Chapter 1 - Algebraic sets

$$k = an algebraically closed field (e.g. C, $\overline{R}, \overline{F_{p}}, ...)$
 $Al^{n} = k^{n} = affine n-space.$$$

Det A (closed) algebraic set is a subset of

$$A^n$$
 of the form
 $Z(S) = \sum_{x \in A} A^n | f(x) = 0 \forall f \in S \\$
where S is a set of polynomials in $b(x_1, ..., x_n]$.

Note: If
$$S = \widehat{Z} \underbrace{f_{1, \dots, f_{r}}}_{Z(S)}$$
, thun
 $Z(S) = Z(I)$ where $I = (\underbrace{f_{1, \dots, f_{r}}}_{is \text{ the ideal gendred by } S}$.

Proper lies of Z(I)(1) $I \subseteq J \Rightarrow Z(J) \subseteq Z(I) \ge reverses inclusions$ (2) $Z(I+J) = Z(J) \cap Z(J)$ intersection (3) $Z(IJ) = Z(J \cap J) = Z(J) \cup Z(J)$ union (4) $Z(J) = Z(JJ) = Z(JJ) \cup Z(J)$ union $IJ = \{F \in A \mid f \in J \notin f \in J \}$ taking V does not Change Z(I).

(1)
$$x \in Z(J) \rightarrow f(x) = 0 \forall f \in J \Rightarrow f(x) = 0 \forall f \in J$$

= $x \in Z(J)$.

(2)
$$x \in Z(I+J) \Rightarrow f(x) = 0$$
 for $f \in I+J$
 $\Rightarrow f(x) = 0$ for $f \in I$ and $f \in J$
 $\Rightarrow x \in Z(I) \cap Z(J)$

(3) IJ is generaled by products fig
$$f \in J$$
, $g \in J$
If $x \in Z(T)$ then $f(x) \cdot g(x) = 0 \Rightarrow either f(x) = 0 = 0 \times E Z(T) \cup Z(J)$
or $g(x) = 0$
(orvervely, if $x \in Z(T) \cup Z(J)$ then $f(x)g(x) = 0 \Rightarrow x \in Z(TJ)$ also

(4)
$$Z(\overline{F}) \subseteq Z(\overline{F})$$
 since $\overline{I} \subseteq \sqrt{\overline{F}}$
If $x \in Z(\overline{F})$ and $f \in \sqrt{\overline{F}}$, thun $f^{N} \in \overline{I}$
so $f(x)^{N} = 0 \implies P(x) = 0 \implies x \in Z(\sqrt{\overline{F}})$ also.

The ideal of functions varishing on a set

Given a subset
$$X \subseteq A|^n$$
, we also get an ideal $I(x)$
given by
 $I(x) = \{f \in k[x_1 - x_n] \mid f(x) = o \forall x \in X \}$.

Proper files of I(X)(1) $X \subseteq Y \longrightarrow I(Y) \subseteq I(X)$ I vereases in clusions (2) $I \subseteq I(Z(J))$ (feI => f(x) = 0 $\forall x \in Z(J)$) -f(x) is a taudological statement(3) <math>Z(I(X)) = X for X = Z(a) for some idea(a. 1 Not true in general: $Z : a \subseteq I(X)$ = 7 Z(a) Z Z(I(X)) $= X \subseteq Z(I(X))$ $= X \subseteq Z(I(X))$ $= X \subseteq Z(I(X))$ $x \in X = f(x) = 0$ for all $f \in I(X)$ $\xrightarrow{relymonials}_{rec}$ $x \in Z(I(X))$.

The coordinate ring of
$$X$$

If $X \subseteq AI^{n}$ is an algebraic set, we
define
 $A(X) = \frac{k[x_{1}, \dots, x_{n}]}{I(X)}$

Intuition:

We think of polynomials in $k[x_1,...,x_n]$ as functions $Al^n \rightarrow k$ $f, g \in k[x_1,...,x_n]$ restrict to the same function $X \longrightarrow k$ $\iff f-g \in I(X)$. \therefore Elements of A(X) give the polynomial functions $X \rightarrow k$.

Hilbert's Nullstellensatz

Assume k is an algebraically closed field, and that $\alpha \subseteq k[x_1,...,x_n]$ is an ideal. Then $I(Z(\alpha)) = \sqrt{\alpha}$ extremely important?

Note: this fails over other fields e.g
$$k=\mathbb{R}$$
:
 $\alpha = (x^2 + 1) \subseteq \mathbb{R}[x]$ has $Z(\alpha) = \emptyset$.

$$X \mapsto I(X)$$
 and $I \mapsto Z(I)$ give mutually inverse mappings
 $\begin{cases} algebraic sets \\ of Al^n \end{cases} \xrightarrow{\qquad} f = \begin{cases} vadical ideals \\ vadical ideals \end{cases}$

This bijection revenses inclusions: $X \subseteq Y \Rightarrow I(Y) \in I(X)$.

Other vergions of the Nullshellensotz Note: $I(\emptyset) = (1)$ If a 1s a proper ideal then $Ta \neq (1)$ so Hilbert's Nullshellensotz says that $Z(\alpha) \neq \emptyset$.

Weak Nullstellensatz (WN)

$$k = k$$

 $\alpha \neq (1) \implies Z(\alpha)$ is non-empty.
 $wagonin this fails
 $v = mpty$.$

Suice any ideal is contained in a maximal ideal, this follows from:

Werk Nullstellensontz I (WNZ)
k=E
The maximal ideals in
$$k[x_1,...,x_n]$$
 are exactly the ideals
 $M = (x_1 - a_1,...,x_n - a_n)$
for $a_{11}...,a_n \in k$.
His clear that these are maximal: $\frac{k[x_1...x_n]}{(x_1-a_1,...,x_n-a_n)} \ge k$ is a field
If $m \le k[x_1...x_n]$ is maximal, then $Z(m) \ne \emptyset$ by WN
so $\exists (a_1,...,a_n) \in Z(m) \implies (x_1-a_1,...,x_n-a_n) \le I(Z(m)) = m$
but $(y_1-a_1,...,x_n-a_n)$ is maximal $\Longrightarrow m = (x_1-a_1,...,x_n-a_n)$.
So in fact $WN \iff WNZ$.

WN => Nullstellensontz

a
$$\leq hG_{1}, ..., X_{n}$$
 a proper ideal
 $I(Z(a)) \geq Ia$ or
 $I(Z(a)) \leq Ia$ or
 $I(Z(a)) \leq Va$:
 $Pick g \in I(Z(a))$ and $consiler the ideal
 $b = a \cdot hG_{1,...,X_{n+1}}] + (1 - X_{n+1}g) \leq h(X_{1}...X_{n+1})$
 $\sim Z(b) = \pi^{-1}(Z(a)) \cap Z(1 - X_{n+1}g) \int_{I} \pi$ produce from
 $(X_{1}...X_{n}) AI^{n+1}$
 $Z(b)$ much be empty, since $g \neq 0$ on $Z(1 - X_{n+1}g)$.
 $\sim I \in f$ by Weak Nulldellersofz
 $\sim I \in f(X_{1}...X_{n})h_{i}(X_{1}...X_{n+1}) + h \cdot (1 - X_{n+1}g)$
Set $X_{n+1} = \frac{1}{g}$ and multiply by g^{N} for $N > 20$.
 $\sim g^{N} = Z f(X_{1}...X_{n}) H_{i}(X_{1}...X_{n})$ in $h(X_{2}...X_{n}]$
 $\sim g \in Va$.
 $Pick g \in Ia$.$

Weak Nullskellen satz II (WN3)
k a field (not assumed to be alg. closed)

$$M \subset k[x_1...x_n]$$
 maximal ideal
 $\longrightarrow k[x_1...x_n]/m$ is a finite field extension of k.

WN3 => WN2 Since $k = \overline{k}$ in WN2 we must have $k[\overline{k_1...x_n}]_m \xrightarrow{\sim} k$. Let $a_i \in k$ be the image of x_i under Huis isomorphism $\Rightarrow (x_{-a_1,...,x_n} a_n) \stackrel{\sim}{=} ker(k[x_{1}...x_{n}] \xrightarrow{\sim} k[x_{1}...x_{n}]_m \xrightarrow{\sim} k) = m$

$$\implies$$
 $m = (x - a_1, \dots, x_n - a_n)$ by maximality \square

Prof of WN3 Lemma kCK finitely generated field extension which is not finite $a_1, \dots, a_r \in K \implies k[a_1, \dots, a_n] \neq K.$ Case I RCK has transcendence degree 1 -> JXEK St k(x) = K is finite Let {eo,..., en} be a basis for K as a k(x)-vector space with eo=1 lilij = Z cijklk for some Cijk E k(x) S:= common denominator of all the Gik E K(K) $\longrightarrow A = \bigoplus k[x]_s e_i \subset K$ subalgebra i which is free. which is free over bixz. Express a, ..., a, in the basis Sei } $a_j = \sum d_{ij} e_i \qquad d_{ij} \in k(x)$ t: = common denominator of the dij's

WN3 => WNZ (=> WN => Nullsfellensatz

Examples
1. conics in
$$Ai^2$$

 $X = Z(q)$ where $q = a_0 x^2 + a_1 xy + a_2 y^2$
 $+ b_0 x + b_1 y + c$
After a linear change of coordinates, we have two cases:
(i) $q = y - x^2$ (parabola)
(ii) $q = xy - 1$ (hyperbola)
(ii) $q = xy - 1$ (hyperbola)
We need $k = h$ for this. For instance, we may write
 $x^2 + y^2 = (x + iy)(x - iy) = uv$

Note that I(C) is prime: It is the barnel of the surjective map $k[X_1 y, Z] \longrightarrow k[t]$ $x \longrightarrow t$ $y \longrightarrow t^2$ $Z \longrightarrow t^3$ and k[t] is an integral domain. Also, C is not contained in a plane in Al^3 : there are no linear forms in I(X) (this is probably the origin of the adjective "twisted")