Problem 1. Assume X and Y are two affine varieties and that $\phi: X \rightarrow Y$ is a morphism. Show that ϕ is a closed embedding if and only if the map $\phi^{*}: A(Y) \rightarrow A(X)$ between the coordinate rings is surjective.
Recall: ϕ is a closed embedding $\Leftrightarrow \omega=\varphi(x)$ is closed, and $\phi: X \longrightarrow \omega$ is an isomorphism.

If φ is a closed embedding, then $W=Z(I) \subset Y$ for some ideal $\pm \subset A(y)$, and $A(w)=A(y) / I$.
We have

$$
\begin{aligned}
A(y) & \xrightarrow{\phi^{*}} \\
& A(X) \\
\searrow & \downarrow \simeq \\
A(w) & =A(y) / I
\end{aligned}
$$

$\Rightarrow \phi^{*}$ is subjective.
Conversely, if ϕ^{*} is surjective, let $I=$ er ϕ^{*}, so that

$$
A(X) \cong A(Y) / I \quad \text { via } \phi^{*}
$$

Let $W=Z(I) \subseteq Y$. Then ϕ^{*} induces an isomorphism $\phi^{*}: A(w) \longrightarrow A(X)$
$\Rightarrow \varphi: X \rightarrow W$ is an isomorphism, by the correspondence between ring maps and morphisms.
$\Rightarrow \varphi$ is a closed eurbebling.

Problem 2. Consider the algebraic set $X=Z(I) \subset \mathbb{A}^{3}$ given by the ideal

$$
I=\left(y-x^{2}, y z^{2}, x z^{2}\right) \subset \mathbb{C}[x, y, z]
$$

Find a decomposition of X into irreducible components and compute its dimension.

Solution 1 (Geometing) $\quad X=Z(I)=Z(\sqrt{I})=Z\left(y-x^{2}, y z, x z\right)$
either: $z=0 \quad \sim$ component $X_{1}=z\left(y-x^{2}, z\right)$
or $x=y=0 \longrightarrow$ comperes $x_{2}=z(x, y)$

$$
\therefore \quad x=x_{1} \cup x_{2}
$$

$\operatorname{din} X=\max \left(\operatorname{din} X_{1}, \operatorname{din} X_{2}\right)=1$
Solution 2 (alybem) claim: $I=\left(y-x^{2}, z^{2}\right) \cap(x, y)$

$$
\subseteq O K
$$

2: Take $f=A\left(y-x^{2}\right)+B z^{2}$
If $f \in(x, y)$, then $B \in(x, y) \Rightarrow B=x C+y D$

$$
\Rightarrow \quad f=A\left(y-x^{2}\right)+C x z^{2}+D y z^{2}
$$

\in LHS $\sqrt{ }$

$$
\begin{aligned}
\operatorname{din} X=\operatorname{din} A(X) & =\max \left(\operatorname{din} \frac{k\left[x, y z_{z}\right]}{\left(y-x^{2}, z^{2}\right)}, \operatorname{din} \frac{k[x, y, z]}{(x, y)}\right) \\
& =1
\end{aligned}
$$

Problem 3. Find all the singular points on the curve

$$
C=Z\left(x^{4}+y^{3} z-x^{2} y z\right) \subset \mathbb{P}^{2}
$$

and show that C is rational (ie., birational to \mathbb{P}^{1}).
(土) $\frac{\partial f}{\partial x}=4 x^{3}-2 x y z=2 x\left(x^{2}-y z\right)$
(II) $\frac{\partial f}{\partial y}=3 y^{2} z-x^{2} z=z\left(3 y^{2}-x^{2}\right)$
(III) $\frac{\partial f}{\partial z}=y^{3}-x^{2} y=y\left(y^{2}-x^{2}\right)$

Assume first that $x y z \neq 0$.
(III) gives $y=a x . \quad a= \pm 1$
(II) gives $3 y^{2}-x^{2}=3 x^{2}-x^{2}=2 x^{2} \leadsto x=0 \leadsto$ contradiction $\rightarrow \quad x y z=0$.
If $x=0: \quad \Rightarrow \quad y=0 \quad$ the point $(0: 0: 1)$, which lies on C.
(II)

If $y=0($ and $x \neq 0) \Rightarrow z=0$
\Rightarrow the point $(1: 0: 0)$, but this does not lie on C.
If $z=0($ and $x y \neq 0):(I) \Rightarrow x=0 \Rightarrow$ contractiction.
$\therefore(0: 0: 1)$ is the only singular point.
Consider the open set $D_{+}(z) \simeq A 1^{2}$ \leadsto (C is given by $x^{4}+y^{3}-x^{2} y$

The point $(0,0)$ has multiplicity $3 \quad(=\operatorname{deg} x-1)$ so we expect that C is rational.
Write $y=a x$

$$
\leadsto x^{4}+a^{3} x^{3}-x^{2} a x=x^{3}\left(x+a^{3}-a\right)
$$

\leadsto we get the parametrization
$A I^{\prime} \xrightarrow{\phi} C$
$a \longmapsto\left(a-a^{3}, a^{2}-a^{4}\right)$
This is $1-1$ on an open set by construction, so C is rational.
Inverse: $\quad(\cdots A)^{\prime}$

Bezout

$$
\sum y=d
$$

$$
(x, y) \mapsto \frac{y}{x}
$$

$C \subset A l^{2}$ degree d
$(0,0) \in C$ multiplicity $d-1$
$\Rightarrow C$ is rational (same aggenent)

Problem 4. Consider $V \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$ given by the equation

$$
u_{0} x^{2}-u_{1} y=0
$$

where $\left(u_{0}: u_{1}\right)$ are homogeneous coordinates on \mathbb{P}^{1} and x, y are affine coordinates on \mathbb{A}^{2}.
(i) Show that V is irreducible and compute its dimension.
(ii) Describe the fibers of the morphism $\pi=p_{1}: V \rightarrow \mathbb{A}^{2}$ and show that V is rational.
(iii) Describe the fibers of the morphism $p=p_{2}: V \rightarrow \mathbb{P}^{1}$. Which fibers are singular?
(iv)* Find all sections of p, i.e., morphisms $\sigma: \mathbb{P}^{1} \rightarrow V$ so that $p \circ \sigma=\mathrm{id}_{\mathbb{P}^{1}}$.
(i) Over the open set $D\left(u_{0}\right), \quad V \cap D\left(u_{0}\right)$ is the hypermface

$$
x^{2}-u_{1} y=0 \text { in } A 1^{3} \leadsto \text { imeducible }
$$

Over $D\left(u_{1}\right)$ it is given by $u_{0} x^{2}-y=0$ in $A 1^{3} \sim$ iwed.
Also, $V \cap D\left(u_{0}\right) \cap D\left(u_{1}\right)$ is iveducible $\Rightarrow V$ is iweducible

The dimension of $Z\left(x^{2}-u, y\right)$ is 2 (by Krull) $\Rightarrow \operatorname{dim} V=2$.
(ii) The fibers of $\pi=p_{1}:\left.V \longrightarrow A\right|^{2}$

Given $(a, b) \in A l^{2}$, we have

$$
(a, b) \times\left(u_{0}: u_{1}\right) \in \pi^{-1}(a, b) \Leftrightarrow \quad u_{0} a^{2}-u_{1} b^{2}=0 \quad(*)
$$

If $(a, b) \neq(0,0)$, the point $\left(u_{0}: u_{1}\right)$ is uniquely determined from (*)

$$
\text { (f }(a, b)=(0,0), \quad \pi^{-1}(0,0)=(0,0) \times \mathbb{P}^{1}
$$

$\therefore \pi: V \rightarrow A)^{2}$ is generically $1-1 \longrightarrow V$ is rational. \rightarrow today $k\left(H^{2}\right)$
$\quad\left(\text { birational to }\left.A\right|^{2}\right)^{=2}$.
(iii) Given $(a: b) \in \mathbb{P}^{\prime}$, we have

$$
\begin{aligned}
p^{-1}(a: b) & =\left\{(x, y) \times(a: b) \mid a x^{2}-b y=0\right\} \\
& =\text { the parabola } \quad a x^{2}-b y=0 \text { in }\left.A\right|^{2}
\end{aligned}
$$

\therefore The fibers of P are conic curves in $\left.A\right|^{2}$.
$P^{-1}(a: b)$ suigular $\Leftrightarrow a x^{2}-b y$ is a suigular conic
$b \neq 0: \sim y=b^{-1} a x^{2} \leadsto$ the conic is a nosing. passible
$b=0: \leadsto p^{-1}(1: 0)=\{x=0\}$ is a line \Rightarrow also won-suig.
Rule In MATY215, the "schem e-theoretic fiber" is $x^{2}=0$
(iv) If $\sigma: \mathbb{P}^{\prime} \rightarrow V$ is a section of p we get a morphism

$$
\left.\mathbb{P}^{\prime} \xrightarrow{\sigma} V \xrightarrow{\pi} A\right)^{2}
$$

This is a morphism from P^{\prime} to an affine variety $\Longrightarrow \pi \circ \sigma$ muss be constant
$\xrightarrow{\text { b) }} \sigma\left(\mathbb{P}^{\prime}\right)$ muss be the curve $(0,0) \times \mathbb{P}^{\prime}$
(since π is an isomorphism outride $(0,0) \times \mathbb{P}^{\prime}$)
\rightarrow there is exactly one section of P, namely

$$
\begin{aligned}
\sigma: \mathbb{P}^{\prime} & \longrightarrow V \\
(a: b) & \mapsto(0,0) \times(a: b) .
\end{aligned}
$$

