Problem 1. Assume X and Y are two affine varieties and that $\phi : X \to Y$ is a morphism. Show that ϕ is a closed embedding if and only if the map $\phi^* : A(Y) \to A(X)$ between the coordinate rings is surjective.

Recall: ϕ is a closed embedding \iff W=cp(X) is closed, and $\phi: X \longrightarrow W$ is an isomorphism.

If φ is a closed embedding, then $W = Z(I) \subset Y$ for some ideal $I \subset A(Y)$, and A(W) = A(Y)/I. We have $A(Y) \xrightarrow{\varphi^{k}} A(X)$ $\int G \int 2$ A(W) = A(Y)/I

-) \$ is surjective.

Conversely, if
$$\phi^*$$
 is surjective, let $I = \ker \phi^*$, so that
 $A(X) \cong A(Y)/_{I}$ via ϕ^*
Let $W = Z(I) \subseteq Y$. Then ϕ^* induces an isomorphisms
 $\phi^* : A(W) \longrightarrow A(X)$
 $\implies 0 : X \longrightarrow W$ is an isomorphism, by the correspondence

⇒ p: X → W is an isomorphism, by the correspondence between ring maps and morphisms.

Problem 2. Consider the algebraic set $X = Z(I) \subset \mathbb{A}^3$ given by the ideal $I = (y - x^2, yz^2, xz^2) \subset \mathbb{C}[x, y, z]$

Find a decomposition of X into irreducible components and compute its dimension.

Solution (Geometry) $X = Z(I) = Z(JI) = Z(y - x^2, yz, xz)$ either: z=0 (mponent $X_1 = Z(y - x^2, z)$ or X=y=0 ~ compound X2= Z(X, y) $\therefore \chi = \chi \cup \chi$ din X = Max (din X, din X,) = 1 Solution 2 (algebra) Claim: I = (y - x², Z) ~ (x, y) C OK 2: Take $f = A(y - x^2) + Bz^2$ If fe(x,y), then BE(x,y) => B=xC+yD =) $f = A(y - x^2) + Cxz^2 + Dyz^2$ E LHS √ dim X = dim $A(X) = \max \left(\dim \frac{k[x, y_2]}{(y - x^2, z^2)} \right) \dim \frac{k[x, y_2]}{(x, y)} \right)$ ~ 1

Problem 3. Find all the singular points on the curve

$$C=Z(x^4+y^3z-x^2yz)\subset \mathbb{P}^2$$

and show that C is rational (i.e., birational to \mathbb{P}^1).

(1)
$$\frac{\partial f}{\partial x} = 4x^3 - 2xyz = 2x(x^2 - yz)$$

(II) $\frac{\partial f}{\partial y} = 3y^2 - x^2 - x^2 = z(3y^2 - x^2)$
(II) $\frac{\partial f}{\partial z} = y^3 - x^2 - y = y(y^2 - x^2)$
Assume first that $xyz \neq 0$.
(II) gives $y = ax$. $a = t$)
(II) gives $3y^2 - x^2 = 3x^2 - x^2 = 2x^2 \rightarrow x = 0 \rightarrow \text{contradiction}$
 $\xrightarrow{} xyz = 0$.
(II)
 $f = x = 0$: $= 2 \quad y = 0$ $= 0$ the point (0:0:1),
 $y = 0 \quad (\text{and } x \neq 0) = 0 \quad z = 0$
 $= 0 \quad \text{the point (1:0:0), but this does}$
 $not lie on C.$
If $z = 0 \quad (\text{and } xy \neq 0)$: $(I) = 0 \quad z = 0 \quad z \quad \text{contradiction}.$
 $\therefore \quad (0:0:1) \text{ is the only singular point.}$
(onsider the open set $D(z) \simeq A^2$
 $\rightarrow \quad C \quad \text{is given by } x^4 + y^3 - x^2y$

The point (9,0) has multiplicity 3 (= dag X - 1)
so we expect that C is rational.
Write
$$y=ax$$

 $\longrightarrow x^{y} + a^{3}x^{3} - x^{2}ax = x^{3}(t+a^{3}-a)$
 \longrightarrow we get the parameterization
 $A^{1} \xrightarrow{\Phi} C$
 $a \longrightarrow (a-a^{3}, a^{2}-a^{y})$
This is 1-1 on an open set by construction, so C is rational.
Inverse: $C \longrightarrow A^{1}$
 $(X, Y) \longrightarrow X$
 $C \subset A^{2}$ degree d
 $(0,0) \in C$ multiplicity d-1
 \Rightarrow C is rational (some asymptot)
 $Y=ax$

Problem 4. Consider $V \subset \mathbb{A}^2 \times \mathbb{P}^1$ given by the equation

$$u_0 x^2 - u_1 y = 0$$

where $(u_0 : u_1)$ are homogeneous coordinates on \mathbb{P}^1 and x, y are affine coordinates on \mathbb{A}^2 . (i) Show that V is irreducible and compute its dimension.

- (ii) Describe the fibers of the morphism $\pi = p_1 : V \to \mathbb{A}^2$ and show that V is rational. (iii) Describe the fibers of the morphism $p = p_2 : V \to \mathbb{P}^1$. Which fibers are singular? (iv)* Find all sections of p, i.e., morphisms $\sigma : \mathbb{P}^1 \to V$ so that $p \circ \sigma = \mathrm{id}_{\mathbb{P}^1}$.

(i) Our the open set
$$D(u_0)$$
, $V \cap D(u_0)$ is the hyperinface
 $x^2 - u_1 y = 0$ in $AI^3 \longrightarrow inveducible$
Our $D(u_1)$ it is given by $u_0 x^2 - y = 0$ in $AI^3 \sim inved.$
Also, $V \cap D(u_0) \cap D(u_1)$ is inveducible $\longrightarrow V$ is inveducible
The dimension of $Z(x^2 - u_1 y)$ is 2 (by Krull) \Longrightarrow alim $V = 2$.
(ii) The fibers of $TT = P_1 : V \longrightarrow AI^2$
Given $(a_1b) \in AI^2$, we have
 $(a_1b)x(u_0;u_1) \in \pi^{-1}(a_1b) \Leftrightarrow u_0 a^2 - u_1 b^2 = 0$ (*)
If $(a_1b) \neq (0,0)$, the point $(u_0: u_1)$ is unigately determined from (*)
 $(f(a_1b) \neq (0,0), \quad Tn^{-1}(0,0) = (0,0) \times P^1$ $X = a_0 d_{10} \times c_{11} d_{10} d_{10}$
 $\therefore Tr: V \longrightarrow Ai^2$ is generically $I-I \longrightarrow V$ is rational. $c_{11} d_{11} d_{11} d_{12} d_{12$