Chapter II - Bezont's theorem
Given two canes $C=Z(F)$ and $D=Z(G)$ of degree m and n respectively, the number of intersection points $C \cap D$ is at most min .

4 points

3 points

2 points

1 point

0 points

However, if we

- work in \mathbb{P}^{2}
- work over an algebraically closed field
- Count intersection points with multiplicities then we have exactly m.n points (Bezout's theorem)

Thu (Classical form of Bezout's theorem)
Let Z_{1}, \ldots, z_{n} be hypersurfaces in \mathbb{P}^{n} with only finitely many points in common. Then

$$
\operatorname{deg} z_{1} \cdots \operatorname{deg} z_{n}=\sum_{p \in \mathbb{P}^{n}} \mu_{p}\left(z_{1}, \ldots, z_{n}\right)
$$

mulliticicity of the
intersection at $p \in p^{n}$ intersection at $p \in p$? (to be defined..)

Multiplicities of modules
$R=$ noethewion graded k-algebren
$M=a \quad f \cdot g$ graded R-module

Deft The multiplicity of M at $p \in \operatorname{Spec} R$ is defined by

$$
\begin{aligned}
& u_{p}=\text { length }_{R_{p}} M_{p} \leftarrow \begin{array}{c}
\text { Real: length }=\text { suphem } \\
\text { of chains of submumenes }
\end{array} \\
& M=M^{0} \underset{\sim}{ } M^{\prime} Z-z M^{d}=0
\end{aligned}
$$

If (R, m) is local, then

$$
u_{p}(M)<\infty \Leftrightarrow m^{d} M=0 \text { for some } d
$$

In this case,

$$
u_{p}(M)=\operatorname{dim}_{k}\left(M \otimes_{R} k\right) \quad k=R / m
$$

Main example
X a variety
$x \in X$ a point
$I \subset O_{x, x}$ an ideal with $\sqrt{I}=m \subset O_{x, x}$
$I \geq m^{r}$ for some $r \gg 0$
$\leadsto \operatorname{dim}_{k}\left(O_{x_{x}}\right)<\infty$ and so we define
the multiplicity of I at $x=\mu_{x}\left({ }_{x_{x_{1}}}{ }_{I}\right)=\operatorname{dim}_{k}\left(\frac{O_{x_{x}}}{I}\right)$ dimension as a k-vector ap

Affine case: $\quad X \subseteq A)^{n}$

$$
0_{x x / I}=(A(x) / I)_{m}
$$

$\leadsto \mu_{x}\left(O_{x, x} / I\right)=\mu_{x}(A(x) / I)$

$$
\begin{array}{rl}
e x & x=A A^{2} \\
f & =y-x^{2} \\
g & =y \\
p & =(0,0)
\end{array}
$$

\sim

$$
\begin{aligned}
u_{p}\left(O_{x, x} /(f, g)\right. & \left.=\operatorname{dim}_{k}\left(\left(\frac{k[x, y]}{\left(y, y-x^{2}\right.}\right)\right)_{(x, y)}\right) \\
& =\operatorname{dim}_{k}\left(\frac{k[x]}{\left(x^{2}\right)}\right)_{(x)} \\
& =\operatorname{dim}_{k} \frac{k[x]}{x^{2}}=2 .
\end{aligned}
$$

ex

$$
\begin{aligned}
& F=\left(x^{2}+y^{2}\right) z+x^{3}+y^{3} \\
& G=x^{3}+y^{3}-2 x y z
\end{aligned}
$$

Consider $I=(F, G)$ and $X=Z_{+}(I) \subset \mathbb{P}^{2}$.
We check the affine chouts:
$U_{0}=\left.D_{+}(x) \simeq A 1^{2} \quad x \cap U_{0} \subset A\right|^{2}$ is defined by

$$
\begin{array}{ll}
f=\left(1+u^{2}\right) v+1+u^{3} \\
g=1+u^{3}-2 u v
\end{array} \quad u=\frac{x_{1}}{x_{0}}, v=\frac{x_{2}}{x_{0}}
$$

$J=(f, g)$ has primary decomposition

$$
J=(\underbrace{3 u+3 v+3, v^{3}}_{q_{1}}) \cap(\underbrace{v, u^{2}-u+1}_{q_{2}})
$$

If $p \in Z\left(q_{1}\right)$ then

$$
O_{x, p} \simeq\left(\frac{k[u, v]}{(3 u+3 v+3, v 3)}\right)_{m_{p}} \simeq \frac{k[v]}{v^{3}} \quad \leadsto x_{p}=\underline{3}
$$

If $p \in Z\left(q_{2}\right)$ then

$$
O_{x, p} \simeq\left(\frac{k[u, v]}{\left(v, u^{2}-u+1\right)}\right)_{m p} \simeq\left(\frac{k[u]}{(n-\alpha)(u-\beta))_{u_{p}}} \leadsto \mu_{p}=1\right.
$$

\rightarrow checking the remand) points where $x=0$:
In $D_{+}\left(x_{2}\right), \quad X$ is given b_{y}

$$
\begin{array}{ll}
1+\left(x_{2}\right), & x \text { is given } b y \\
z\left(u^{2}+2 u v+v^{2}, u^{3}+v^{3}-2 u v\right) & =z(u, v) \quad v / x_{2} \\
v=\frac{x_{2}}{x_{2}}
\end{array}
$$

$$
\begin{gathered}
\left(\begin{array}{c}
\left.\frac{k[u, v]}{\left((u+v)^{2}, u^{3}+v^{3}-2 u v\right)}\right)_{m}=\left(\frac{k[u, v]}{\left.(u+v)^{2}, u v\right)}\right)_{m}=\left(\frac{k[u, v]}{\left(u^{2}+v^{2}, u v\right)}\right)_{m} \simeq\left(\frac{k[u, v]}{\left(u v, u^{2}+v^{2}, v^{3}, u^{3}\right)}\right)_{m} \\
\left((u+v)^{2}, u^{3}+v^{3}-2 u v\right) \\
=\left((u+v)^{2}, u v(3 u+3 v+2)\right) \\
\tau_{\text {invertible in }} \quad
\end{array} \quad=k \oplus k u \oplus u^{2}+v^{2}\right)-u \cdot(u v) \\
\\
\sim \mu_{p} \oplus k u^{2} \\
\end{gathered}
$$

\therefore one point of multiplicity 4 one point of multiplicity 3 two points of multiplicity 1 (so $\sum y_{p}=9=3.3$)

$$
\text { ex } \begin{aligned}
x & =A^{2} \\
f & =y-x^{2} \\
g & =y-x^{2}-x y \\
p & =(0,0) \\
\Longrightarrow \quad O_{x, x} /(f, g) & =\left(\frac{k[x, y]}{\left(y-x^{2}, y-x^{2}-x y\right)}\right)_{(x, y)} \\
& =\left(\frac{k[x, y]}{\left.\left(y-x^{2}, x^{3}\right)\right)_{(x, y)}} \cong\left(\frac{k[x]}{x^{3}}\right)_{(x)}=\frac{k[x]}{x^{3}}\right. \\
\therefore x_{p}(0 / I) & =3
\end{aligned}
$$

$$
\begin{aligned}
& \text { ex } X=\left.A\right|^{3} \quad f_{1}=x y-z^{2}, \quad f_{2}=x-z, \quad f_{3}=y+x \\
& \sim O_{x, p} /\left(f_{1}, f_{2}, f_{3}\right)=\binom{k[x, y, z]}{\left(x y-z^{2}, x-z, y+x\right)}(x, y, z) \\
&=\left(\frac{k[x]}{\left.x(-x)-x^{2}\right)}\right)_{(x)}=\frac{k[x]}{\left(x^{2}\right)}
\end{aligned}
$$

\leadsto multiplicity $=2$

Transverse intersections
Given $p \in A^{n} \quad \leftrightarrow$ maximal ideal $m \subset k\left[x_{1} \ldots x_{n}\right]$
For $f \in k\left[x_{1}, \ldots x_{n}\right]$ s.t $f(p)=0$ (so $f \in m_{p}$)

Note: $Z(f)$ won-singula at $p \Leftrightarrow d f \neq 0$

$$
" \sum \frac{\partial f}{\partial x_{i}}(p) \cdot x_{i}
$$

Defn r hypersunfaces with equations fi....fr meet transversely at p if
(i) they are non-singulow at p; and
(ii) $d f_{1}, \ldots, d f_{r} \in \mathrm{~m} / \mathrm{m}^{2}$ are linearly independent.

Intuitive picture:

transversal

not transversal

$$
\langle d f, d g\rangle=k
$$

Lemma Let $A=k\left[t_{1}, \ldots, t_{n}\right]_{\left(t_{1}, \ldots, t_{n}\right)}=O_{A 1^{n}, 0}$

$$
f_{1}, \ldots, f_{n} \in m
$$

TFAE:
(1) f_{1}, \ldots, f_{n} meet transversally at 0
(2) $\left(f_{1}, \ldots, f_{n}\right)=m$
(3) $\quad y_{p}\left(z_{1}, \ldots, z_{n}\right)=1$ where $z_{i}=z\left(f_{i}\right) \quad i=1 \ldots n$

Nakayama
$d f_{1}, ., d f_{n}$ generate $m / m^{2} \Longleftrightarrow f_{1}, \ldots, f_{n}$ generates m \Uparrow
$d f_{1}, \ldots d f_{n}$ are lineouly inclependent

So $\quad(1) \Leftrightarrow(2)$.

$$
(2) \Leftrightarrow \operatorname{dim}_{k}\left(A /\left(f_{1}, \ldots, f_{n}\right)\right)=1 \Leftrightarrow u_{p}\left(z_{1}, \ldots, z_{n}\right)=1 \text { by betinition. }
$$

Ruk If, say, $f_{1} \in m^{2}, m$, then $f_{1} \ldots f_{n}$ caunos geneate the maximal ided m \therefore If $z\left(f_{1}\right)$ is singular at $p \rightarrow \mu_{p} \geqslant 2$.

Numerical polynomials

DeAn A numerical polynomial is a polynomial $P \in \mathbb{Q}[z]$ S.t $P(m) \in \mathbb{Z}$ for each $m \in \mathbb{Z}$.
ex $\binom{z}{n}:=\frac{z(z-1) \cdots(z-n+1)}{n!} \in \mathbb{Q}[z]$
is a numerical polynomial which has non-integer coefficients.

If P is a numerical polymunal, then so is $\triangle P(z)$ where $\quad \Delta P(z)=P(z+1)-P(z)$ is the (forward) difference operator.

Lemma
(1) If $P \in Q[z)$ and $P(m) \in \mathbb{C}$ for all $m \gg 0$ $\leadsto P$ is a numerical polynomial
(2) $\binom{z}{n}$ form a \underline{X}-basis for the group of numeral polymaids ie.

$$
P(z)=c_{0}\binom{z}{n}+c_{1}\binom{z}{n-1}+\ldots+c_{n}
$$

for $c_{0}, \ldots, c_{n} \in \mathbb{Z}$
(3) If $f: \mathbb{C} \rightarrow \mathbb{C}$ is a function s.t $\Delta f(m)$ is a polynomial for $m \gg 0$ then I numerical polynomial $P(z) \in \mathbb{Q}[z]$ s.t

$$
f(m)=P(m) \quad \text { for } \quad m \gg 0 .
$$

Hilbert functions and Hilbert polynomials

For the rest of the section $R=k\left[x_{0}, \ldots, x_{n}\right]$ All modules M are $f . g$. and graded.

Detn the Hilbert function of M is given by

$$
h_{\mu}(i)=\operatorname{dim}_{k} M_{i}
$$

dimension of the it th graded
ex For $M=R$, we have part of M.

$$
h_{M}(d)=\binom{n+d}{n}
$$

ex $\quad R=k\left[x_{0}, x_{1}\right] \quad M=R /\left(x_{0}^{3}, x_{0} x_{1}, x_{1}^{5}\right)$
$\leadsto h_{M}$ has values

i	0	1	2	3	4	5	6	7	8
h_{M}	1	2	2	1	1	0	0	0	0

\leadsto poly nominal growth for $i \geqslant 5$.

Theorem (Hibert-Serre)
I $\subset R=k\left[x_{0}, \ldots, x_{n}\right]$ homogeneous ideal.
\sim Unique polynomial $P_{I}(z) \in \mathbb{Q}[z]$ s.t
$h_{I}(m)=P_{I}(m) \quad$ for all $m \gg 0$
Furthermore,
a) $\operatorname{deg} P_{I}(m)=\operatorname{dim} Z_{t}(I) \subseteq \mathbb{P}^{n}$
b) If $Z_{+}(I) \neq \varnothing$, then the leading coefficient of $P_{P_{I I}}(z)$ is of the form $\frac{1}{\left(\operatorname{deg} P_{I}\right)!}$ (integer)

See Ellingsmad's "Lectures on Commutative Algebra".

Deft $P_{I}(z)$ is called the Hilbert polynomial of I.

The Degree of a variety
Def
If $d=\operatorname{dim} Z_{+}(\operatorname{com} M)$, we define the degree of M as

$$
\operatorname{deg} M=d!\left(\text { leading coefficient of } P_{M}\right)
$$

If $X \subseteq \mathbb{P}^{n}$ is a closed subset, we define ${ }^{{ }^{\text {this }}}$ is an

$$
\operatorname{deg} x=\operatorname{deg}(R / I(x)) .
$$

Note: If $X \neq \varnothing \Rightarrow(I(x) \not)_{d} \not R_{d} \quad \forall d \geqslant 0$

$$
\Rightarrow P_{x} \neq 0 \text { with positive leading coefficient }
$$

$$
\Rightarrow \quad \operatorname{deg} x>0 .
$$

(If $X=\varnothing$, then $\exists d$ sit. $x_{i}^{d} \in I(X) \forall i$ by Nullstellenstic

$$
\begin{aligned}
& \Rightarrow(R / I(x))_{i}=0 \text { for } i \geqslant d \cdot(n+1)+1 \\
& \left.\Rightarrow P_{x}=0 . \quad\right)
\end{aligned}
$$

Lemma $F \in k\left[x_{0}, \ldots, x_{n}\right]_{d} \Rightarrow X=z_{+}(F) \subset \mathbb{R}^{n}$ has degree d.

$$
\begin{aligned}
u R(-d) & \xrightarrow{\rightarrow} R \rightarrow R / F \rightarrow 0 \quad \text { is exact } \\
\sim h_{M}(z) & =h_{R}(z)-h_{R}(z-d) \\
& =\binom{z+n}{n}-\binom{z-d+n}{n}=\frac{d}{(n-1)!} z^{n-1}+\ldots \\
\Rightarrow \operatorname{deg} X & =d
\end{aligned}
$$

Lemma $X, Y \subseteq \mathbb{P}^{n}$ of the same dimension m and with no common component.

$$
\Rightarrow \quad 0 K \text {. }
$$

$$
\begin{aligned}
& \leadsto \quad \operatorname{deg}(X \cup Y)=\operatorname{deg} X+\operatorname{deg} Y \\
& I_{X \cup Y}=I_{X} \cap I_{Y} \\
& \sim \text { s.e.s } 0 \sim R / I_{X \cup Y} \rightarrow R / I_{X} \oplus R / I_{Y} \rightarrow R / I_{X}+I_{Y} \rightarrow 0 \\
& \leadsto P_{X \cup Y}=P_{X}+P_{Y}-P_{X \cap Y} \quad X \cap Y \text { has } \operatorname{dim}<m \\
& =\frac{\operatorname{deg} X}{(m-1)!} z^{m}+\frac{\operatorname{deg} Y}{(m-1)!} Z^{m}+\text { terms of lower order }
\end{aligned}
$$

ex Recall the twisted cubic $C \subset \mathbb{P}^{3}$ defweel by the 2×2-minors of the matrix

$$
A=\left(\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3}
\end{array}\right)
$$

$$
\therefore \operatorname{deg} X=3
$$

$$
\begin{aligned}
& \sim 3 . e .9 \\
& 0 \rightarrow R(-3)^{2} \xrightarrow{\left(\begin{array}{ccc}
x_{2}-x_{1} & x_{0} \\
x_{3}-x_{2}
\end{array}\right)} R(-2)^{3} \longrightarrow I \longrightarrow 0 \\
& e_{1} \rightarrow x_{0} x_{2}-x_{1}^{2} \\
& e_{2} \rightarrow x_{0} x_{3}-x_{1} x_{2} \\
& e_{3} \rightarrow x_{1} x_{3}-x_{2}^{2} \\
& \therefore P_{I}=3 \cdot P_{R}(z-2) \\
& -2 R_{R}(z-3) \\
& =3\binom{z-2+3}{3}-2\binom{z-3+3}{3}=3\binom{z+1}{3}-2\binom{z}{3} \\
& \leadsto \quad P_{R / I}=P_{R}-P_{I}=\binom{z+3}{3}-3\binom{z+1}{3}+2\binom{z}{3} \\
& =\underline{3 z+1} \quad 0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0 \\
& \operatorname{dim} X=1
\end{aligned}
$$

Regular sequences and Unmixedness
Detn $f_{1}, \ldots, f_{k} \in R$ forms a regubar sequence if f_{r+1} is nof a zero-divior moduls ($h_{\ldots}-f_{r}$) $\forall r=1--k-1$

Note Knull's prisicipal ideal theorm $\Rightarrow \operatorname{dim} z\left(f_{1}, \ldots f_{r}\right)=n-r$ $\forall r=1-e_{-1}$.
ex $x^{2}, y z \quad x^{2}, y^{2}, z^{2}$ are regular, $x^{2}, x y, x^{2}, x+y, z x+y^{2}$ are not.
$Z(x)$ is $\quad z(x, y)$ is a comprenent $\leadsto \operatorname{dim} z\left(f, f z, f_{3}\right)=2$
N de:

$$
\left(x^{2}, x y\right)=(x) \cap\left(x^{2}, y\right)
$$

\rightarrow porblem: there ave astociated prime idells which areid mimiod.

The follourig result is fundamental:
The Unmixedness Theorem (Macaulay)
The polynomial ming $R=k\left[x_{0} \ldots x_{n}\right]$ is unmixed.
In other word, any ideal ICR geverateel by $r=h t I$ elements does not have any embedded primes.
\Leftrightarrow every associated prime is a minimal prime.

Prop If $f_{1, \ldots}, f_{n} \in R$ have $z\left(f_{1}, \ldots, f_{n}\right)$ finite, then f_{1}, \ldots, f_{n} form a regular sequence:
f_{r+1} is not a zero divisor modulo ($f_{1} \ldots f_{r}$) $\forall r$.

Lemma if $Z\left(f_{1}, \ldots f_{n}\right)$ is finite, then any irreducible component Z of $Z\left(f_{1} \ldots f_{r}\right)$ has dimension $n-r$ for $r=1 \ldots n$.

First, $\operatorname{dim} z \geqslant n-r$ by Krill's principal ileal theowan Sinilualy, $\operatorname{dim}\left(z \cap z\left(f_{r+1}, \ldots, f_{n}\right)\right) \geqslant \operatorname{dim} z-(n-r)$

By assumption, $L H S=0$, so $\operatorname{dim} z \leq n-r$.

Cor the ideal $\left(f_{1} \ldots f_{r}\right)$ has $h t=r$ and is therefore unmixed.

Now, let $M=R /\left(f_{1} \ldots f_{r}\right)$.
All associated primes of M have ht r and $\operatorname{dim} \frac{M}{f_{r+1}}<\operatorname{dim} M$.
$\Rightarrow f_{r+1}$ is not contrived in any arsonched pune of M
$\Rightarrow f_{r+1}$ is not a zeodirisor.
$\Rightarrow f_{1} \ldots f_{n}$ is a regular sequence

Prop Let $f_{1}-f_{n} \in R$ be a regular sequence of homogenous elements of degrees d_{1}, \ldots, d_{n} respectively. Then

$$
h_{R / I}(I)=d_{1} \cdots d_{n} \quad I=\left(f_{1}, \ldots, f_{n}\right)
$$

Write $s_{n}=R /\left(f_{1} \ldots f_{r}\right)$. We have sequences $h_{M}(i)=\operatorname{dim}_{k} M_{i}$

$$
0 \longrightarrow S_{r}\left(-d_{r+1}\right) \xrightarrow{f_{r+1}} S_{r} \longrightarrow S_{r+1}=S_{r} / f_{r+1} \longrightarrow 0
$$

$f_{1} \ldots f_{n}$ regular sequence \Rightarrow this is exact. (ingrehice on lefty)

$$
\begin{aligned}
\underset{\substack{\text { induction } \\
\text { on }}}{\underset{s_{r+1}}{ }(z)=} & h_{s_{r}}(z)-h_{s_{r}}\left(z-d_{r+1}\right) \\
= & \left(\frac{d_{1}-d_{r}}{(n-r)!} z^{n-r}+a z^{n-r-1}+\cdots\right) \\
& -\left(\frac{d_{1}-d_{r}}{(n-r)!}\left(z-d_{r+1}\right)^{n-r}+a\left(z-d_{r+1}\right)^{n-r-1}+\cdots\right) \\
= & \frac{d_{1} \cdots d_{r}}{(n-r)!} \cdot(n-r) \cdot d_{r+1} z^{n-r-1}+\cdots \\
= & \frac{d_{1} \cdots d_{r+1}}{(n-r-1)!} z^{n-r-1}+\ldots \quad \square
\end{aligned}
$$

Alterative proof for $n=2 \quad R=h\left[x_{0}, x_{1}, x_{2}\right]$
If f_{1}, f_{2} have no common factors (so $f_{1} f_{2}$ is a regular Sequence), then the following sequence is exact:

$$
\begin{aligned}
& \rightarrow R(-\alpha-e) \xrightarrow{\alpha} \underset{R(-e)}{\mathbb{Q}(-\alpha)} \xrightarrow{\beta} \xrightarrow{\mathbb{B}} \rightarrow R \rightarrow R /\left(f, f_{2}\right) \longrightarrow 0 \\
& \text { Here } \alpha(\omega)=\left(f_{2} \omega,-f_{i} \omega\right) \\
& d=\operatorname{deg} f_{1} \\
& e=\log f_{2} \\
& \beta(a, b)=a f_{1}+b f_{2}
\end{aligned}
$$

This gives

$$
\begin{aligned}
h_{R /(f, 1, R)}(z) & =h_{R}(z)-h_{R}(z-d)-\underset{R}{h}(z-e)+h_{R}(z-d-e) \\
& =\binom{z+2}{2}-\binom{z-d+2}{2}-\binom{z-e+2}{2}+\binom{z-d-e+2}{2} \\
& =\text { dee }
\end{aligned}
$$

Rule There is a Kosenl complex in $\mathbb{P}^{n} n \geqslant 3$ as well:

$$
\cdots \rightarrow \underset{i<j}{\oplus} R\left(-d_{i}-d_{j}\right) \rightarrow \underset{i}{\oplus} R\left(-d_{i}\right)^{n} \rightarrow R \rightarrow R /\left(r_{1}, \ldots F_{n}\right) \rightarrow 0
$$

But shoring exactness here is trickier.

From Hilbert polynomials to local multiplicities
Now, $I=\left(f, \ldots, f_{n}\right) \subset R$ has $\operatorname{dim} Z_{t}(F)=0$
\leadsto after a change of condriactes, we many assure

$$
Z(I) \subset D_{+}\left(x_{0}\right) \subset \mathbb{P}^{n}
$$

Lemma Let $f_{1}, . ., f_{n} \in k\left[\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right]$
dense the delomogerizations wit x_{0}, and set Antinian

$$
O_{z_{1} \cap \ldots n z_{n}}=k\left[\frac{x_{n}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right] /\left(f_{1}, \ldots, f_{n}\right)=\prod_{p} O_{z_{1}, \ldots z_{n}, p}
$$

Then there is a decomposition

$$
S_{x_{0}}=\bigoplus_{i \in \mathbb{Z}} O_{z_{1} \ldots z_{n}} \cdot x_{0}^{i}
$$

Note: $\left(F_{1}, \ldots, F_{n}\right)=\left(f_{1}, \ldots, f_{n}\right)$ in $S_{x_{0}} \quad\left(x_{i}^{d_{i}} f_{i}=F_{i}\right)$
the degree O part: Considw

$$
\begin{aligned}
& R \rightarrow R /\left(F_{1}, \ldots, F_{n}\right) \\
&(\operatorname{ker} \theta)_{0}=\left(\left(F_{1}, \ldots, F_{n}\right)_{x_{0}}\right)_{0}=\left(\left(f_{1}, \ldots, f_{n}\right)_{x_{0}}\right)_{0} \xrightarrow{\theta} R_{x_{0}} /\left(F_{1}, \ldots, F_{n}\right) R_{x_{0}}=S_{x_{0}} \\
& \leadsto \quad\left(\frac{\left.R_{x_{0}}\right)_{0}}{\left.\left(f_{1}, \ldots, f_{n}\right)_{x_{0}}\right)_{0}} \simeq\left(S_{x_{0}}\right)_{0} \Longrightarrow\left(S_{x_{0}}\right)_{0} \simeq O_{z_{1, \ldots n z_{n}}}\right.
\end{aligned}
$$

Now, x_{0} is inverthe in these localizations, So

$$
\left(s_{x_{0}}\right) \cdot x_{0}^{i} \leqslant\left(s_{x_{0}}\right)_{i}
$$

Convencly, any $\omega \in\left(S_{x_{0}}\right)_{i}$ is of the form $w=a x_{0}^{s}$ where $s \in \mathbb{C}, a \in\left(s_{x_{0}}\right)_{0}$. Hence

$$
\left(S_{x_{0}}\right)_{i}=\left(S_{x_{0}}\right)_{0} \cdot x_{i}^{i}
$$

$$
\leadsto \quad \begin{aligned}
S_{x_{0}} & =\bigoplus_{i \in \mathbb{Z}}\left(S_{x_{0}}\right)_{0} x_{0}^{i} \\
& =\bigoplus_{i \in \mathbb{Z}} O_{z_{1} \cap \ldots n z_{n}} \cdot x_{0}^{i}
\end{aligned}
$$

Lemma For $d>0$, the localization map $S \longrightarrow S_{x_{0}}$ induces an isomuphism

$$
\rho: S_{d} \rightarrow\left(S_{x_{0}}\right)_{d}
$$

P injective:
Claim $M=$ kew ρ^{r} has support at the origin.

$$
Z_{+}\left(F_{1}, \ldots, F_{n}, x_{0}\right)=\varnothing \Rightarrow\left(F_{1}, \ldots, F_{n}, x_{0}\right) \text { is }\left(x_{0}, \ldots, x_{n}\right) \text {-primary }
$$

$\therefore Z\left(x_{0}\right)$ and $\operatorname{supp}(s)$ have only the origin in common. in Al^{n+1}.
$\omega \in \operatorname{ker} \rho \Rightarrow x_{0}^{N} \omega=0$ for same $N>0$
Also, $w \cdot F_{1}=\cdots=\omega \cdot F_{n}=0$
$\Rightarrow M$ is amibilated by some power m_{+}^{N}
$\Rightarrow \quad M$ is finite-dimessional as a k-vector spice
$\Rightarrow \quad M_{i}=0$ for $i \gg 0$
$\Rightarrow \quad \rho$ is infective in longe degrees,
of suyechive
Let $w=a x_{0}^{r} \in S_{x_{0}}$ with $a \in\left(S x_{0}\right)_{0}$.
Modulo (F_{1}, \ldots, F_{n}) we may unite w as $\omega=a x_{0}^{r}=H x_{0}^{r-d}$ where $H \in R_{d}$.
\Longrightarrow If rod, ω lies in the image of ρ.
Now, take a basis $a_{1} \ldots, a_{v} \in\left(S_{x_{0}}\right)_{0} \quad$ (as a 1 -veclorspre) and unite these as $a_{i}=H_{i} x_{0}^{-d_{j}}$ where $H_{i} \in R_{d_{i}}$
$d>d_{1} \cdots d_{j} \Rightarrow$ all products $a_{j} \cdot x_{0}^{d_{j}} \in \operatorname{im} \rho$

$$
\begin{aligned}
& S_{d} \longrightarrow\left(S_{x_{0}}\right)_{d} \\
& \uparrow \cdot x_{0}^{d} \\
& \simeq \uparrow x_{0}^{d} \\
& S_{0} \longrightarrow\left(S_{x_{0}}\right)_{0}
\end{aligned}
$$

$\Rightarrow \rho$ is suyjective
prop For $d \gg 0$, the localization map $S \longrightarrow S_{x_{0}}$ induces an isomorphism

$$
S_{d} \simeq 0_{z_{1} \cap \ldots n z_{n}} \cdot x_{0}^{d}
$$

In particular,

$$
\operatorname{dim}_{k} S_{d}=\operatorname{dim}_{k} \theta_{z_{1} \cap \ldots \wedge z_{n}}
$$

Proof of Bezout's theorem
For $d \gg 0$, we have

$$
\begin{array}{rlrl}
d_{1} \cdots d_{n} & =h_{S}(d) & & \quad \text { (by Hilbert polymoneal conpunbius) } \\
& =\operatorname{dim}_{d} S_{d} & & (\operatorname{def}) \\
& =\operatorname{dim}_{z_{1} n \ldots n z_{n}} \quad & (\text { by proposition }) \\
& =\sum_{p} \operatorname{dim}_{k} O_{z_{1} n \ldots n z_{n}, p} & \quad\left(O_{z_{1} n \ldots n z_{n}}=T O_{z_{1}, \ldots n z_{n}, p}\right) \\
& =\sum_{p} \mu_{p}\left(z_{\left.1, \ldots, z_{n}\right)}\right. &
\end{array}
$$

Basic examples
prop Given $p_{1}, \ldots, p_{5} \in \mathbb{P}^{5}$ no 4 lying on a line \Rightarrow 子 unique conic though props.

Uniqueness: Suppose C_{1}, C_{2} are two such conics

$$
\Rightarrow \quad C_{1} \cap C_{2} \supseteq\left\{p_{1}, \ldots, p_{5}\right\}
$$

$\Rightarrow C_{1}$ and C_{2} shave a component by Bezout
$\Rightarrow C_{1}$ and C_{2} are both reducible, say

$$
\begin{aligned}
& c_{1}=Z_{+}\left(L_{1} L_{2}\right) \quad c_{2}=Z_{+}\left(L_{1} L_{3}\right) \\
\Rightarrow & c_{1} \cap C_{2}=L_{1} \cup\left(L_{2} \cap L_{3}\right) \\
\Rightarrow & \left\{p_{1}, \ldots, p_{5}\right\} \leq L_{1} \cup\{\text { point }\}
\end{aligned}
$$

\Rightarrow some 4 of $p_{1} \cdots p_{5}$ lie on L_{2}.
Existence: Let $Q=a_{00} x_{0}^{2}+\ldots+a_{22} x_{2}^{2}$
$Q\left(p_{1}\right)=0 \sim$ linear condition on $a_{00}, a_{01}, \ldots, a_{22}$
6 equations \Rightarrow at last one $\begin{gathered}\text { nom-2eroro } \\ \text { solution }\end{gathered} a_{00}, a_{01}, \ldots, a_{22}$.

Application: Automorphisms of \mathbb{P}^{n}
Tho Any automorphism $\varphi: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}$ is a linear transformation. That is,

$$
\text { Ant } p^{n}=P G L_{n+1}(k)=G L_{n+1}(k) / k^{*}
$$

We hare a map

$$
p: P G L_{n+1}(k) \longrightarrow \text { Nut } \mathbb{P}^{n}
$$

ρ infective:
If $M \in G L_{n}(k)$ induces the identity, then $M=c \cdot \mid d_{n+1} c \rightarrow 0$.
p surjective:
Let $\varphi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ be an automorphism.
Consider $H=Z\left(x_{0}\right)$.
$\sim \varphi(H) \subset \mathbb{P}^{n}$ is a subvariety of codim 1
$\xrightarrow{\text { K maul }} \varphi(H)=Z_{+}\left(F_{0}\right)$ for some $F_{0} \in k\left[y_{0}, \ldots, g_{n}\right]$
Consider $l=Z\left(x_{1}\right) \cap \ldots \cap Z\left(x_{n-1}\right)=Z\left(x_{1}, \ldots, x_{n-1}\right)$,
so that $H \cap l=(0: \cdots: 0: 1)$

Then since φ is an aulowerphism,

$$
\begin{aligned}
\varphi((0:-: 0: 1)) & =\varphi(H \cap l) \\
& =\varphi(H) \cap \varphi(l) \\
& =Z_{+}\left(F_{0}\right) \cap \varphi\left(z\left(x_{1}\right)\right) \cap \cdots \cap \varphi\left(z\left(x_{n-1}\right)\right)
\end{aligned}
$$

Hence

$$
1=\left(\operatorname{deg} F_{0}\right) \cdot\left(\operatorname{deg} \varphi\left(z\left(x_{1}\right)\right)\right) \cdots\left(\operatorname{deg} \varphi\left(z\left(x_{n-1}\right)\right)\right)
$$

This means thu at $F_{0}=a_{00} y_{0}+\ldots+a_{0 n} y_{n}$ is a linear form.
Also, we get that φ induces an isomorphism

$$
\varphi:{\underset{t}{+}}^{D}\left(x_{0}\right) \xrightarrow{\wedge A^{n}} \underset{+}{D}\left(F_{0}\right) \simeq A 1^{n}
$$

Repeating the argument for $H=Z\left(x_{i}\right)$ for $i=1 \ldots n$ shows that φ induces isomorphisms

$$
\varphi \mid: D_{+}\left(x_{i}\right)^{\simeq x^{n}} \longrightarrow D_{+}\left(F_{i}\right) \simeq A 1^{n}
$$

$\left.\varphi\right|_{D_{+}\left(x_{0}\right)}:\left.\left.A\right|^{n} \rightarrow A\right|^{n}$ is given by

$$
\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \mapsto\left(f_{1}\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right), \ldots, f_{n}\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)\right)
$$

Since φ sends hyperplanes to hyper planes, we see that the f_{i} must be linear polynomials, and thus Q must be induced by a linear map $\mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$.

Applications to geometry

Pappus' theorem L_{1}, L_{2} two lines Pick $A_{1} B, C \in L_{1}$, $a, b, c \in L_{2}$
\leadsto drawn lines connecting A to b
 A to C
B to a etc
\sim the intersection points of these 6 lines lie on a line,
Pascal's theorem
Pick A, B, C, a, b, c on a conic X.
Draw 6 lines as before.
\sim, the 3 intersection points are colinear.

Label the lines as follows:

Consider the curves

$$
C_{\lambda}=z\left(L_{1} L_{2} L_{3}-\lambda L_{4} L_{5} L_{6}\right)
$$

Let $P \in X$ be sone other point, and choose λ so that $p \in C_{\lambda}$.

Consider $C_{\lambda} \cap X$. This contains A, B, C, a, b, c ard p $\leadsto \#\left(C_{\lambda} \cap X\right) \geqslant 7$

However, $\operatorname{deg} C_{\lambda}=3$ and $\operatorname{deg} X=2$
Bezout $\Rightarrow C_{\lambda}$ and X must have a common component

$$
\therefore C_{\lambda}=Z(F), X=Z(Q) \quad \leadsto F=Q \cdot L
$$

where L is a linear form.
\therefore We find that the intersection points lie on $Z(L)$

Real plane curves
Let $X \subset \mathbb{P}^{2}$ be a curve defined by a quartic

$$
F \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]
$$

Q: What sort of topology can $Z_{\mathbb{R}}(F) \subset \mathbb{P}_{\mathbb{R}}^{2}$ have?
$\tau_{\text {real points in }} \mathbb{P}_{\mathbb{C}}^{2}$
ex

2 nested orals

3 ovals

4 rounds

2 ovals

Q: Can X have the tuplogny of 3 nested orals?
A: No. Label the ovals as in the figure. Pick
$x \in$ interior of C_{3}
$y \in$ exterior of $C_{1}$$\leadsto$ let $L=$ line through x and y.
L meets each oval twice $\Rightarrow L \cap X \geqslant 6 \Rightarrow$ contradicting Bezout.

Bounds for the number of singular points
Let $X, Y \subset \mathbb{P}^{2}$ be plane curves given by F, G respechely.
If $p \in X \cap Y$ is a singular point of X, then the intersection $x \cap y$ can not be transversal there, so $\quad x_{p} \geq 2$.

Prop A curve $X \subset \mathbb{P}^{2}$ of degree al can not have more than $\binom{d-1}{2}$ singular points.

Suppose X is singular at

$$
P_{1}, \ldots, P_{\binom{d-1}{2}+1}
$$

pick d-3 extra points $q_{1} . . q_{d-3}$

Let C be a curve of degree $d-z$ which passes through

$$
\begin{aligned}
p_{1}, \ldots, p\binom{\alpha-1}{2}+1, & q_{1}, \ldots \\
& \sim\binom{d-3}{(}+1+d-3
\end{aligned}
$$

$\leadsto \operatorname{deg} C \cdot \operatorname{deg} X=d(d-2)=d^{2}-2 d \quad=\binom{d}{2}-1$ pts \leadsto a dimension count shows that such a cure

However, $\mu_{p} \geqslant 2$ for each singular intersection point exists.

$$
\left.\sim \sum_{p \in C \cap x} u_{p} \geq \sum_{p_{i}} 2+\sum_{q_{i}} 1=2 \cdot\binom{d-2}{2}+1\right)+(d-3) .
$$

Bezout \sim C and X must shave a component \sim contradichig the assumption that X is irreducible.

