Chapter 4: Projective varieties
Projective n-space
We define the projective n-space as the set

$$
\mathbb{P}^{n}=A^{n+1}-0 / \underset{\left(x_{0}, \ldots, x_{n}\right)}{\sim} \underset{\substack{\text { equivalence } \\ \lambda \in k^{x}}}{\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)}
$$

We let $\pi: A^{n+1}-0 \rightarrow \mathbb{P}^{n}$ denote the quotient map. \mathbb{P}^{n} is given the quotient topology: This means that we define $V \subseteq \mathbb{P}^{n}$ is closed $\Longleftrightarrow \pi^{-1}(V)$ is closed in $A 1^{n+1}-0$
$\tau_{\text {Here we wart the }}$ Zanisbi topology

Homogeneous coordinates
For $x=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{N}^{n+1}-0$, we let

$$
[x]=\left(x_{0}: .:: x_{n}\right) \in \mathbb{P}^{n}
$$

denote the equivalence class of x, i.e. $[x]=\pi(x)$.
These are called homogeneous coordinates on \mathbb{P}^{n}.
So for instance,

$$
(2: 2: 0)=(1: 1: 0) \quad(3: 4: 5)=(6: 8: 10) \quad(1: 0)=(4: 0)
$$

Note that for $a=\left(a_{0}, \ldots, a_{n}\right) \in A^{n+1}-0$

$$
\pi^{-1}([a])=\left\{\left(\lambda a_{0}, \ldots, \lambda a_{n}\right) \mid \lambda \in k^{*}\right\}
$$

Thus geometrically, the points of \mathbb{P}^{n} conespond to lines in $A 1^{n+1}$ through the origin.

Graded rings and homogeneous polynomials
Detn A graded ming R is a ming of the form

$$
\begin{aligned}
& R=\bigoplus_{d \geqslant 0} R_{d} \quad \text { such that } \\
& \\
& \quad f \in R_{d}, g \in R_{e} \Rightarrow f \cdot g \in R_{d+e}
\end{aligned}
$$

For $f \in R$ we may write $f=f_{0}+f_{1}+f_{2}+\ldots$ where $f_{i} \in R_{i}$ are the homogeneous components of f.
ex The hing $R=k\left[x_{0}, \ldots, x_{n}\right]$ is graded with

$$
R_{d}=\left\{\sum_{i_{0}+\ldots i_{n}=d} a_{i_{0}-i_{n}} x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} \mid a_{i_{0} \cdots i_{n}} \in k\right\}
$$

Note that a polynomial $F \in k\left[x_{0}, \ldots, x_{n}\right]$ is homogeneous if

$$
F\left(t x_{0}, \ldots, t x_{n}\right)=t^{d} F\left(x_{0}, \ldots, x_{n}\right) \quad d=\operatorname{deg} F
$$

Equivalently, all monomials in F have the same degree.
ex $x_{0}^{2}+x_{1}^{2}, x_{0} x_{1} x_{2}$, and $x_{0} x_{3}-x_{2}^{2}$ are homogains $x_{0}^{2}+x_{1}^{3}-x_{1}, \quad x_{0}^{4}+x_{1}$ are not homogeneous.

We say that an ideal $I \subset R$ is homogeneous if it is generated by homogeneous elements.
If I and J are homogeneous, then so is

$$
I \cap J, I+J, I J, \sqrt{I} \text { and } \sqrt{J}
$$

Homogenization
If $f \in k\left[x_{0}, \ldots, x_{n}\right]$ is a polynomial of degree d_{1}, there is an associated homogenization of f with respect to x_{i} given by

$$
f^{h}\left(x_{0}, \ldots, x_{n}\right)=x_{i}^{d} f\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)
$$

ex The homogenization of $x_{0}^{2}+x_{1}^{3}-x_{1}$ and $x_{0}^{4}+x_{1}$ with respect to x_{0} are: $x_{0}^{3}+x_{1}^{3}-x_{1} x_{0}^{2}, x_{0}^{4}+x_{1} x_{0}^{3}$ and with respect to x_{1} : $x_{0}^{2} x_{1}, x_{0}^{4}+x_{1}^{4}$.

If $f \in k\left[x_{1}, \ldots, x_{n}\right]$, we can recover f from the homogenization f^{h} wry x_{0} by

$$
f=\left.f^{h}\right|_{x_{0}=1}
$$

The importance of homogeneous polymonials comes from the following observation:

If $I=\left(F_{1}, \ldots, F_{r}\right) \subset k\left[x_{0}, \ldots, x_{n}\right]$ is a homogeneous idea then the zevo-locus of I

$$
Z_{+}(I)=\left\{\left(x_{0}: \cdots x_{n}\right) \in \mathbb{P}^{n} \mid F_{i}\left(x_{0}, \ldots, x_{n}\right)=0 \quad i=1, \ldots r\right\}
$$

is a closed subset of \mathbb{P}^{n}.
Indeed, we have

$$
\pi^{-1}\left(Z_{+}(I)\right)=Z(I) \cap\left(A A^{n+1}-0\right)
$$

which is closed in $\left.A\right|^{n+1}-0$.

These satisfy the following identities:

$$
\begin{aligned}
& Z_{+}(a b)=Z_{+}(a) \cup Z_{+}(b) \\
& Z_{+}(a+b)=Z_{+}(a) \cap Z_{+}(b) \\
& z_{+}(a)=z_{+}(\sqrt{a})
\end{aligned}
$$

Conversely, for a subset $X \subset \mathbb{P}^{n}$ we define

$$
I(x)=\left\langle\begin{array}{l|l}
f \in k\left[x_{0}, . ., x_{n}\right] & \begin{array}{l}
f \text { homogeneous } \\
f(x)=0 \quad \forall x \in X
\end{array}
\end{array}\right\rangle
$$

Cones

- An algebraic set $W \subset \mathbb{A}^{n+1}$ is called a cone if $0 \in W$ and $x \in W \Longrightarrow \lambda x \in W$ for all $\lambda \in k$.
- If W is a cone, then the projectivization of W is

$$
\mathbb{P}(w)=\pi(W-0)=\left\{\left(x_{0}: \cdots x_{n}\right) \in \mathbb{P}^{n} \mid\left(x_{0}, \cdots x_{n}\right) \in W\right\}
$$

- For a closed subset $X \subset \mathbb{P}^{n}$ the cone of X is

$$
C(X)=\left.\pi^{-1}(x) \cup\{0\} \hookrightarrow A\right|^{n+1}
$$

Two observations

- If $s c k\left[x_{0}, \ldots, x_{n}\right]$ is a set of homogeneous polynomials then $Z(S) \subset A^{n+1}$ is a cone. $F(t x)=t^{\phi} F(x)$
- Conversely, if $X \subset A^{n+1}$ is a cone, then $I(X)$ is homo geneous.
$f \in I(x) \Rightarrow$ write $f=f_{0}+f_{1}+\cdots$
$0=f(\lambda x)=\sum \lambda^{d} f_{d}(x)$ for all $\lambda \in k$ slice X is a cone.
\longrightarrow this is the zero polynomial in λ
$\longrightarrow \quad f_{i}(x)=0$ for all $i \Longrightarrow f_{i} \in I(x) \Longrightarrow I(x)$ homogeneous.

Prop There is a bijection

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { cones in } \left.\left.A\right|^{n+1}\right\} \\
(x)=Z(a)
\end{array} \begin{array}{c}
\{\text { projective algebraic sets }\} \\
X=Z_{+}(a)
\end{array}\right.
\end{gathered}
$$

For a homogeneous ideal $a \subset k\left[x_{0}, \ldots, x_{n}\right]$, we have

$$
\mathbb{P}(z(a))=z_{+}(a) \text { and } C\left(z_{+}(a)\right)=Z(a)
$$

$Z(a)$ is a cone \checkmark
Any cone is of this form \checkmark
Any projective algebraic set is of the form $z_{t}(a), V$

The inelevant ideal
Note that the ideal $\left(x_{0}, \ldots, x_{n}\right)$ defines the empty zero set in \mathbb{P}^{n}. We call this the indecent ideal.

More generally, for a graded ring $R=\oplus R_{d}$ the submodule

$$
R_{>0}=\bigoplus_{d>0} R_{d}
$$

is an ideal of R : the inelevent ideal of R

Projective Nullstellensatz
(i) For any projective algebraic set $X \subset \mathbb{P}^{n}$ we have

$$
Z_{+}(I(X))=X \quad \longleftarrow \text { easy }
$$

(ii) For any homogeneous ideal $J \subset k\left[x_{0}, \ldots, x_{n}\right]$ with $\sqrt{J} \neq\left(x_{0}, \ldots, x_{n}\right)$, we have

$$
I\left(z_{+}(J)\right)=\sqrt{J}
$$

This gives an inclusion - reversing bivective correspondence
priective algebraic
sets ingebraic \mathbb{P}^{n}
$x \mapsto I(x)$

$$
Z_{p}(J) \longleftarrow J
$$

homogeneous radical ideas in $k\left[x_{0}, \ldots, x_{n}\right]$ no f equal to the ingle smut iced.

Proof
(i) $Z_{+}(I(X))=X$ follows like in the affine case.
(ii) $I\left(Z_{+}(J)\right) \geq \sqrt{J} \quad$ clear.

$$
\begin{aligned}
& \text { " } \subseteq \text { :" We have } \\
& \left.\begin{array}{l|l}
\text { We have } \\
I\left(z_{+}(J)\right)=\left\langle f_{\epsilon} k\left[x_{0}, ., x_{n}\right]\right. & \begin{array}{l}
f \text { homogeneoons, } \\
f(x)=0 \quad \forall x \in z_{+}(J)
\end{array}
\end{array}\right\rangle \\
& =\left\langle f \in k\left[x_{0,}, \ldots, x_{n}\right] \left\lvert\, \begin{array}{l}
f \text { homo geneows, } \\
f(x)=0 \quad \forall x \in Z(J)-0
\end{array}\right.\right\rangle \\
& \text { affine zero } \\
& \text { locus is closed } \xlongequal{2}=\left\langle f \in k\left[x_{0}, . ., x_{n}\right]\right| f \text { homogeneous, } \\
& f(x)=0 \quad \forall x \in \overline{z(J)-0} \\
& \overline{z(J)-0}=\overline{z(J)}=\left\langle f \in k\left[x_{0}, \ldots, x_{n}\right] \left\lvert\, \begin{array}{l}
f \text { homogeneorn } \\
f(x)=0 \forall x \in z(J)
\end{array}\right.\right\rangle \\
& \begin{array}{l}
Z(J) \text { is a } \\
\begin{array}{l}
\text { cone, and its } \\
\text { ied }
\end{array}=I(Z(J))=\sqrt{J}
\end{array} \\
& \text { Cone, and its } \begin{array}{c}
\text { ide is aubumbically } \\
\text { homogeneous. }
\end{array} \\
& \text { homo generous. } \\
& \text { usual Nullstellensatz }
\end{aligned}
$$

The bijections above follows from this.

Distinguished open sets
We define the distinguished open set $D_{+}\left(x_{i}\right)$ to be

$$
\begin{aligned}
D_{+}\left(x_{i}\right) & =\left\{x=\left(x_{0}: \cdots x_{n}\right) \in \mathbb{P}^{n} \mid x_{i} \neq 0\right\} \\
& =\left\{x=\left(x_{0}: \cdots: x_{i-1}: 1: x_{i+1}: \cdots: x_{n}\right) \in \mathbb{P}^{n}\right\}
\end{aligned}
$$

If $A_{i}=\left.Z\left(x_{i}-1\right) \subset A\right|^{n+1}-0$, then the map

$$
\left.\pi\right|_{A_{i}}: A_{i} \longrightarrow D_{+}\left(x_{i}\right)
$$

is bijective: the inverse is given by

$$
\begin{gathered}
\alpha:\left(x_{0}: \cdots: x_{n}\right) \stackrel{\rightharpoonup}{\longmapsto}\left(\frac{x_{0}}{x_{i}}, \frac{x_{1}}{x_{i}}, \ldots, 1, \ldots \frac{x_{n}}{x_{i}}\right) \in A_{i} \\
x_{i} \neq 0
\end{gathered}
$$

Main idea: We want to show that \mathbb{P}^{n} is a (pro) variety \longrightarrow the $D_{+}\left(x_{i}\right)$ will give us the affine cover.
A_{1}
A_{2}

In fact:
Prop $\left.\quad \pi\right|_{A_{i}}: A_{i} \rightarrow D_{+}\left(x_{i}\right)$ is a homeomorphism
$\left.\pi\right|_{A_{i}}$ is clearly continuous and a' bijection.
$T_{0} A_{1}$ prove that it is a homeomorphism, we need to show that $\left.\pi\right|_{A_{i}}$ is closed.
Any closed subset $Z \subseteq A_{i}$ is an intersection of sets of the form

$$
Z=Z(f) \cap A_{i} \quad f \in k\left[x_{0}, \ldots, x_{n}\right]
$$

\leadsto suffices to show $\pi\left(Z(f) \cap A_{i}\right)$ is closed in $D_{+}\left(x_{i}\right)$

But

$$
\begin{aligned}
\pi\left(z(f) \cap A_{i}\right) & =\left\{\left(x_{0}: \cdots x_{n}\right) \in \mathbb{P}^{n} \left\lvert\, \begin{array}{l}
x_{i}=1 \text { and } \\
f\left(x_{0}, \ldots, x_{n}\right)=0
\end{array}\right.\right\} \\
& =\left\{\left(x_{0}: \ldots x_{n}\right) \in \mathbb{P}^{n} \left\lvert\, \begin{array}{l}
x_{i}=1 \\
f^{n}\left(x_{0}, \ldots, x_{n}\right)=0 \\
\text { wot } x_{i}
\end{array}\right.\right\} \\
& =z\left(f^{n}\right) \cap D_{t}\left(x_{i}\right)
\end{aligned}
$$

which is closed in $D_{+}\left(x_{i}\right)$

Note that the complement of $D_{+}\left(x_{i}\right)$ is the closed subset $Z_{+}\left(x_{i}\right)$ which is a projective space \mathbb{P}^{n-1}. We may write

$$
\mathbb{P}^{n}=A S^{n} \cup \mathbb{P}^{n-1}
$$

Regular functions on projective varieties
$g, h \in k\left[x_{0} \ldots x_{n}\right]_{d}$ homogeneous of the same degree d.

$$
\frac{g\left(t x_{0}, \ldots, t x_{n}\right)}{h\left(t x_{0}, \ldots, t x_{n}\right)}=\frac{t^{d} g\left(x_{0}, \ldots, x_{n}\right)}{t^{d} h\left(x_{0}, \ldots, x_{n}\right)}=\frac{g\left(x_{0}, \ldots, x_{n}\right)}{h\left(x_{0}, \ldots, x_{n}\right)} \quad \forall t \in k^{x}
$$

$f=\frac{g\left(x_{0}, \ldots, x_{n}\right)}{h\left(x_{0}, \ldots, x_{n}\right)}$ gives a rational function on \mathbb{P}^{n}
This is defined on $D_{+}(h) \subseteq \mathbb{P}^{n}$.

Def Let $X \subseteq \mathbb{P}^{n}$ be a projective algebraic Set.
The structure sheaf O_{x} is defined by

$$
\theta_{X}(U)=\left\{\begin{array}{l|l}
f: U \rightarrow k & \begin{array}{l}
f \text { is continuous and } \\
\text { locally of the form } \\
\frac{g\left(x_{0}, \ldots, x_{n}\right)}{n\left(x_{0,}, \ldots, x_{n}\right)}
\end{array}
\end{array}\right\}
$$

where g, h are homogeneous of the same degree.

This means: For any $p \in U$, there is an open $n b h$ V $P p$ so that $f=g / n$ on V and $h(x) \neq 0$ for all $x \in V$.

Elements of $O_{X}(U)$ are called regular functions on U.
θ_{x} is a presheaf, with purr $=$ restriction of functions

Lemma O_{X} is a sheaf (of k-algebras)
Note that $O_{x}(u)$ is a k-algebras: Given $f_{1}, f_{2} \in O_{x}(u)$ we have $f_{1}+f_{2}, f_{1} \cdot f_{2}, k \cdot f_{1} \in O_{X}(0)$, suice we may for every $p \in X$ find an open set $U \subseteq X$ such that both f_{1} and f_{2} are of the form g / n.

Locality: O_{x} is a subpresheaf of the sheaf R_{x} of continuous k-valued functions $f: U \rightarrow k$.
\therefore Locality holds for O_{x} swine it holds for R_{x}.
Gluing: Given U and U_{i} as above, and elements
$v_{1} f_{i} \in U_{x}\left(U_{i}\right)$ such that $f_{i}=f_{j}$ on $U_{i} \cap U_{j}$
$\leadsto f_{i}$ glue to a continuous map

$$
f: U \rightarrow k
$$

By construction $\left.f\right|_{v_{i}}$ is locally $\frac{g}{h}$, so t is an element of $O_{x}(U)$.
\therefore Amy pugective algebreric set $X=Z_{+}(I) \subseteq \mathbb{P}^{n}$ gives rise to a ringed space $\left(X, O_{x}\right)$.

We want to show that this is a variety.
First $\quad X=\mathbb{P}^{n}$:
Affine cover: $\mathbb{P}^{n}=D_{+}\left(x_{0}\right) \cup \ldots D\left(x_{n}\right)$
Let $\left.\quad A_{i}=\left.Z\left(x_{i}-1\right) \subset A\right|^{n+1} \quad\left(s_{0} \quad A_{i} \cong A\right)^{n}\right)$
The quotient map $\pi:|A|^{n+1}-0 \rightarrow \mathbb{P}^{n}$ gives the diagram

prop The projection $\pi /_{A_{i}}$ is an isomorphism (of ringed spaces)
The inverse is given by $\alpha: D_{+}\left(x_{i}\right) \rightarrow A_{i}$

$$
\alpha\left(x_{0}: \cdots: x_{n}\right)=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)
$$

We have already shown that $\pi_{i}=\left.\pi\right|_{A_{i}}$ is a homeomorphism.
\rightarrow need to check that $\pi_{i}^{*} f \in \mathcal{O}_{A_{i}}\left(\pi_{i}^{-1} U\right)$ for every $f \in O_{D_{+}\left(x_{i}\right)}(U)$.
Pick $V \subseteq U^{D_{+}\left(x_{i}\right)}$ such that $f l_{V}=g / n$ with g, h homogenears polynomials of the same cleave.
$\longrightarrow \mathrm{O}_{\mathrm{u}} \pi_{i}^{-1} V$ we have

$$
\begin{aligned}
\pi_{i}^{*} f=f 0 \pi & =\frac{g\left(x_{0}, \ldots, 1, \ldots x_{n}\right)}{h\left(x_{0}, \ldots, 1, \ldots, x_{n}\right)} \\
& =\left.\frac{g\left(x_{0}, \ldots x_{n}\right)}{h\left(x_{0}, \ldots x_{n}\right)}\right|_{A_{i}}
\end{aligned}
$$

This is regular.
Since $\pi^{-1} U$ is covered by such $\pi^{-1} V \sim O K$.
We also need to check that $\alpha: D_{+}\left(x_{i}\right) \rightarrow A_{i}$

$$
\alpha^{*} f \in O_{D_{+}\left(x_{i}\right)}\left(\alpha^{-1} U\right) \quad \text { for all } \quad f \in \Theta_{A_{i}}(U)
$$

Let $V \leq U$ be an open so that $f=g / n$ there.

$$
\leadsto \alpha^{*} f=f \circ \alpha=\frac{g\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)}{h\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)}
$$

x_{0} / x_{i} are regular on $D_{+}\left(x_{i}\right)$ and $h(x) \neq 0$ for all $x \in V \longrightarrow \alpha^{*} f$ also regular.

Since closed irreducible subsets of affine varieties are affine varieties, we get also
Pro $X \subseteq \mathbb{P}^{n}$ irreducible closed projective set

$$
\left.\rightarrow \quad v_{i}=D_{+}\left(x_{i}\right) \cap x \quad \text { (with } O_{v_{i}}=O_{x} \mid v_{i}\right)
$$

is an affine variety.

Theorem $X \subseteq \mathbb{P}^{n}$ irreducible, closed projective set.
$\rightarrow\left(X, O_{X}\right)$ is a variety.
\leftarrow we call such
Ringed space V
Affine coverniy: $X=\bigcup_{i=0}^{n} D_{+}\left(x_{i}\right) \cap X \vee$

Just need to check that X satisfies the Hausdorff axiom
Lemma The Hausdorff axiom holds provided the following concretion holds: For any two points $x, y \in X$ there is an affine open $U \subseteq X$ containing both x and y.

Now, given $x, y \in X \longrightarrow \exists$ linear form on $A I^{n+1}$

$$
\lambda=a_{0} x_{0}+\ldots+a_{n} x_{n}
$$

such that $\lambda(x) \neq 0$ and $\lambda(y) \neq 0$
$\longrightarrow x, y \in D_{+}(\lambda)$ which is affine
$\leadsto O K$.

Global regular functions on projective varieties For $X \subseteq \mathbb{P}^{n}$ a projective variety \leadsto what are the global regular functions $f: X \rightarrow k$?

Recall: If $\left.X \subseteq A\right|^{n}$ is an affine variety, then the affine coordmate ming $A(X)$ gives us all such functions. $A(X)$ is big enough so that it in fact recovers X.

On the other hand, we will prove
Theorem Let $X \subseteq \mathbb{P}^{n}$ be a projective variety. Then

$$
O_{X}(x)=k
$$

\therefore The only global regular functions $x \rightarrow k$ are the constants!

Compare this to Lioville's theorem in complex analysis:
If $f: \mathbb{C} \mathbb{P}^{1} \longrightarrow \mathbb{C}$ is a holomorphic function $\left.\sim f\right|_{\mathbb{C}}: \mathbb{C} \rightarrow \mathbb{C}$ is a bounded holomplic function $\leadsto f$ is constant.

Some notation:

$$
S(X)=A(C(X))
$$

the homogeneous coordinate ring

$$
C(X) \subseteq A I^{n+1}
$$

cone over X (recall: If $x=z_{+}(I)$ then $\left.C(x)=Z(I) \subseteq A)^{n+1}!\right)$ is defined by a homogeneous ideal.

$$
\begin{aligned}
& \text { ex } S\left(\mathbb{P}^{n}\right)=k\left[x_{0}, \ldots, x_{n}\right] \\
& \text { ex } C \subseteq \mathbb{P}^{3} \text { twisted cubic } \Rightarrow S(c)=\frac{k\left(f_{0}, x_{1}, x_{2}, x_{3}\right]}{\left(x^{2}-x_{0} x_{2}, x_{2}^{2}-x_{1} x_{3}, x_{0} x_{3}-x_{1}, x_{2}\right)}
\end{aligned}
$$

Regular functions on $\mathbb{P}^{n} \quad f: \mathbb{P}^{n} \longrightarrow k$

$$
\begin{gathered}
A^{n+1}-0 \\
\mathbb{T}^{\pi} \underset{f}{\pi} \mathbb{\pi}^{*} f=f \circ \pi \\
\mathbb{R}^{n}
\end{gathered}
$$

\leadsto regular function $\pi^{*} f=f \circ \pi$ on $A I^{n+1}-0$
$\leadsto \pi^{*} f$ is a polynomial in $x_{0}, \ldots x_{n}$
But $\pi^{*} f$ is constant on lines though the origin \Rightarrow it must be constant!
$\operatorname{Prop} O_{\mathbb{R}^{n}}\left(\mathbb{P}^{n}\right)=k$
Now to prove the theorem in general:
Let $f: X \rightarrow k$ be a global regular function

$$
\leadsto \quad \begin{aligned}
& C(x)-0 \quad \pi^{*} f=: F \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Suppose for simplicity that $X \subseteq \mid p^{n}$, so $\left.C(X) \subseteq A\right|^{n+i}$.
We let $D_{i}=C(x) \cap D\left(x_{i}\right)$.
Each D_{i} is an affine variety, usth affine coordinate ring

$$
A\left(D_{i}\right)=S(X)_{x_{i}} \quad \leftarrow \text { localization at } x_{i}
$$

For each i, we may write the restriction $\left.F\right|_{D_{i}}$ as

$$
\begin{aligned}
& \left.F\right|_{D_{i}}=\frac{g_{i}}{x_{i}^{r_{i}}} \quad \text { where } g_{i} \text { is a homogeneous } \\
& \uparrow_{F \text { has degree } 0!} \quad \text { pornial of degree } r_{i} \uparrow
\end{aligned}
$$

$\leadsto x_{i}^{r_{i}} F=g_{i} \quad$ has degree 0! $\quad \begin{aligned} & \text { became } F \\ & \text { is constr }\end{aligned}$
$g_{i} \in S(X)_{r_{i}}$ (the v_{i}-th graded piece) is cons tent
lines though on
0 lines thought on $\leadsto h x_{i}^{r_{i}} F \in S(X)_{r_{i}+j} \quad$ for all $h \in S(X)_{j}$.

Let $r>\sum r_{i}$:
\leadsto any monomial $x_{0}^{a_{0}} \cdots x_{n}^{a_{n}}$ of degree v must contain one of the variables, say x_{i}, with exponent $a_{i}>r_{i}$.

$$
\Longrightarrow x_{0}^{a_{0}} \cdots x_{n}^{a_{n}} \cdot F \in S(X)_{r} \forall \text { monomial } x_{0}^{a_{0}} \cdots x_{n}^{a_{n}}
$$

\leadsto multiplication by $F S(x) \xrightarrow{. F} S(x)$
Cayley-Hamilton leaves the subspace $S(X)_{r}$ invariant.
$\underset{\sim}{\sim} F$ satisfies a monic relation

$$
F^{m}+a_{m-1} F^{m-1}+\ldots+a_{1} F+a_{0}=0
$$

where $a_{i} \in k$.
$\leadsto F \in K(S(x)$ is algebraic over $k \leadsto \nsim \in k$ snide $\bar{k}=k$. \square

Cor If $f: X \rightarrow Y$ is a merphism
If X is projective and Y is affine $\longrightarrow f$ is constant.

Marphisms $X \rightarrow Y$ with Y affine $\longleftrightarrow k$-alg homowphisms $O(Y) \rightarrow O_{X}(X)=k$ So all we get is the constant maps.

Cor If X is a vaniely which is both prjective and aftine, then X is a point.
X attine $\leadsto \exists$ embeddniy $X \subset A I^{n}$
X projechive \leadsto that embedilnig is constant.
$\sim X$ is a point.

Morphisus from quasriprojective varieties
Suppose we have a continuous map $\phi: X \longrightarrow Y$ which fits into a diagram

a diagram			
	$C_{0}(X) \xrightarrow{\Phi}$		
qudient map\rightarrow	$T_{X}(Y)$		
			punctured cones
$C_{0}(X)=C(X)-0$			
$C_{0}(Y)=C(Y)-0$			

Lemma if $\bar{\Phi}$ is a morphism (of quasiaffine varieties) then so is ϕ.

Being a morphism is a local property \leadsto suffices to check that $\left.\phi\right|_{D_{+}}\left(x_{i}\right)$ is a morphism.
Let $A_{i} \subset C_{0}(X)$ be the subvariety given by $x_{i}=1$.
$\leadsto \pi_{X}: A_{i} \rightarrow D_{+}\left(x_{i}\right) \sim X \quad$ is an isomorphism
Let β_{i} denote
the inverse:

$$
\begin{aligned}
& A_{i} \cap C_{0}(X) \xrightarrow{\text { maphism }} C_{0}(X) \xrightarrow[\text { morphism }]{\Phi} C_{0}(Y) \\
& \beta_{i} \uparrow \approx \text { morphism } \\
& D_{+}\left(x_{i}\right) \cap X \text { marphism } \\
& Y
\end{aligned}
$$

$\leadsto D_{+}\left(x_{i}\right) \longrightarrow Y$ is also a morphism
ex $\quad x \longleftrightarrow \mathbb{P}^{n}$
f_{0}, \ldots, f_{m} homogeneous of degree d.

$$
\text { s.t } Z\left(f_{0}, \ldots, f_{m}\right) \cap X=\varnothing
$$

\leadsto morphism

$$
\begin{aligned}
& X \xrightarrow{\phi} \mathbb{P}^{m} \\
& x \longmapsto\left(f_{0}(x): \cdots f_{m}(x)\right)
\end{aligned}
$$

ex A projection is a rational map $\mathbb{P}^{n} \xrightarrow{p} \rightarrow \mathbb{P}^{m} \quad n>m$ induced from $A l^{n+1} \longrightarrow A I^{m+1}$

$$
\left(x_{0}, x_{n}\right) \mapsto\left(x_{0}, \ldots, x_{m}\right)
$$

p is a morphism outside the linear $\mathbb{P}^{n-m-1} \subset \mathbb{p}^{n}$ given by $x_{0}=\cdot \cdot=x_{m}=0$.

Special case: projection from the point $(0: \cdots: 0: 1) \in \mathbb{P}^{n}$

$$
p: \mathbb{P}^{n} \cdots \mathbb{P}^{n-1}
$$

ex

$C=$ the image of $\phi=Z_{+}(I)$ where $I={ }^{2 \times 2}$-minors of
Consider the projection from ($0: 0: 0: 1$):
$\mathbb{P}^{1} \rightarrow C \longrightarrow \mathbb{P}^{3} \rightarrow \mathbb{P}^{2} \quad \ltimes$ not defined at $u=0$!
$(u: v) \rightarrow\left(u^{3}: u^{2} v: u v^{2}: v^{3}\right) \mapsto\left(u^{3}: u^{2} v: u v^{2}\right)$

$$
\left(u^{2}: u v: v^{2}\right)
$$

However, the rational map extends over $(0: 1) \in \mathbb{P}^{\prime}$ by defining
$(u: v) \mapsto\left(u^{2}: u v: v^{2}\right) \quad \therefore$ The projection of the twisted abic

If we instead project from the point $(0: 0: 1: 0)$:
this gives

$$
\begin{aligned}
& \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3} \\
&(u: v) \longrightarrow \mathbb{P}^{2} \\
&\left(u^{3}: u^{2} v: v^{3}\right)
\end{aligned}
$$

This is in fact a mophism $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$
The image is the curve $C=Z\left(x_{1}^{3}-x_{0}^{2} x_{2}\right) \subset \mathbb{P}^{2}$

ex $Q=Z\left(x_{0} x_{3}-x_{1} x_{2}\right) \subset \mathbb{P}^{3}$
projection from $p=(0: 0: 0: 1) \in Q$

Restrict to $U=D_{+}\left(x_{3}\right)$: Then $\left.\cup \cap Q \subset A\right|_{u, v, v} ^{3}$ is given by $u=v w$. and $\left.Q \cap U \simeq A\right|^{2}$ via $\begin{aligned} & \left.\left.A\right|^{2} \longrightarrow Q \subset A\right|^{3} \\ & (v, w) \mapsto(v w, v, w)\end{aligned}$
The projection is given by
$\mathbb{H}^{2} \hookrightarrow Q \longrightarrow \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$
$(v, w) \longmapsto(v w: v: w)$
this is defined on $A)^{2}-\{(0,0)\}$.

$$
\begin{aligned}
& \left.l_{1}=Z(v) \subset A\right)^{2}-0 \\
& \left.l_{2}=Z(w) \subset A\right)^{2}-0
\end{aligned} \quad \text { get mapped to }(0: 0: 1) \quad \text { respectively. }
$$ \checkmark and the projection is an ${ }^{\text {in on }}$ outside $l_{1} \cup l_{2}$.

The remaining points: $\quad\left(x_{3}=0\right)$

$$
\begin{aligned}
& Q \cap z\left(x_{3}\right)=Z\left(x_{3}, x_{0} x_{3}-x_{1} x_{2}\right)=Z\left(x_{3}, x_{1} x_{2}\right) \\
&=Z\left(x_{1}, x_{3}\right) \cup Z\left(x_{2}, x_{3}\right) \\
& Z\left(x_{1}, x_{3}\right) \mathbb{\mathbb { P } ^ { 3 } \ldots} \mathbb{P}^{2} \\
&\left(x_{0}: 0: x_{2}: 0\right) \mapsto\left(x_{0}: 0: x_{2}\right) \quad \text { is an isomorphism }
\end{aligned}
$$

$$
Z\left(x_{1}, x_{2}\right): \quad\left(x_{0}: x_{1}: 0: 0\right) \mapsto\left(x_{0}: x_{1}: 0\right)
$$

\therefore The projection $p: Q \cdots, P^{2}$ collapses the two lines $l_{1}=z\left(x_{0}, x_{1}\right)$ to points

$$
l_{2}=Z\left(x_{0}, x_{2}\right)
$$

and is an isomorphism outside $l_{1} \cup l_{2}$.
Q and \mathbb{P}^{2} are "bivational" (there are mutually inverse rational maps in both divections - more on this later!?

