of projectives

A very convenient property of compact topological spaces is that they have
closed images under continuous maps. In algebraic geometry the topologies
are never Hausdorff and too weak for something like that to be true, but there
is a very good substitute. Projective varieties behave like compact spaces, their
images are always closed.

For projective curves, this was established already in xxx, and the proof we
offer in the general case is a reduction to the curve case with the help of on the
generic structure theorem.

7.17 The proof we offer is a simplistic variant of which in scheme-theory-
speak is called “The valuative criterion for properness”. The idea is rather
simple. A very rough sketch skipping a few subtle points is as follows. The
structure theorem we obtain good open set in the image, and if y is point not
in that good open set, we take a curve in the good set whose closure passes
through y. The curve can be lifted to the target since we exert strong control
over the map over the good open set, and since the target is projective, the
lifting extends to the entire closure of the curve, and knowing the result for
curves, we obtain a point in the closure mapping to y.

Theorem 7.18 Let f : X Ñ Y be a morphism and let Z Ñ X be a closed subvariety.
If Z is projective, fpZq is closed.

Proof: Let f : X Ñ Y be the morphism under scrutiny. Replacing Y by the
closure of the image of f we may safely assume that f is dominating and our
mission is then to prove that f is surjective. Chose an open affine subset U
of Y as in the structure theorem and denote by V an open affine subset of the
inverse inpage f´1

pUq as in the theorem. In other words, the restriction f|V
factors as f|V “ p ˝ y as in the display

V

f|V
))

y
// U ˆ An

r
// U
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where y is finite and r the projection onto U.
Pick a point x P Y; we have to exhibit a point z P X with fpzq “ y. The

idea is to take a regular curve C and a morphism i : C Ñ Y to whose image is
closed in Y, pass trough y and meets the open subset U. Lemma 7.19 below
guarantees that such curves abound; just normalize the curves found there. To
proceed, chose an x P C that maps to y, denote the inverse image of U in C by
C0 and let D be a projective and non-singular curve containing C.

The map i|C0 : C0 Ñ U obviously lifts to an inclusion k : C0 Ñ U ˆ An. We
want to extend this lifting all the way up to V, but must replace C0 by a finite
cover.

To this end, consider y´1
pkpC0qq and let W be one its components. Then the

function field KpWq is a finite extension of the function field KpC0q, hence the
integral closure of C0 in KpWq maps into W and we have found the required
lifting. The integral closure D̃ of D in KpWq is regular and the induced normal-
ization map p : D̃ to D is finite, hence surjective, and it extends the map C̃0 to
C0. This situation is summarized in the following diagram.

D̃ oo ?
_

p

✏✏

C̃0
l
//

✏✏

V

f|V
✏✏

D oo ?
_

``

/ O

C0�
_

✏✏

i0
// U

C
i

>>

Pick a point z P D̃ such that ppzq “ x. The crucial point is now that because
the curve D is regular and the varietyX is projective, the map l : C̃0 Ñ V
extends to a map k : D̃ Ñ X. It follows that fpkpzqq “ ipppzqq “ ipxq “ y, and y
lies in the image of f. o

Lemma 7.19 Given a point x in the variety X and a closed subset Z containing x.
Then there is an irreducible curve passing by x not contained in Z.

Proof: Replacing X by an open affine neighbourhood od x, we may clearly
assume that X is affine (just close up a curve found in that case).

Let f be a regular function with Z Ñ Zp f q. It suffices to find a curve through
x not lying in Zp f q. After Problem 5.19 on page 101 we may find a system of
parameters f1, f2, . . . , fn with f1 “ f at x, and citing the same problem, we
infer that all the components of Zp f2, . . . , fnq are of codimension n ´ 1, so any
one of them passing by x will be a curve as we search for. o

7.20 The as followinh corillary goes under the name “the Fundamental Theo-
rem of Elimination Theory” The variety Z is given by a collection of polynomi-
als f pa, xq with coefficients in A and the image ppZq consist of points a so that
f pa, xq “ 0 can be solved in x; that we elinimated the x’s in the set of equations.
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Corollary 7.21 Let X be a variety and let Z Ñ X ˆ Pn be a closed subset. Let
p : X ˆ Pn

Ñ X denote the projection. Then ppZq is closed.

Proof: Because every variety has an open cover whose members are quasi-
projective (e.g. affine), the proposition is easily reduced to the case that X is
quasi-projective. We may thus assume that X is an open subset of a projective
variety W. Let Z denote the closure of Z in W ˆ Z. The theorem yields that
ppZq is closed in W, but the equality ppZq “ X X ppZq holding true, ppZq will
be closed in X. Indeed, we have Z “ Z X pX ˆ Pn

q because Z is closed in the
open set X ˆ Pn, from which ensues that

tyu ˆ Pn
X Z “ tyu ˆ Pn

X Z X X ˆ Pn
“ tyu ˆ Pn

X Z.

This entails the inclusionX X ppZq Ñ ppZq, and the reverse inclusion being
trivial, we are through. o

Problems

In a topological space X a locally closed subset is a subset that is the intersection Locally closed sets (lokalt
lukkede mengder)of an open and a closed set or in other words it is closed in an open set or

for that matter, open in a closed one. A subset of X is constructible set if is the Constructible sets
(konstruktible mengder)union of finitely many locally closed sets. A Boolean algebra B in X is a col-
Boolean algebras (Boolske
algebraer)lection of subsets of X that is closed under finite set-theoretical operations; It

contains the entire space and the empty set, finite unions and intersections of
members of B belong to B and the set theoretical difference of two members is
a member as well.

7.2 Let X be a topological space. Prove that the collection of constructible
sets in X is the smallest Boolean algebra containing the open (or the closed)
sets. Prove that inverse image of constructible sets under continuous maps are
constructible.

7.3 (Chevalley’s Nullstellensatz.) Show that the image of a constructible set
under a morphism between varieties is constructible.

7.4 Let f : X Ñ Y be a morphism of varieties and r P N0 a non-negative
integer. Show that the set t y P Y | dim f´1

pyq u “ r is locally closed.

7.5 Let X be an affine variety. Let f and g be regular functions on X ˆ P1

such that Zp f , gq X txu ˆ P1 is finite for all x P X. Show that ppZq Ñ X has
all components of codimesnion one. Conclude that if ApXq is a ufd, then
ppZq “ Zphq for some h P ApXq.

7.6 (The resultant.) Let A be a ring. Denote by Rn the A-module consisting
of polynomials in Arts of degree strictly less and n. Then Rn is free of rank n
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with the powers ti for i § n as a basis. Given two polynomials f ptq and gptq in
Arts of degree n and m respectively. Consider the k-linear map

Rn ˆ Rm Ñ Rn`m.

that sends the pair pp, qq to q f ` pg, and let F be its matrix in the bases whose
elements are the powers of t. The determinant det F is called the resultant of f
and g and commonly written as Resp f , gq.

a) Assume that A is the field k. Prove that det F “ 0 if and only if f and g has
a common root in some field extension of k. Hint: Start by showing that F
has a kernel if and only if f and g has a common factor.

b) Let m be a maximal ideal in A and let k “ A{m. Denote by h̄ the image in
krts of a polynomial h P Arts. Show that det F P m if and only f̄ and ḡ has a
common root in an extension of k.

7.7 Show that Resp f , gq belongs to the ideal p f , gq in Arts generated by f and
g.

M

7.3 Finite maps

Those who have followed course in complex function theory and Riemann
surfaces have certainly seen holomorphic maps depicted as in the margin—
which is typically how a finite map of complex curves look like near a branch
point. Away from the branch points, locally they are just a bunch of stacked
discs. Illustrations as those presuppose we have small open sets (that is,
disks) to our disposal. We do not have that in the Zariski topology, and these
pictures must as usual be taken with a grain of salt (when working in positive
characteristic, the grain ought to be rather large). Anyhow, some features are
general. We notice that the number of points in most fibres are the same (three
in picture), with a correct interpretation of how to count points in the fibre,
this is generally true. It is called the degree of the map.

However, there is a closed set of exceptional fibres. How their cardinality
relate to the cardinality of the generic fibre depends havely on the target
variety. I

In characteristic zero the counting is just the naive counting, but if the
ground field has positive caracteristic p, a genuine multiplicity may occur.

There is multiplicity coming up. The example to have in mind is A1
Ñ A1

sending x to xp. It is polynomial map corresponding to the map t Ñ tp. The
eauation tp

“ a has just one solution, and every fibre reduced to one point.
However, the multiplicity will be p—which is in concordance with the usual
way to assign multiplicities to roots of polynomials.
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The degree

7.22 We start with a geometric set up with X and Y two varieties of the same
dimension and f : X Ñ Y a dominant morphism. As any dominant morphism,
the morphism f induces a field extension KpYq Ñ KpXq, which is algebraic
since the two transcendence degrees over k are the same. Being function fields
of varieties, both fields are finitely generated over k, and the extension is
therefore finite. The degree rKpXq : KpYqs is called the degree of f and denoted Degree of morphisms

(graden til avbildninger)deg f.

Lemma 7.23 Assume that f and y are composable dominating maps between
varieties of the same dimension. The the composition f ˝ y is dominating and the
deg f ˝ y “ deg f ¨ deg y. If both f and y are finite, the composition y ˝ f is finite as
well.

Proof: Let the two morphisms be f : X Ñ Y and y : Y Ñ Z, and let U Ñ Z be
an arbitrary non-empty open subset. The inverse image y´1

pUq is non-empty
because y is dominating, and hence y´1

pUq meets fpXq since f is dominating.
But that is the same as to say that U meets ypfpXqq.

The field extensions associated with the three involved maps constitute a
tower of successive extensions

KpZq Ñ KpYq Ñ KpXq,

and the degree of field extensions being multiplicative in towers, it follows
rKpXq : KpZqs “ rKpXq : KpYqsrKpYq : KpZqs, or in other words that deg y ˝ f “

deg y ¨ deg f. o

Example 7.1 The simplest example of the staging above, is the map f : A1
Ñ

A1 that sends the point t to f ptq where f ptq is a given polynomial of degree
n, say. In terms of a coordinate u on the second affine line, the extension of
function fields corresponding to f is the extension kpuq Ñ kptq where u “ f ptq.
It is generated by t and the minimal equation is f ptq ´ u “ 0 which is of degree
n. The new degree thus passes the sanity test; in this simple case it coincides
with the old definition.

As to the fibre of f over a point a it is just given by the solutions of the
equation f ptq “ a. When f is separable, the derivative f 1

ptq is a non-zero
polynomial, and has finitely many roots, say tbiu. For points a off the set
t f pbiqu the derivative does not vanish at any of the solutions to f ptq “ a, which
therefore all are simple solutions. We conclude that for those a’s there are
exactly n-points in the fibre.

The inseparable case is more involved, and we illustrate that case by the
map f : A1

Ñ A1 that sends t to tp, where p now is the characteristic of k.
The equation tp

“ a has exactly one solution, since for any b P k the equation
tp

´ bp
“ pt ´ bq

p holds true. All fibres of f are therefore reduced to single point
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point, but the degree of f is p, so every points is counted with multiplicity p
in its fibre. K

Multiplicities

The ideal behaviour of finite map f : X Ñ Y is that the generic fibre have
exactly n points. As examples show this is not true in general. The next best is
an algebraic substitute, namely that the so-called “algebraic fibre” generically
is of dimension n what kind of creature “algebraic fibre” ever is. This animal
also enables us to defined the multiplicity of the points in a fibre.

7.24 To explain what is meant by the “algebraic fibre” we assume that both X
and Y are affine, and as usual we shall denote their coordinate rings by ApXq

and ApYq. Fix a point y P Y. Points belonging to the fibre f´1
pyq correspond

to maximal ideals mx in ApXq containing the ideal my ApXq. If x1, . . . , xr consti-
tute the fibre, these maximal idels are mx1 , . . . ,mxr . The ring ApXq{my ApXq is
Artinian, and the primary decomposition of my ApXq takes the form

my ApXq “ q1 X . . . X qr

where the qi’s are mxi -primary ideals. Therefore, according to The Chinese
Remainder Theorem, there is decomposition

ApXq{my ApXq “

π

i
ApXq{qi,

and the factor ApXq{qi is supported at mxi . This is the motivates for babtizing
the ring ApXq{my ApYq the “algebraic fiber” over y, and in lack of a better
name, we shall call the dimesnion dimk ApXq{my ApYq the algebraic cardinality The algebraic cardinal-

ity (den algebariske
kardinaliteten)

of the fibre.

7.25 Taking dimensions we arrive at multiplicities; the multiplicity of the
point xi in the fibre is defined as dimk ApXq{qi. Observe that xi is a simple
point of the fibre, i.e. of multiplicity one, precisely when qi “ mi. This holds
along the entire fibre if and only if ApXq{my ApXq is a product of fields, or
phrased in a different manner, if and only if the algebraic fibre ApXq{my ApXq

is a reduced ring (i.e. without nilpotent elements).

Example 7.2 Normalization maps have typically fibres with too many points.
Our two acquaintances, the standard rational cusp and the standard ratio-
nal double point, are good examples. The cusp C is the image of the map
f : A1

Ñ A2 defined by x “ t2 and y “ t3 and is given by the equation y2
“ x3.

On the level of rings the map f˚ : krx, ys Ñ krts is given as x fiÑ t2 and y fiÑ t3.
For a point pa, bq P C with b2

“ a2, one finds when a ‰ 0, that

px ´ a, y ´ bqkrts “ pt2
´ a, t3

´ bq “ pat ´ bq “ pt ´ ba´1
q.

The fibre over pa, bq is therefore just a single simple point, namely the point
b{a P A1. Over the origin, however, the algebraic fibre is krts{pt2, t3

q “ krts{t2
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which is two-dimensional. That fibre has also just one point, but with multi-
plicity two. K

Example 7.3 The double-point D is the image of A1 under the map t fiÑ

pt2
´ 1, tpt2

´ 1qq. The equation of the image is y2
“ x2

px ` 1q. To determine the
fibres, let pa, bq be a point on D that is not the origin.The equalities

px ´ a, y ´ bqkrts “ pt2
´ 1 ´ a, tpt2

´ 1q ´ bq “ pat ´ bq “ pt ´ b{aq,

shows there is a single point in the fibre which is simple. If pa, bq “ p0, 0q

however, on finds

krts{pt2
´ 1, tpt2

´ 1qq “ krts{pt2
´ 1q.

The structure of this ring depends on the characteristic of the ground field
k. If it is different from two, the ring splits as the product of two copies of
k, and the fibre over the origin consists of two distinct simple points. Is the
characteristic two, the ring equals krts{pt ´ 1q

2 which has just one maximal ideal.
The fibre in that case consists of a single point but which has multiplicity two.

K

Example 7.4 Assume that C and D are non-singular curves and that f : C Ñ

D is a finite morphism. Pick a point y P D and consider the ibre ApCq{my ApCq.
For each point xi P f´1

pyq in the fibre over y the corresponding primary ideal
qi is given as qi “ ApDq X myOD,xi and hence the contribution ApDq{qiApDq is
therefore equal to OD,xi {myOD,xi .

The rings OD,y and OC,xi are all dvr’s. K

Problem 7.8 Let f : P2
zp1 : 0 : 0q Ñ be the map that sends pu : v : wq to

puv : v2 : w2 : uwq. Prove that image is contained in Z`px2
0x2 ´ x2

3x1q and
determine all fibres. M

Problem 7.9 Asume that p and q are two relatively prime numbers. Let
C Ñ A2 be the image of the map f : A1

Ñ A2 given as t fiÑ ptp, tq
q. Show that

C “ Zpxq
´ yp

q. Prove that f is a finite map and determine all fibres of f. M

Generic freeness

As alluded to in the previous paragraph, there are examples without reduced
fibres. However, even in that case, the dimension dimk ApXq{my ApXq will
be constant and equal the deg f for y in a sufficiently small open set (but of
course dense). Generic fibres all have deg f points when appropriate multi-
plicities are taken into account; this ensues straight away from the following
proposition. Is the map f is separable, one can say more. In that case, as we
shall prove next, the generic fibres will be reduced; that is all their points are
simple.
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Proposition 7.26 (Generic freeness) Let f : X Ñ Y be two varieties, and let
f be a finite dominating map f : X Ñ Y. Then there is a dense open and affine set U
in Y such that f´1

pUq is affine and Apf´1
pUqq is a free module over ApUq of rank

equal to deg f.

The proof is reduced to a piece of algebra contained in two subsequent lem-
mas

Lemma 7.27 Let A Ñ B be a finite extension of domains and let K Ñ L be the cor-
responding extension of fraction fields. Then the K Ñ L is a finite extension, and if S
denotes the multiplicative set S “ Azt0u, it holds true that L “ BS “ BbAK

Proof: The algebra B is a finite module over A and therefore all its elements
are integral over A. Any given f P A thus satisfies an equation of integral
dependence

f n
` an´1 f n´1

` . . . ` a1 f ` a0 “ 0

with the constant term a0 ‰ 0. It follows that

f ´1
“ ´a´1

0 p f n´1
` an´1 f n´2

` . . . ` a1q,

and consequently that f ´1
P BS. And since this holds for all f P B, it ensues

that L “ BS. In particular, any generating set of B as an A-module will be a
generating set for L over K and L will be finite over K as B is finite over A. o

The dimension dimK L of L as a vector space over K is called the degree of the Degree of field ex-
tensions (graden til
kroppsutvidelser)

field extension K Ñ L and it is common usage to denote it by rL : Ks.

Lemma 7.28 With the setting as in the previous lemma, there is an g P A such that
Bg “ Br1{gs “ BbA Ag is a free Ag-module of rank equal to the degree rL : Ks.

Proof: This is just a matter of pinning down common denominators. From
the previous lemma ensues that there is a basis for L over K of elements of
the form cia´1

i with ci P B and ai P A. Replacing the ai’s by their product,
we may assume that they are all equal and that ci “ bia´1. The ci will not
a priori generated Ba over Aa. They form however a basis for L over K and
consequently all elements dj from a finite generating set for Ba over Aa are
sent into A when multiplied by appropriate elements gj from Aa. Over the
localized ring Ag, where g is the product of a and the gj’s, the elements ci’s
form a basis for Bg. o

Proof of Proposition 7.26: This is just a matter of translating Lemma 7.28
into geomtry. We may assume that X and Y affine; just replaces Y by an
open affine whose inverse image is affine and X by that inverse image. After
Lemma 7.28 with A “ ApYq and B “ ApXq we may find a regular function
g P ApYq so that the localization ApXqg “ ApXqf˝g is free of rank rKpXq : KpYqs

over ApYqg. Now, ApYqg is the coordinate ring of the distinguished open set
Dpgq in U, and obviously f´1

pDpgqq “ Dpf ˝ gq whose coordinate ring is
ApXqf˝g, and that’s it. o
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The separable case

As promised we shall take a closer look at the generic fibres of separable finite
morphisms, which we shall prove are reduced. The basic tool will be the
Primitive Element Theorem.

7.29 Recall that a field extension K Ñ L is called primitive if it has one single
generator; that is L “ Kp f q for an element f from K. The generator f is
naturally called a primitive element. Primitive extensions are a lot easier to Psrimitive element

(primitive elementer)handle than general ones, and luckily they are frequent. For instance, any
separable extension is primitive—this is the Primitive Element Theorem—and
of course, every finite extension is a sequence of primitive ones.

7.30 We are interested in primitive extensions because they makes it easier to
unveil the finer generic behaviour of finite morphisms based on the following
lemma.

Lemma 7.31 Let f : X Ñ Y be a finite morphism between two varieties and assume
that function field KpXq is a primitive extension of KpYq. Then there is an open affine
U of Y such that V “ f´1

pUq is affine and such that

ApVq » ApUqrts{pFptqq

for some polynomial Fptq whose coefficient are regular functions on U.

Proof: Let f the element in KpXq that generate KpXq over KpYq. The field
KpXq is algebraic over KpYq and f satisfies an algebraic dependence equation

an f n
` an1 f n´1

` . . . ` a0 “ 0

where the ai are rational functions on Y, and we may suppose that Fptq “∞
i aiti is an irreducible polynomial over KpYq. Now, we may find an open

affine U in Y where the coefficients ai all are regular and where an is without
zeros. Additionally we may assume that V “ f´1

pUq is affine after having
shrunk U further if necessary. The ring ApVq is a finite module over ApUq,
and the members of a generating set are linear combinations of powers of f
with coefficients in KpYq. Shrinking U further, we may assume that all these
coefficients are regular in U. Then clearly

ApVq “ ApUqp f q » ApUqrts{pFptqq.

o

7.32 The isomorphism in the lemma is defined by sending the variable t to
the function f . One may interpret this in a geometric way as V lying in the
product U ˆ A1 embedded as the zero locus ZpFptqq, and the map f is induced
by the projection onto the first factor; remember that the coefficients of F are
functions on U, so Fpy, tq would be a more precise notation. For a given point
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y0 P U, the fibre over y0 is formed by the zeros of the polynomial Fpy0, tq,
obtained by evaluating the coefficients ai at the point y0.

The cardinality of a fibre (over a point in U) is clearly bounded above
by deg f, but in general any smaller cardinality may occur. However, an
assumption that f be separable, improves the situation conciderably as the
following proposition shows.

Proposition 7.33 Assume that f : X Ñ Y is a finite and separable morphism
between two varieties. Then there is an open affine subset U of Y such all fibres over
points in U consist of deg f different points.

Proof: The derivative of F1
py, tq with respect to t is as usual comuputed

as
∞

i iaiti´1. The hypothesis that f be separable ensures that the derivative
F1

ptq share no common zero with Fptq in KpXq. This shows that ZpF1
py, tqq X

ZpFpy, tqq is a proper subset of ZpFpy, tqq. Hence it does not dominate U, and
the image D is a proper closed set of U (finite maps are closed xxx). The
points of the fibre over y0 are the zeros of the Fpy0, tq but when y0 R D, the
derivative F1

py0, tq does not vanish in any of the points, and they are all simple
zeros. Consequently there are as many as the deg f indicates. o

Example 7.5 Consider the map A1 to A1 sending x to xp. On the level of
coordinate rings it is given as f ptq fiÑ f ptp

q. Ir is finite og degree p, but all its
fibres consist of just one point. krts{ptp

´ aqkrts. But ptp
´ aq “ pt ´ bq

p so pt ´ aq

is the only maximal ideal containing tp
´ a. K

Problem 7.10 Given natural numbers n and let m with m § n Construct a
finite map of degree n having exactly m points in one of its fibres. M

7.4 Curves over regular curves

When the target of a morphism is a non-singular curve, more can be said of its
fibres. We illustrate this with finite maps, and the result will be useful when
we attack the proof of Bezout’s theorem in next section. The staging will be as
follows. The givens are a regular curve C and a closed subset Z Ñ C ˆ Pn whose
components Z1, . . . , Zr are curves that all dominates C.

We let p : C ˆ Pn
Ñ C be the projection and for index each i its restriction to

Zi will be denoted by pi. By assumption the pi’s are dominating, and by xxx
they are all finite morphisms. Finally, pZ will be the restriction of p to Z. We
shall debote by deg pZ the sum deg pZ “

∞
i deg pi.

7.34 Except for closed algebraic subsets of affine space, we have developed the
general theory for varieties which all have been assumed to be irreducibe.

This has certainly made life agreeable, but we now have come to point
where there is a price for this, and admittedly some inelegant wriggling
will be necessary. When proving Bezout’s theorem in the next section the Z
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will certainly not be irreducible. The minimal thing is to stick with an affine
situation.

Proposition 7.35 (The permanence of numbers) Let Z be a closed alge-
braic set whose irreducible components are Z1, . . . , Zr. Let C be a non-singular affine
curve and assume that p : Z Ñ C is a finite polynomial map and that the restrictions
pZi all are dominating. Then all fibres of p have the same algebraic cardinality; that is,
for dimk ApZq{my ApZq is independent of y P C.

Before proving the Proposition, we give an elegant corollary:

Corollary 7.36 Let X be a projective curve (i.e. a variety of dimension one) and p

a dominating morphism to a non-singular curve C. The all fibres of p have the same
algebraic cardinality.

Proof: By xxx, the morphism p is finite, and we may thus cover C by open
affines Ui so that Vi “ p´1Ui are affine and each ApViq is a finite module
over ApUiq. By the Proposition the algebraic fibre dimension will be constant
within each Ui, but C being irreducible, any two Ui’s will meet. o

Proof of Proposition 7.35: The main point is that ApZq is a torsion free
ApCq-module, and since it by assumption is finite, we are through by the
little pieces of algebra below since C being non-singular is synonymous to
ApCq being a Dedekind ring. To see that ApZq is torsion free, we consider the
inclusion

ApZq Ñ

π

i
ApZiq.

Since each Zi is assumed to dominate C, the natural maps ApCq Ñ ApZiq are
injective, but the ApZiq’s being integral domains, they are torsion free. o

Two little pieces of algebra

7.37 Two little pieces of algebra The pieces of algebra we need are is contained
in the two subsequent lemmas

Lemma 7.38 If the ring A is a pid then every finitely genetared and torsion free
A-module M is free of rank dimK MbAK.

There is a more general version of this lemma with the hypothesis relaxed
to A being a Dedekind ring, but the conclusion is then that the module is a
projective A-module. The proof is mutatis mutandis the same.
Proof: Let K be the fraction field of A. The proof goes by induction on the
rank of M, that is the dimension dimK KbA M. We clearly may assume that M
is not the zero module.

The first observation is that HomApM, Aq is non-zero. Indeed, since M is
torsion free, the localization MbAK is non-zero, and there is a non-zero linear
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functional l : MbAK Ñ K. The values lpmiq that l assumes on a finite set of
generators tmiu for M, are all of the form aib´1

i with ai and bi being non-zero
elements from A. If b denotes the product b “

±
i bi, then bl is non-zero and

takes M into A.
The next observation is that the image lpMq Ñ A is isomorphic to A because

all ideals in A are principal. The exact sequence

0 // ker l // M l
// A // 0 (7.1)

is split so that M » ker l ‘ A. Hence ker l is torsion free and of rank one less
that M, and it is therefore free by induction. It follows that the sequence (7.1)
is split, and M is free as well. o

Lemma 7.39 If A is a Dedekind ring and M is a finitely genertaed torsion free
A-module, then dimA{m MbA A{m “ dimK MbAK for all maximal ideals m in A.

Proof: The ring A being Dedekind means that all the localizations Am are
dvr’s; hence they are pid’s. Now the localiszations Mm persist being torsion
free and finitely generated over Am, hence by Lemma 7.38 above they are free
of the same rank, namley dimK MbAK. o

Problem 7.11 Assume that C is non-singular projective curve so that all
the local rings OC, x ar dvr’s. Denote the normalized valuation of OC,x by
vx. With any non-zero rational function f on C, one associate the divisor
p f q “

∞
xPC vxp f qx. Show that degp f q “ 0. M
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Lecture 8

Bézout’s theorem

Hot themes in Lecture 8: Divisors—Local multiplicities—Bézout’s theorem—
Regular sequences and depth—Cohen–Macaulay rings—The Unmixedness
theorem—A little about graded modules

Sir Isaac Newton observed in a note dated 30 May 1665 that the number of
intersection points of two curves in P2 equals the product of their degrees. If
one starts looking at examples, this pattern emerges almost immediately. Two
lines meet in one point and two conics in four—at least if the two conics are in
what one calls general position; that is, they are not tangent at the intersection
points.

Étienne Bézout
(1730–1783)

French Mathematician

That a line L in P2 meets a curve X which is the zero locus of a homoge-
neous form Fpx0, x1, x2q of degree n, is a direct consequence of the fundamen-
tal theorem of algebra. Choosing appropriate coordinates we can parametrize
the line as pu : v : 0q. The parameter values of the intersection points will be
the roots of the equation Fpu, v, 0q “ 0, of which there are n, unless, of course,
x2 is a factor of F, in which case the line L is a component of X. There is also
an issue of multiplicities, roots need not be simple, and to get n intersection
points these multiplicities must be taken into account. This issue persists in
the general situation and is an inherent part of the problem.

Example 8.1 The local multiplicity is, as this example shows, a quite subtle
invariant even for conics. The two conics zy ´ x2 and zy ´ x2

´ y2 only intersect
at p0 : 0 : 1q. Indeed, the difference of the two equations being y2, it must hold
that y “ 0 at a common zero and then x must vanish there as well. The ellipses
have contact oder four at p0; 0; 1q: Inserting the parametrization puv, u2, v2

q of
the first into the equation of the second yields the equation u4

“ 0 which has a
quadruple root at u “ 0. K

Two ellipses with fourth
order contact.

Problem 8.1 Along the lines above, prove that a conic intersects a curve of
degree n in 2n points multiplicities taken into account unless the conic is a
component of the curve. Hint: Parametrize the conic as pu2, uv : v2

q. M

8.1 What nowadays is called Bézout’s theorem in the plane was, as we have
indicated in the beginning, known long time before Bézout published his
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famous paper Théorie générale des équations algébriques in 1779. His original
contribution is the generalization to projective n-space Pn. He asserted that
the number of points n hypersurfaces in Pn have in common, when finite, is
at most the product of the degrees of the hypersurfaces, and there is equality
when the hypersurfaces are general; that is, when they meet transversally. As
usual there is an issue of multiplicities. Local multiplicities are part of the
accounting and with the correct definition of these multiplicities, the number
of intersections will always be the product of the degrees. It seems that the
first correct proofs of the full Bézout-theorem were given by Georges Henri
Halphen and a little later by Hurewitz.

Needless to say, but Bézout’s theorem is the seed of intersection theory
and has been vastly generalized. To day it is merely a tiny part of a great
theoretical body called intersection theory. See Fultons’s book xxx.

8.2 To prove Bézout’s Theorem there are several lines of reasoning to follow,
but at the end they all rely on one of Macaulay’s renown results called the
"Unmixedness theorem". The classical technique used by Bézout and his
contemporaries was build on projections. They projected the intersection of
the n hypersurfaces into a line where it was described by the vanishing of a
certain polynomial, the so-called resultant. We met a specimen of the kind in
exercise xxx.

Francis Sowerby
Macaulay (1862–1937)
British Mathematician

8.3 The proof we shall present naturally belongs to the realm of what are
called coherent sheaves on P2 and their Euler characteristics. However, we do
not have all that advanced machinery to our disposal and have to do with an
ad hoc version of it.

It is based on the notion of regular sequences, the forms F1, . . . , Fn defining
the hypersurfaces must form a regular sequence (see paragraph 8.4 below).
This is a priori far stronger assumption than the locus of their common zeros
being finite, but then the Macaulay’s Unmixedness Theorem enters the scene.
It asserts that whenever Z`pF1, . . . , Fnq is finite the Fi’s in fact form a regular
sequence. Thus the algebraic condition that the hypersurfaces form a regu-
lar sequence (hard to check) is reduced to the geometric condition that the
intersection be finite (substansially easier to check).

8.1 Bézout’s Theorem

8.4 In the rest of section we are given n hypersurfaces Z1, . . . , Zn in Pn de-
fined by the vanishing of the homogeneous polynomials F1, . . . , Fn. There is a
standing hypothesis that they intersect in finitely many points.

With every point p P Pn one may, and we shall shortly do, associate a
multiplicity µppZ1, . . . , Znq. It is a non-negative integer which is positive if and
only if p belongs to the intersection Z1 X . . . X Zn. With this in place, Bézout’s
theorem reads as follows
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Theorem 8.5 Let Z1, . . . , Zn be hypersurfaces in Pn with only finitely many points
in common. Then

deg Z1 ¨ ¨ ¨ deg Zn “

ÿ

p
µppZ1, . . . , Znq.

Notice that one can only hope for such a result when the number of hypersur-
faces is n. If there are less, the intersection cannot be finite; indeed, by Krull’s
Hauptidalsatz the codimension of the intersection would be less than n and
the dimension at least one, and the intersection would have had an infinity
of points. And if there are more, we have no control on the number of inter-
section points, allthough it will be zero for a general choice of hypersurfaces.

Problem 8.2 Give examples of three conics in P2 that intersect in 0, 1, 2, 3
and 4 points. M

8.6 It is quit natural to extend the scope of Bezout’s theorem slightly to also
encompass intersections of effective divisor1. Recall that such an animal is a Effective divisors (effektiv

divisorer)
1 The significance of the
attribute effective is that
the coefficients ni are
non-negative. A divisor
is a linear combination∞

i niZi with integral
coefficients

formal linear combination
∞

i miZi of irreducible hypersurfaces Zi with non-
negative integral coefficients. This might look enigmatic at the first encounter,
but it is merely a convenient and geometrically suggestive way to keep track
of the irreducible components of a homogeneous form. Indeed, if F is a ho-
mogeneous form of degree n that splits as F “

±
i Fmi

i into a product of
irreducible forms, the associate divisor is

∞
i miZ`pFiq.

The degree of an effective divisor is defined to be the degree of the corre- Degree of divisors (graden
til divisorer)sponding homogeneous form. Divisors can be added just by adding coeffi-

cients, and one clearly has degpZ ` Zq
1

“ deg Z ` deg Z1. The definition of
the local multiplicities extends, and in terms of effective divisors Bézout’s
Theorem takes the form

Theorem 8.7 Let Z1, . . . , Zn be effective divors in Pn with only finitely many
points in common. Then

deg Z1 ¨ ¨ ¨ deg Zn “

ÿ

p
µppZ1, . . . , Znq.

8.2 The local multiplicity

The natural starting point is to define the local multiplicities. So we continue
working with the given hypersurfaces Z1, . . . , Zn, or one should rather say
effective divisors, and t their homogeneous equations are syill F1, . . . , Fn. The
Fi’s need not be irreducible and can even have factors with exponents higher
than one, but we the standing assumption that the intersection Z1 X . . . X Zn is
finite, is in force.

8.8 To set the stage, we chose coordinates px0 : . . . : xnq on Pn so that the
intersection is contained in the distinguished open set U “ D`px0q. One may
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in fact use any open affine containing the intersection, but for the presentation
it is convenient to use a standard affine.

The coordinates we shall use in U will be ti “ xi{x0, and the equations of
the subvarieties Zi X U of U are the dehomogenized polynomials fipt1, . . . , tnq “

Fip1, x1{x0, . . . , xn{x0q which live in the coordinate ring ApUq “ krt1, . . . , tns .
In this setting, the intersection Z1 X . . . X Zn equals the closed algebraic

subset Zp f1, . . . , fnq of D`px0q, and by the standing hypothesis this is a finite
set. Consequently the ring OZ1X...XZn “ krt1, . . . , tns{p f1, . . . , fnq is Artinian. As
any Artinian rings, it is isomorphic to the direct product of its localizations;
that is, one has a natural isomorphism

OZ1X...XZn »

π

p
OZ1X...XZn ,p

where the product extends over points p from the intersection Z1 X . . . X Zn.
We are ready for the definition of the intersection multiplicity at p also called The intersection multiplic-

ity (snittmultiplisitet)the local intersection number at p. The local rings OZ1X...XZn ,p are all finite
Local intersection
numbers (lokale snitt-tall)dimensional over the ground field k, and we define

µppZ1, . . . , Znq “ dimk OZ1X...XZn ,p.

If p does not belong to the intersection, we let µppZ1, . . . , Znq “ 0.

Examples

The higher multiplicities are caused by two different phenomena, tangency
and singularity—the hypersurfaces involved can be tangent at the intersection
point, or one or more of them can have a singularity; thas is, the defining form
vanishes to the second order at the point. In both cases there will be a higher
multiplicity assigned to the point. If neither of the two phenomena occur, the
contribution of the point is just one, and we say that intersection is transversal Transversal intersections

(transversale snitt)at the point.

Example 8.2 In the margin we have depicted two curves, the circle px ` 1q
2

`

y2
“ 1 and the cubic y2

“ x2
px ` 2q. They intersect in four points. From the left

there is a tangency where the multiplicity is two, then come two points where
the intersection is transversal each contributing one to the total, and finally
in the last point the cubic aquires a double point, and the local multiplicity is
two. K

Example 8.3 Let f px, yq “ y ´ x2 and gpx, yq “ y ´ x2
´ xy. Then the two conics

X “ Zp f q and Y “ Zpgq have triple contact at the origin; that is, µppX, Yq “ 3.
One finds

p f , gq “ py ´ x2, y ´ x2
´ xyq “ py ´ x2, x3

q,

and hence OXXY,p “ krx, ys{p f , gq » krxs{x3 K

Two parabolas with triple
contact at the origin.
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Problem 8.3 Find the intersection and the local multiplicities of the three
surfaces in P3 given by xy ´ zw, xz ´ yw and xw ´ yz. M

Problem 8.4 Prove that xy ´ zw and x2y ´ z2x intersect along five lines. Find
the intersection of y ´ x, xy ´ zw and x2y ´ z2x. M

Transversal intersections

8.9 A hypersurface X in An given by the polynomial f which passes through
the point p, is said to be regular or non-singular at p if f does not vanish to the Non-singular or regular

points (ikkesingulære
eller regulære punkter)

second order there. If m denotes the maximal ideal at p, the polynomial f is
required not to belong to the square m2; that is, f R m2.

One may write f “ l ` g where g P m2 and l is an element whose class in
m{m2 is non-zero; this class l̄ defines a normal to the hypersurface X at p. Its Normals of hypersur-

faces (normalen til en
hyperflate)

orthogonal complement in the dual space Homkpm{m2, kq is the tangent space

Tangent spaces (tangen-
trom)

to X at p.
One says that r hypersurfaces with equations f1, . . . , fr meet transversally

Transversal hypersurfaces
(transversale hyperflater)

at the point p if they all are regular at p and their normals l̄i are linearly
independent in k-vector space m{m2.

8.10 The following lemma is almost tautological, and tells us that the Zi’s
meet transversally at p if and only if µppZ1, . . . , Znq “ 1.

Lemma 8.11 Let A denote the localisation of the polynomial ring krt1, . . . , tns in the
maximal ideal m “ pt1, . . . , tnq. Then n elements f1, . . . , fn from m meet transversally
at the origin if and only if p f1, . . . , fnq “ m.

Proof: This is just Nakayama’s lemma. The images of each fi in m{m2 is the
normal vector l̄i, hence the fi generate m if and only if the l̄i’s generate m{m2.
But there are many l̄i’s as the dimesnion of m{m2, hence they generate if and
only if they are linearly independent. o

Additivity

The local intersection number is additive in the sense that if one of the divisors
splits into as sum, say that the last one decomposes as Zn “ Z1

n ` Z2
n , the

following addition formula holds true

µppZ1, . . . , Z1
n ` Z2

nq “ µppZ1, .., Z1
nq ` µppZ1, . . . , Z2

nq.

However it is astonishingly subtle to prove and hinges on the “Unmixedness
theorem” of Macaulay.

Let f 1
n and f 2

n be the equations of Z1
n and Z2

n , and let A be the local ring
A “

`
krt1, . . . , tns{p f1, . . . , fn´1q

˘
mp

. One has the exact sequence

A{p f 2
n qA a

// A{p f 1
n f 2

n qA // A{p f 1
nqA // 0
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where apaq “ f 1
na and the rightmost map is the natural surjection. The se-

quence is exact—that is, a is injective— precisely when the vector space di-
mensions over k of the involved rings add up; in other words, when the local
intersection numbers add up. However, this requires that f 1

n be a non-zero
divisor in A so that f 1

na “ b f 1
n f 2

n implies that a “ b f 2
n .

This is not generally true for one dimensional local rings even if neither
of f 1

n and f 2
n lies in any of the minimal primes of A. Denizens from the deep

algebraic waters—the notorious embedded components threaten emerge—but
thank’s to Macaulay the threat is not realized in our situation. There are no
embedded components and additivity holds true.

px2 ` y2q2 ` 3x2y ´ y3 “
0

px2 ` y2q3 ´ x2y2 “ 0

Problem 8.5 In case n “ 2 the unmixedness theorem is almost trivial, and
additivity comes for free. Prove additivity for local intersections multiplicities
for two effective divisors in P2. M

Problem 8.6 The relative behaviour of two intersecting curve can be rather
complicated. The following example is taken from William Fulton’s book2

2

Show that the local intersection number at the origin of the two curves px2
`

y2
q

2
` 3x2y ´ y3

“ 0 and px2
` y2

q
3

´ x2y2
“ 0 equals 14. Where else do they

intersect? Hint: Additivity can be useful. M

8.3 Proof of Bezout’s theorem

With the Unmixedness Theorem in mind, we proceed with proving Bézout’s
theorem under the assumption that the polynomials F1, . . . , Fn form a regular
sequence. And there will two parts, first we shall identifying the product of
the degrees of the n hypersurfaces as the Hilbert polynomial of the graded
ring S “ krx0, . . . , xns{pF1, . . . , Fnq (which is constant), and subsequently show
that this constant equals the sum of the local multiplicities.

The Hilbert polynomial

So the first step is thus to establish the following formula

Lemma 8.12 hSptq “ deg Z1 . . . deg Zn.

It follows as a special case of lemma 8.14 below

8.13 To prepare for lemma 8.14 we introduce the quotient ring Sr “ R{pF1, . . . , Frq

for each r with 1 § r § n, and for convenience we let S0 “ R; moreover we
put di “ deg Zi and d0 “ 1. The sequence F1, . . . , Fn being regular means by
definition there are short exact sequences

0 // Srr´dr`1s
Fr`1
// Sr // Sr`1 // 0
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for each 0 § r § n ´ 1, where the indicated map is just multiplication by Fr`1.
Bboth maps in the sequences are homogeneous of degee 0, and the following
identity between Hilbert polynomials ensues

hSr`1ptq “ hSr ptq ´ hSr pt ´ dr`1q.

Now, it is an elementary fact that for any polynomial Pptq of degree r with
leading coefficient a, the difference Pptq ´ Ppt ´ dq is of degree r ´ 1 with leading
coefficient rda; indeed, for any natural number m the Binomial Theorem yields
the equality

tm
´ pt ´ dq

m
“ md ¨ tm´1

` opm ´ 2q,

where opm ´ 2q stands for a polynomial term of degree less than m ´ 2. Using
this, a straightforward induction gives the following (remember that d0 “ 1):

Lemma 8.14 For any r with 0 § r § n it holds true that

hSr ptq “ d0 ¨ . . . ¨ dr
tn´r

pn ´ rq!
` opn ´ r ´ 1q

where the term opn ´ r ´ 1q is a polynomial of degree n ´ r ´ 1. In particular for r “ n,
we have hSptq “ d1 . . . dn.

Proof: Induction on r o

The local intersection numbers

The graded ring S “ krx1, . . . , xns{pF1, . . . , Fnq is the coordinate ring of the cone
ZpF1, . . . , Fnq over the intersection Z1 X . . . X Zn, and this cone is just a bunch
of lines through the origin. Hence S is a one dimensional ring and its Hilbert
polynomial is therefore constant. The crucial equality we are to establish is the
following

hSptq “ dimk OZ1X...XZn . (8.1)

8.15 It is convenient to continue working with the notation established in
pargraph 8.8 on page 145. Recall the affine hyperplane A0 of An`1 where
x0 “ 1 which was introduced in paragraph 4.5 on page 60. The projection
An`1

zt0u Ñ Pn sends A0 isomorphically onto U “ D`px0q, and the inter-
section A0 X ZpF1, . . . , Fnq corresponds to Z`pF1, . . . , Fnq “ Z1 X . . . X Zn.
On the algebraic level this is just the interplay between homogenizing and
dehomgenizing polynmials, and there is an isomorphism

krx0, . . . , xns{pF1, . . . , Fn, x0 ´ 1q » krt1, . . . , tns{p f1, . . . , fnq,

or in other terms
S{px0 ´ 1qS » OZ1X...XZn .

The next step, which in view of the equality (8.1) above will prove Bézout’s
theorem, is the following is lemma
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Lemma 8.16 hSptq “ dimk S{px0 ´ 1qS

Proof: Let p0q “ q0 X q1 X . . . X qs be an irredundant primary decomposition
of 0 in S. The corresponding prime ideals pi are all homogeneous, and we
chose the indices so that p0 is the irrelevant ideal m` (in fact, it ensues from
the Unmixedness Theorem that there is no such component, but we do not
need that heavy artillery here). The other pi’s define the lines in the cone
ZpF1, . . . , Fnq. By the Chinese Remainder Theorem there is an exact sequence

0 // C // S //

±
i S{pi // D // 0

where C and D are supported at the origin. They are therefore Artinian and
have vanishing Hilbert functions, so that hSptq “

∞
i hS{pi

ptq. It also follows
that there is an isomorphism

S{px0 ´ 1qS »

π

i
S{ppi ` px0 ´ 1qSq,

and in view of this, we are through by Lemma 8.17 below. Ideed, we find

hSptq “

ÿ

i
hS{pi

ptq “

ÿ

i
dimk hS{ppi`px0´1qSqptq “ dimk S{px0 ´ 1qS

o

8.3.1 A general lemma

The second part of the proof is to apply from commutative algebra, and
prove general lemma about graded modules supported along a line. Chosing
appropriate coordinates px0, . . . , xnq for An`1, we may assume that line L is
the zero-locus of the ideal p “ px1, . . . , xnq.

Lemma 8.17 Let M be a finitely generated and graded R-module. Assume that the
support of M is the line L “ Zppq Ñ An`1. Then

hMptq “ `RppMpq “ dimk M{xM

where x is any element in R such that p ` pxq is a maximal ideal distinct from m`.

Proof: A fundamental result from commutative algebra asserts that there
is a descending chain tMiu of submodules of M beginning with M0 “ M
and whose subquotients all are of the form A{qi with the qi’s amongst the
prime ideals associated to M. The module M being graded ensures that
all its associated ideals are homogeneous, and since the support is a line,
there can at most be two of them, the irrelevant ideal m` and the prime ideal
p “ px1, . . . , xnq that defines the line. Indeed, any associated prime different
from p is homogeneous and maximal, and the only one of that kind is m`.
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Moreover, the chain tMiu may be chosen to respect the grading, so that for
suitable integers ei we have exact sequences

0 // Mi`1 // Mi // R{qireis // 0 (8.2)

where the maps are homogeneous of degree zero, and the ideals qi are either
m` or the prime ideal p of the line.

Let N be the number of times the ideal p occurs as a subquotient of the
chain. The rest of the proof consists of interpreting N in three different ways,
as each of the three numbers in the lemma.

Localising at p makes all the subquotients that are equal to R{m` disappear,
and since pR{pqp of course is of length one over Rp, we may conclude that
`RppMpq equals the number of subquotients of type R{preis; that is, it is equal
to N.

Secondly, the element x lies neither in p nor in m` and is therefore not
a zero-divisor in M nor in any of the Mi’s. A snake argument gives exact
sequences

0 // Mi`1{xMi`1 // Mi{xMi // R{pqi ` pxqRq // 0

of vector spaces over R{pp ` pxqRq “ k. Moreover, a subquotient R{pqi ` pxqRq

vanishes if qi “ m` and equals k if pi “ p, and we can conclude that N “

dimk M{xM.
Finally, by a straightforward induction using the additivity of the Hilbert

polynomial one shows that

hMptq “

ÿ

i
hR{qireisptq “

ÿ

i
hR{qi

pt ´ eiq “

ÿ

qi“p

1 “ N,

observing that the Hilbert polynomial of R{p “ krx0s is the constant 1 and that
of R{m` “ k the constant 0. o

Problem 8.7 Let n ° m be two natural numbers and let apxq and bpxq be
two polynomials which do not vanish at x “ 0. Determine the local inter-
section multiplicity at the origin of the two curves defined respectively by
y ´ apxqxn and y ´ bpxqxm. If m “ n, show by exhibiting an example that the
local multiplicity can take any integral value larger than n. M

Problem 8.8 Find all intersection points of the two cubic curves defined by
the forms zy2

´ x3 and zy2
` x3 (we assume the characteristic of the ground field

to be different from two). Determine all the local intersection multiplicities of
the two curves. M

The affine pieces in
D`pzq of one the two
curves in problem 8.9

The affine pieces in
D`pzq of the two curves

in problem 8.9

Problem 8.9 Let X and Y be two curves in P2 being the zero loci of the poly-
nomials z5y2

´ x3
pz2

´ x2
qp2z2

´ x2
q and z5y2

` x3
pz2

´ x2
qp2z2

´ x2
q. Determine

all intersection points and the local multiplicities in all the intersection points
of X and Y M
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Problem 8.10 Let C be the curve given as zy2
´ xpx ´ zqpx ´ 2zq. Determine

the intersection points and the local multiplicities that X has withe line z “ 0.
Same task, but with the line x ´ z “ 0. M

8.4 Appendix: Depth, regular sequences and unmixedness

An important ingredient in the full proof of Bézout’s theorem is the concept
of so-called unmixed rings. These are Noetherian rings all whose associated
prime ideals are of the same height, or what amounts to the same in our
context of algeras of finite type over a field, that dim A{p is the same for all
associated primes p. In particual A has no embedded components, the height
of an embedded prime would of course be larger than the height of at least on
of the others. In geometric terms, if A “ krx1, . . . , xns{a, all the components of
the closed algtebraic subset X “ Zpaq are of the same dimension and A has no
embedded component.

Macaulay showed that if pF1, . . . , Frq is of height r, then krx1, . . . ,x s{p f1, . . . , frq

is unmixed. That the irreducible components of the closed algebraic set
Zp f1, . . . , frq all are of codimension r is clear—the height being the smallest
codimension of a components, and Krull’s Hauptidealsatz tells us that every
component is of codimension most r— so the subtle content is that there are
no embedded components. This has consequence that if Fr`1 is a new poly-
nomial not vanishing along any of the components, then Fr`1 is a non-zero
divisor in krx1, . . . , xns{p f1, . . . , frq. So we see that pF1, . . . , Frq being of height r
is equivalent to F1, . . . , Fr being a regular sequence.

Regular sequences

The theory of Cohen–Macaulay rings and more generally of the Cohen–
Macaualy modules, is based on the concept of regular sequences which was
introduced by Jean Pierre Serre in 1955. Their basic properties are described in
this paragraph.

8.18 The stage is set as follows. We are given a ring A together with a proper
ideal a in A and an A-module M. Most of the time An will be local and
Noetherian and M will be finitely generated over A.

A sequence x1, . . . , xr of elements belonging to the ideal a is said to be
regular for M, or M-regular for short, if the following condition is fulfilled Regular sequences

(regulære følger)where for notational convenience we let x0 “ 0.

o For any i with 1 § i § r the multiplication-by-xi map

M{px1, . . . , xi´1q ›Ñ M{px1, . . . , xi´1q

is injective.
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In other words, xi is a not a zero-divisor in M{px1, . . . , xi´1q. In particular, x1 is
not a zero-divisor in M, and this has lead to the usage that x1 being regular in
M is synonymous with x1 being a non-zero divisor in M.

8.19 A regular sequence x1, . . . , xr is said to be maximal if it is no longer Maximal regular se-
quences (maksimale
regulære følger)

regular when an element is added to it. When M is a Noetherian module,
this is equivalent to a being contained in one of the associated primes of
M{px1, . . . , xrq; indeed, the union of the associated primes of M{px1, . . . , xrq is
precisely the set of zero-divisors in M{px1, . . . , xrq.

Problem 8.11 Show that maximal regular sequences for Noetherian mod-
ules are finite. Exihibit a counterexample when M is not Noetherian. Hint:
Consider the ascending chain px1, . . . , xiq of ideals. M

8.20 Be aware that in general the order of the xi’s is important, permute them
and the sequence may no more be regular. However, regular sequences for
modules finitely generated over local Noetherian rings remain regular after
an arbitrary permutation, and the same holds true for graded rings with
appropriate finiteness conditions. Henceforth, we shall work with rings that
are Noetherian and local and with modules finitely generated over A (but
with a sideways glimpse into the graded case, so important for projective
geometry).

Example 8.4 The simplest example of a sequence that ceases being regular
when permuted is as follows. Start with the three coordinate planes in A3;
they are given as the zero loci of x, y, z. Add a plane disjoint from one of them
to the two others; e.g. consider the zero loci of the three polynomials xpy ´ 1q, y
and zpy ´ 1q.

Clearly xpy ´ 1q, zpy ´ 1q, y is not a regular sequence in krx, y, xs. The point is
that zpy ´ 1q kills any function on Zpxpy ´ 1qq that vanishes on the component
Zpxq (for example x) and is thus not a zero-divisor in krx, y, zs{pxpy ´ 1qq.

On the other hand, the sequence xpy ´ 1q, y, zpy ´ 1q is regular. Indeed, it
holds that krx, y, zs{pxpy ´ 1q, yq “ krzs, and in that ring zpy ´ 1q is congruent
to z and thus not a zero-divisor. Geometrically, capping Zpxpy ´ 1qq with Zpyq

makes the villain component Zpy ´ 1q go away.
This example is in fact arche-typical. The troubles occur when two of the

involved closed algebraic sets have a common component disjoint from one of
the components of a third. If all components of all the closed algebraic subsets
involved have a point in common, one is basically in a local situation, and
permutations are permitted. K

Permutation permitted

8.21 As mention in the previous example, in local Noetherian rings a se-
quence being regular is a property insensitive to order. The same holds true in
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a graded setting, and in both cases Nakayama’s lemma is the tool that makes
it work.

Lemma 8.22 Assume that A is a local Noetherian ring with maximal ideal m and
M a finitely generated A-module. If x1, x2 is a regular sequence in m for M, then
x2, x1 is one as well.

Proof: There are two things to be checked. Firstly, that x2 is a non-zero
divisor in M. The annihilator p0 : x2qM “ t a P M | x2 a “ 0 u must map
to zero in M{x1M because multiplication by x2 in M{x1M is injective. Hence
p0 : x2qM ` x1M “ x1M, and since x1 P m and M is finitely generated,
Nakayama’s lemma applies and p0 : x2qM “ 0.

Secondly, we are to see that multiplication by x1 is injective on M{x2M, so
assume that x1a “ x2b. But multiplication by x2 is injective on M{x1M, and it
follows that b “ cx1 for some c; that is, x1a “ x1x2c. Cancelling x1, which is
legal since x1 is a non-zero divisor in M, we obtain a “ cx2. o

Proposition 8.23 Let A be a local Noetherian ring with maximal ideal m and M a
finitely generated A-module. Assume that x1, . . . , xr is a regular sequence in m for M.
Then for any permutation s the sequence xsp1q, . . . , xspnq is regular.

Proof: It suffices to say that any permutation can be achieved by successively
swapping neighbours . o

8.24 The graded version reads as follows:

Proposition 8.25 Let A be a graded ring satisfying Ai “ 0 when i † 0, and let M
be a finitely generated graded A-module. If x1, . . . , xr is a sequence of elements from
A, homogeneous of positive degree, that form a regular sequence in M, then for any
permutation s the sequence xsp1q, . . . , xsprq is also a regular in M.

Proof: As above, one may assume that r “ 2. The proof of Lemma 8.22
goes through mutatis mutandis; the sub module p0 : x2qM will be a graded
submodule because x2 is homogeneous, and a version of Nakayma’s lemma
for graded things is available. o

Problem 8.12 With assumptions as in 8.23 or 8.25, prove that if x1, . . . , xr is a
regular sequence for M and n1, . . . , nr is a sequence of natural numbers, then
xn1

1 , . . . , xnr
r will be a regular sequence as well. Hint: Reduce to the case of

x1, . . . , xr´1, xn
r . M

Problem 8.13 Jean Dieudonné gave the following example of a regular
sequence x1, x2 in local non-Noetherian ring such that x2, x1 is not regular.
Consider the ring B of germs of C8-functions near 0 in R. It is a local ring
whose maximal ideal m constists of the functions vanishing at zero. Let a be
the ideal a “

ì
i m

i of functions all whose derivatives vanish at the origin. Let
A “ BrTs{aTBrTs. Let I be the function Ipxq “ x. Show that the sequence I, T
is a regular sequence in A whereas T, I is not. M
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Enters homolocigal algebra—the depth

8.26 One of the first appearances of homological methods in commutative
algebra was in the circle of ideas round of regular sequences and Cohen-
Macaulay modules. These methods give a caracterization of the maximal
length of M-regular sequences in terms of certain homologically defined
modules. The criterion has the virtue of not explicitly refering to any sequence,
and has the consequence that all maximal sequence are of the same length.

The homological modules in question are modules Exti
ApM, Nq associated

with a pair of A-modules M and N. In the lingo of homological algebra
they appear as derived functors of the functor HomAp´, ´q. Students not
already acquainted with these useful creatures should consult a textbook
about homological algebra for the few of their very basic properties we shall
need.

8.27 It is natural to introduce the number deptha M as the length of the
longest (maximal) regular M-sequence in a. It is called the depth of M in a. In The depth of a module

(dybden til en modul)the end, it turns out that all maximal M-sequences in a have the same length,
but for the moment we do not know that, and a priori the number is not even
bounded. However, we have:

Lemma 8.28 If A is a local Noetherian ring, a a proper ideal and M a finitely
generated A-module, then deptha M § dim M. In particular, deptha M is finite.

Proof: Induction on dim M (which is finite!). If dim M “ 0, the maximal ideal
m is the only associated prime of M. Therefore every element in m is a zero
divisor and deptha M “ 0.

Next, observe that if x is a non-zero divisor in M, it holds true that dim M{xM †

dim M, and by induction one may infer that

deptha M{xM § dim M{xM † dim M. (8.3)

So if x1, . . . , xr is a maximal regular sequence in M (they are all finite after
Problem 8.11), the sequence x2, . . . , xr will be one for M{x1M, and by (8.3)
r ´ 1 † dim M; that is r § dim M. o

8.29 We have comes to the homological characterization. It is notable since
it determines the depth of a module without referring to any regular se-
quence. We introduce a number ppMq which is the smallest integer i such that
Exti

ApA{a, Mq ‰ 0.

Proposition 8.30 Let A be a local Noetherian ring, a a proper ideal and M a
finitely generated A-module. Then deptha M “ ppMq.

Proof: The proof goes by induction on the depth of M (which is finite by
Lemma 8.28 above). That deptha M “ 0, means that there no element in a is
regular in M. In other words, a is contained in one of the associated primes of
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M, say p. There is then an inclusion A{p Ñ M and a surjection A{m Ñ A{p.
Consequently HomApA{a, Mq ‰ 0, and ppMq “ 0.

Assume next that deptha M ° 0. If x is the first member of an M-regular
sequence of maximal length, the quotient M{xM satisfies deptha M{xM “

deptha M ´ 1. Moreover, since x is regular on M, one has the short exact
sequences

0 // M x
// M // M{xM // 0,

from which one derives a long exact sequence the relevant part for us being

Exti
ApA{a, Mq // Exti

ApA{a, M{xMq // Exti`1
A pA{a, Mq

x“0
// Exti`1

A pA{a, Mq.

Since x P a the multiplication by x on the ext-modules is the zero map. Now, if
i ` 1 † ppMq it ensues that Exti

ApA{a, M{xMq “ 0, and we may conclude that
ppM{xMq ` 1 § ppMq. And if i ` 1 “ ppMq it follows that Exti

ApA{a, M{xMq »

Exti`1
A pA{a, Mq ‰ 0 so equality holds.

So both the quantities deptha M and ppMq drops by one when we mod out
by x, and thence they are equal by induction. o

The proposition has an important corollary, which in fact is the main target of
this paragraph:

Theorem 8.31 Let A be a local Noetherian ring, a an ideal in A and M a finitely
generated A-module. Then all maximal regular M-sequences in a have the same
length.

Example 8.5 A Noetherian zero-dimensional local ring has of course depth
zero. A Noetherian one-dimensional local ring A has depth one if and only if
the maximal ideal is not associated; that is, A has no embedded component. K

As usual, we also give a graded version:

Theorem 8.32 Let A be a graded ring satisfying Ai “ 0 when i † 0, and let M
be a finitely generated graded A-module. Then all homogeneous maximal regular
M-sequences have the same length.

The bound

In geometry the dimension of a close algebraic set is the maximum dimen-
sion of the irreducible components, and the algebraic counterpart is that the
dimension of a ring is the maximum of the dimensions dim A{p for p running
through the associated prime ideals of A. This maximum is never assumed at
an embedded prime since these by definition strictly contain another associ-
ated prime. For a module M, the same holds true as dim M “ dim { Ann M.

The word depth has the flavour of something down, and indeed, depthm M
is smaller then all the dimensions dim A{p where this time p runs through all
of the associated primes, including the embedded ones. And this is the crucial
point.
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Proposition 8.33 As usual, let A be local Noetherian ring with maximal ideal m
and let M be a finitely generated A-module. It then holds true that

depthm M § dim A{p

for all prime ideals associated to M.

Proof: The proof goes by induction on the depth of M. If depthm M “ 0 there
is nothing to prove. So assume that depthm M • 1. Then there is a short exact
sequence

0 // M x
// M // M{xM // 0. (8.4)

Let p be prime ideal associated to M. The sequence (8.4) above induces an
exact sequence

0 // HomApA{p, Mq
x
// HomApA{p, Mq // HomApA{p, M{xMq,

and by Nakayama’s lemma the cokernel of the multiplication-by-x map is a
non-zero submodule of HomApA{p, M{xMq. Hence HomApA{p, M{xMq ‰ 0,
and the ideal p ` pxq is contained in an associated ideal prime ideal q of
M{xM. Since x is a non-zero divisor in M and p is associated to M, we may
infer that x R p, and therefore p is strictly contained in q. It follows that
dim A{p ° dim A{q. Now, depthm M{xM “ depthm M ´ 1, and by induction

depthm M ´ 1 § dim A{q † dim A{p.

o

8.34 The A-module M is said to be a Cohen-Macaulay module if depthm M “ Cohen-Macaulay modules
(Cohen-Macaulay
moduler)

dim M, in particular, the ring A itself is Cohen-Macaulay if depthm A “ dim A.
If x is a non-zero divisor in A, both the depth and the dimension of A{xA are
one less than of A, and hence A is Cohen–Macaulay if and only if A{xA is.

Theorem 8.35 Assume that A is a local Noetherian Cohen-Macaulay ring. Then A
is unmixed. That is dim a{p “ dim A for all associated primes p of A; in particular,
A has no embedded components.

Proof: In view of Proposition 8.33 this is almost a tautology. The lower and
the upper bound of the dimensions dim A{p for p associated with A coincide,
hence these dimensions all coincide. o

8.36 To check that a ring is Cohen–Macaulay, it suffices to exhibit one regular
sequence of length the dimension of the ring. For instance, the local rings
An “ krx1, . . . , xnsmn where mn “ px1, . . . , xnq are Cohen–Macaulay since
the sequence x1, . . . , xn is regular. This follows easily by induction because
there are natural isomorphisms An{xn An » An´1 induced by the maps
krx1, . . . , xns Ñ krx1, . . . , xn´1s that send xn to zero.
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8.37 Recall that a system of parameters in a local ring A of dimension n is a
sequence x1, . . . , xn so that the quotient A{px1, . . . , xnq is of dimension zero.
In our geometric terms, a a sequence of functions f1, . . . , fn in a coordinate
ring ApXq is a system of parameters at a point p if in a neighbourhood of p
their only common zero is p. What was need in the proof of Bézout’s theorem,
was that such a sequence of polynomials in fact form a regular sequence in
krt1, . . . , tns, and this is generally a property of Cohen–Macaulay rings.

Theorem 8.38 In a local Noetherian Cohen–Maccaulay ring A every system of
parameters is a regular sequence.

Proof: The approach is by induction on dim A . If x1, . . . , xr is a system of pa-
rameters, it must hold dim A{x1 A † dim A. Indeed, by Krull’s Hauptidealsatz
the dimension can drop by at most one each time we mod out by an xi, and to
reach zero after n steps, it must drop every time.

Since A is a Cohen–Macaulay ring, all its associated primes p are of dimen-
sion dim A{p “ dim A, hence x1 can not belong to any of the p’s, and as the
zero-divisors in A constitute the union

î
p, x1 is non-zero divisor. Thence

A{x1 A is Cohen–Macaulay, the induction hypothesis ensures that x2, . . . , xr is
a regular sequence in A{x1 A and we are through. o

8.5 Appendix: Some graded algebra

Graded modules

Recall that a graded k-algebra is a k-algebra S with a decomposition S “
À

d Sd
into a direct sum of k-vector spaces. The summands are called the homogeneous
parts of S, and the elements of Sd are said to be homogeneous of degree d. The
decomposition is subjected to the requirement

Sd ¨ Sd1 Ñ Sd`d1 ,

which can be considered a compatibility relation between the grading and the
multiplicative structure of S. The part S0 of elements of degree zero acts on
each of the parts Sd making them S0-modules. The field k is contained in S0.

Example 8.6 The archetype of a graded ring is the polynomial ring R “

krx0, . . . , xns with the homogenous part of degree consisting of the homoge-
nous forms of degree d. K

Example 8.7 If one localizes R in xn, the resulting algebra Rxn is graded. The
homogeneous elements of Rxn are the ones of the form z “ Hpx0, . . . , xnqx´r

n
for some homogeneous polynomial H and some non-zero integer r. The
degree of the element z equals deg H ´ r. When deg z “ 0, it holds true that
z “ Hpx0x´1

n , . . . , xn´1x´1
n q; that is the dehomogenization of H. This implies

that the degree zero piece of Rxn is given as the polynomial ring pRx2q0 “
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krx0x´1
n , . . . , xn´1x´1

n s. Hence the decomposition of Rxn into homogeneous
pieces is shaped like

Rx2 “

à

iPZ

krx0x´1
n , . . . , xn´1x´1

n s ¨ xi
n.

K

A graded S-module is an S module M with a decomposition M “
À

d Md into Graded S-modules

a direct sum of k-vector space such that

Sd1 ¨ Md Ñ Md`d1

Notice that all the summands Md are modules over the degree zero piece S0.

Example 8.8 Every homogenous ideal a in R is a graded Rn-module. It
satisfies the equality a “

À
d a X Rd so that the homogeneous part ad of degree

d is given as the intersection ad “ a X Rd.
The quotient R{a is a graded module over Rn as well as a graded k-algebra.

It holds true that R{a “
À

d Rd{ad. K

The introduction of a new concept in mathematics is almost always fol-
lowed by the introduction of corresponding “morphism’s’; that is, “maps”
preserving the new structure. In the present case a “morphism” between two
graded S-modules M and M1 is an S-homomorphism f : M Ñ M1 that respects
the grading; that is fpMdq Ñ M1

d. One says that f is a homogeneous homomor-
phism of degree zero, or homomorphism of graded modules. Two graded modules Homomorphism of graded

modulesare isomorphic if there is a homomorphism of graded modules f : M Ñ M1
Isomorphic graded
moduleshaving an inverse.

One easily checks that the kernel and the cokernel of a homomorphism of
degree zero are graded in a natural way. Students initiated in the categorical
language would say that the graded modules form an abelian category.

Problem 8.14 Show that if f : M Ñ M1 is invertible and homogeneous of
degree zero, the inverse is automatically is homogeneous of degree zero. M

There is a collection of shift operators acting on the category of graded
S-modules. For each graded module M and each integer m P Z there is fresh
graded module Mpmq associated to a graded module M. The shift operators
do not alter the module structure of M, not even the set of homogeneous
elements is affected, but they give new degrees to the homogeneous elements.
The new degrees are defined by setting

Mpmqd “ Mm`d.

In other words, one declares the degree of elements in Mm to be d ´ m.

Example 8.9 For instance, when m ° 0, the shifted polynomial ring Rp´mq

has no elements of degree d when d † f , indeed, Rpmqd “ Rd´m, and the
ground field k sits as the graded piece of degree m. Whereas the twisted
algebra Rpmq has non-zero homogeneous elements of degree down to ´m
with the ground field sitting as the piece of degree ´m. K
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R0

m

R1

m

R2

m

R3

m

R4

m

R5

m

R6

m

R7

m

R8

m

R0

´m

R1

´m

R2

´m

R3

´m

R4

´m

R5

´m

R6

´m

R7

´m

R8

´m

The graded modules Rp´mq
and Rpmq

Example 8.10 One simple reason for introducing the shift operators, is to
keep track of the degrees of generators. For instance, consider the principle
ideal a “ pFq in the polynomial ring R generated by a homogeneous form
F of degree m. As every principal ideal in R is, a is isomorphic to R as an
R-module—multiplication by F gives an isomorphism. However, this not an
isomorphism of graded modules since it alters the degrees; a homogeneous
element a is mapped to the product aF which is of degree deg a ` m. But
multiplication by F induces a graded isomorphism between Rp´mq and a,
since for elements a P Rp´mqd it holds that deg a “ d ´ m and consequently
deg aF “ d.

The classical short exact sequence is therefore an exact sequence of graded
modules:

0 // Rp´mq
µ
// R // R{F // 0,

where thew map µ is multiplication by F. K

All graded modules we shall meet in this course are finitely generated over
the polynomial ring R. Their generators may be taken to be homogeneous,
but they can of course be of different degrees. If the degrees of generators
are d1, . . . , dr, then M is quotient of a module shaped like a finite direct sumÀ

1§i§r Rp´diq; the factor Rp´diq is sent to the generator of degree di. The
twists make the quotient map homogenous of degree zero.

Lemma 8.39 If M is a graded module finitely generated over the polynomial ring R,
then all the graded pieces Md are finite dimensional vector spaces over k.

Proof: This is more or less obvious. It is true for R itself, hence for all twists
Rpmq, hence for direct sums

À
i Rp´diq. And if M is a quotient of

À
i Rp´diqd,

the graded piece Md of M of degree d is a quotient of the graded pieceÀ
i Rp´diqd. o

Hilbert functions and Hilbert polynomials

There are some numerical invariants attached to a graded module M finitely
generated over a polynomial ring R, which makes working with graded
modules much easier. These functions, or their alter egos, are ubiquitous in
algebraic geometry and they play an extremely important role. One is the so
called Hilbert function hMpdq of M defined as hMpdq “ dimk Md. It turns out Hilbert functions

that hMpdq behaves like a polynomial for d sufficiently large; that is, there is
a unique polynomial PMpdq coinciding with hMpdq when d °° 0. This is the
Hilbert polynomial of M. Hilbert polynomials

A fundamental property of the Hilbert functions that makes it possible to
calculate at least of them, is that, just like the vector space dimension, they are
additive over short exact sequences. If

0 // M1
// M // M2

// 0
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is an exact sequence of graded module, it holds true that hM “ hM1 ` hM2 .
Indeed, for each degree d the graded pieces of degree d fit into an exact se-
quence

0 // M1
d

// Md // M2
d

// 0

of vector spaces, and the assertion follows since vector space dimension is
additive.

For functions h : Z Ñ Z; i.e. functions taking integral values on the integers,
one introduces a difference operator D. It is some sort of discrete derivative and it The difference operator or

the discrete derivativeis defined as
Dhpdq “ hpdq ´ hpd ´ 1q.

Just like a derivative, if Dhpdq “ 0 for all d, then h is constant. And so two func-
tions h and h1 having the same discrete derivative are equal up to a constant.

Multiplication by an element x P R of degree one which is not a zero-divisor
in the graded module M, induces an exact sequence

0 // Mp´1q // M // M{xM // 0,

from which we infer the equality

hM{xMpdq “ hMpdq ´ hMpd ´ 1q “ DhMpdq. (8.5)

A polynomial Pptq with rational coefficient is called a numerical polynomial if Numerical polynomials

it assumes integral values for integral arguments; that is, if Pptq P Z whenever
t P Z.

Example 8.11 The binomial coefficients are archetypes of numerical polyno-
mials. Recall that they are defined for any t by the identity

ˆ
t ` n

n

˙
“ pt ` nqpt ` n ´ 1q ¨ . . . ¨ pt ` 1q{n!,

and it is well known they are numerical polynomials. A straightforward
calculation shows that

D
ˆ

t ` n
n

˙
“

ˆ
t ` n ´ 1

n ´ 1

˙
. (8.6)

K

Example 8.12 The Hilbert function of the polynomial3 ring nR vanishes for 3 Recall that nR “
krx0, . . . , xnsnegative arguments and is given as the binomial coefficient

hnRpdq “

ˆ
n ` d

n

˙

when d • 0. Indeed, multiplication by xn induces the exact sequence

0 //

nRp´1q //

nR //

n´1R // 0
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of graded modules, and hence DhnR “ hn´1R. By induction on n and the
identity (8.6) above the assertion follows. Because 0R “ krx0s it obviously holds
that h0Rpdq “ 1 for d • 0 and h0R “ 0 when d † 0, so that the induction can
start. K

Example 8.13 For a graded R-modules M of finite support, the Hilbert poly-
nomial PM vanishes identically. Indeed, the module M is finite dimensional
as a vector space over k, and there is only room for finitely many non-zero
graded pieces. But of course, the Hilbert function of M is not identically zero.

K

We shall mostly be concerned with the leading term of numerical polynomi-
als; they are of a special form as described in the following lemma:

Lemma 8.40 Assume that Pptq is a numerical polynomial of degree m. Then

Pptq “ cm{m!tm
` . . .

where cm is an integer4. The discrete derivative DPptq is of degree m ´ 1 and its leading 4 As is customary, the
dots stand for terms of
lower degree than m.

coefficient equals cm{pm ´ 1q!

Proof: We proceed by induction on m. The lemma holds for m “ 0 because
a numerical polynomial of degree zero is an integral constant. For m ° 0 we
write Pptq “ amtm

` Qptq with Q of degree at most m ´ 1. Appealing to the
binomial theorem, one finds

DPptq “ amtm
´ ampt ´ 1q

m
` DQptq “

“ amtm
´ amtm

` mamtm´1
` DQptq “ mamtm´1

` DQptq,

by induction DQptq is of degree at most m ´ 2, the leading coefficient of DPptq is
mam, and again by induction, it is shaped like mam “ cm´1{pm ´ 1q! where cm´1
is an integer. The lemma follows. o

Theorem 8.41 Let a be a homogenous ideal in R. Then PR{a is of degree dim R{a.

Proof: We proceed by induction on dim R{a. Let pi be the associated prime
ideals to a. Then there is an element x P m` of degree one not contained in
any of the minimal primes of a, and dim R{a ` pxq “ dim R{a ´ 1. Hence there
is an exact sequence

0 // K // Sp´1q
x
// S // S{xS // 0

where K is of finite support. By example xxx above, the Hilbert polynomial of
K vanishes identically, and hence DPS “ PS{xS. By induction we are through. o

Example 8.14 Let F P R “ krx0, x1, x2s be a homogeneous polynomial of
degree m. Then there is a short exact sequence of graded modules

0 // Rp´mq
a
// R // R{F // 0
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where the map a is multiplication by F. Additivity of the Hilbert functions
yields, when d • m, that

hR{Fpdq “ hRpdq ´ hRpd ´ mq “ md ` m2
´ 3m{2,

while
hR{Fpdq “ hRpdq “ d2

{2 ` 3d{2 ` 1

when 0 § d † m since then hRpd´mq “ 0. For d † 0 it obviously holds true
that hR{Fpdq “ 0. So the Hilbert function is constant and equal to zero for
negative values of the argument, it grows quadratically for d between 0 and m
and settles with a linear grows for d • m. The Hilbert polynomial is linear and
has leading term md. The geometric interpretation of the algebra R{pFqR is as

The graph of hR{pFq.

the homogeneous coordinate ring SpXq of of the curve X “ Z`pFq Ñ P2. Notice
that the degree of the Hilbert polynomial PSpXqpdq equals the dimension of X
(both are one) and that the leading coefficient equals the degree of F. K

Geir Ellingsrud—versjon 1.1—13th February 2019 at 9:52am





Lecture 9

Non-singular varieties
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Manifolds are important,
In algebraic geormetry the corresponding concept is that of non-singular

varietes. There som differences. We do not have a invers function theorem
tooir disposal; for tha Zarisk opens are to large.

9.1 Regular local rings

In differential topology a maniold is space which locallyisdiffeomorphico
opensets in some Rn.

Zariski tangent space. In moder geometry which sttrives after intrinsic
invariants. The classical way of itroducing tanget soaces uses and embedding
of X and the tanfent space is the lienear space tha fits best fits X; meaning
something like if you follow a line into p, the distamce to X decreases more
rapidly then t

If you have a function defined on X, you can compute derivatives of f
along curves approshing p. So one usually defines thetagent space as point
derivation at the point p: That is, the maps OX,p Ñ k being k-linear and
complyinig with Leibnitz’ rule

D f g “ f ppqDg ` gppqDg

Such a derivation vanishes on the constants; indeed if k is not of characteristic
two, this folows from 1 ¨ 1 “ 1; if charcteristic is two a slifgtly more elaborate
argument is needed. Such derivation vanishe on the square m2. Hence

Lemma 9.1 The TpX » Homkpm{m2, k,)

Proof: Given f and g and consider the product p f ´ f ppqqpg ´ gppqq. It belongs
to the squaer m2, and hence

Dpp f ´ f ppqqpg ´ gppqqq “ 0
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Multiplyinig out one finds

p f ´ f ppqqpg ´ gppqq “ f g ´ f ppqg ´ gp f ´ f ppqgppq

and the Leibnitz’ rule follows since D kills contants. o

Lemma 9.2 If A is a Noetherian local ring with maximal ideal m,it holds true that
dimk m{m2

• dim A

Proof: By Nakayamas lemma any basis v1, . . . , vs of m{m2 lifts to a set gen-
erators x1, . . . , xs of the maximal ideal m. Krull’s Hauptidealsatz implies that
m § s, but m “ dim A. o

9.2 The Jacobian criterion

Following Hartshorne we turn the Jacobian criterion into a definition.
Let X Ñ An be a closed subvairaiety and let f1, . . . , fs generators for the

ideal IpYq of polkynomials vanishing along X. The Jacobian matrix of the Jacobian matrix

polynomials f1, . . . , fs is well known from calculus courses. It is shaped like

Jp f‚q “

´
B fi{Bxj

¯

ij

where the row index runs from 1 to s and the row inde from 1 to n. The
Jacobian is a matrix function on X, and can be evaluated at points.

s

n

n´r

We say that the varity X is non-singular at the point p P X if the rank of

non-singular

Jp f‚qppq is equal to n ´ dim X.
The polynomials f i have Taylor expansions about p shaped like

fi “

ÿ

j
Bj fippqpxj ´ ajq ` Hi

where Hi vanishes to the second order at p. In worder words Hj P m2
p. The

Jacobian at p is therfoer nothing but the matrix of the liner system consisting
of the s of equations

ÿ

j
Bj fippqxj “ 0 1 § j § s

and the condition that rank of J is n ´ r, says exactly that these linear equation
defin a linear subsaåce of dimension r, that is a linear subspace of the same
dimension as X. That linear subspace is what one calls the tangent space at p.

The definiton we have gven seems to have some flaws. Appearntly it de-
pends on the given embeddin of X in an affine space, and even worse on the
generators.

Proposition 9.3 The varity X is non-singular at p is and only if dimk n{n2
“

dim X.
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Proof: Consider the map krx1, . . . , xns Ñ kn sending a polynomial f two
the row vector pBj f q1§j§n. It is obviously surjective, sending xi to the i-th
standard basic vector of kn. The ideal m2 lies in kernel sins Leibnitz has taught
us that B f g “ f Bg ` gB f which vanishs at p when both f and g do. Hence
q : m{m2

» kn.
The ideal I lies in m and the inage og I under the map q is vector subspace

generated by the rows of the Jacobian matrix evaluated at p. Hence the dimen-
sion of the image equals the rank of J. Onte other hand qpIq “ I ` m2

{m2

On the other hand, one has n{n2
“ m{pm2

` Iq. Hence tye chain

m2
Ñ I ` m2

Ñm

the first subquotient being n{n2 and the seconf to qpIq; hence

dimk n{n2
“ dimk m{m2

´ dimpm2
` Iq{m2

o

Corollary 9.4 p is a non-singular point on X if and only if the local ring OX,p is
a regular local ring.

Corollary 9.5 Being non-singular is an intrinsic property.

9.2.1 The projective cse

The Jacobian criterion works well in Pn as well.

Proposition 9.6 Let J “

´
BjFippq

¯
Then the the rank of J does not depend on the

choice of p. Moreover X is non-singular at p if and only if rkJ “ n ´ r.

1) The Euler formula: If F is homogeneous f degree d it holds true that

dF “

ÿ

j
xjBjF

Both sides are linear in F, so it sufficies to establish the equality for monials. If
F is a monomial, the frmula is clear; say F “ xd0

1 ¨ . . . ¨ xdn
n : Then xjBjF “ djF,

and summing over j closes the case since d “
∞

j dj.
2) If p lies in the basic open subset D`pxkq, if follow from Euler that

BkFi “ x´1
k p

ÿ

j‰k
BjFiq

so after an invertible column operation the whole k-th column of the Jacobian
Jppq becomes zero, and can be removed from the matrix without altering the
rank.

3) The eauation of X X D in D`pxkq are the polynomials fi obtained by
dehomogenizingthe Fi’s with rspect to xk. it holds true that xdk

k fi “ Fi. Hence
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when j ‰ k, one has Bj fi “ x´di
k BjFi, and this means that the i-row have the

factor x´di
k which can taken out any minor involving that row. So up to factor

that are powesr of xk, the miors of
´

BjFi

¯

and ´
Bj fi

¯

are the same.


