Chapter 5 : Seque and Veronese varieties
Peln
$$\phi: Y \rightarrow X$$
 is a closed embedding $|Y \rightarrow S \times X$
if the image $V = \phi(Y)$ is closed in X and
 ϕ induces an isomorphism $\phi: Y \xrightarrow{\sim} V \subset X$.
I V has a canonical
variety simular, being
a dosed subset of Y.
ex The morphism $A^1 \longrightarrow A^3$
 $t \longrightarrow (l_1, t_1^2, t_3^3)$
is a closed embedding onto the buisted cubic $C \subset Al^3$.
Being an embedding is a local property on the target X.
Lemma If $\phi: Y \longrightarrow X$ is a morphism, and
 $U = \{U_i\}$ is a collection of opens covering $\phi(Y)$. Then
 ϕ is an embedding $\Leftrightarrow \phi|_{\phi^{-1}(U_i)} : \phi^{-1}(U_i) \longrightarrow U_i$
is an embedding $\Rightarrow \phi|_{\phi^{-1}(U_i)}$ embedding for all i.
" \Rightarrow " ϕ an embedding $\Rightarrow \phi|_{\phi^{-1}(U_i)}$ embedding
 $(image is closed, and restriktion
 ϕ isomorphism is boundeding $\phi(Y)$.$

Lemma Assume that
$$\varphi: At^n \longrightarrow At^{n+m}$$
 has a
left section which is a projection.
Then φ is a closed embedding.
Suppose $\sigma: At^{m+n} \longrightarrow At^n$ is the section
 $(Z_1, ..., Z_{m+n}) \mapsto (Z_1, ..., Z_n)$
The composition $At^n \xrightarrow{\varphi} At^{m+n} \xrightarrow{\sigma} At^n$ is the identity
 $\Rightarrow \varphi$ is bijective onto its image $V = \varphi(At^n)$.
 $ot: V \rightarrow At^n$ is an inverse to $\varphi \longrightarrow \varphi$ is an embedding.
Very useful

Rational normal curves

Affine version

$$\begin{aligned} \phi &: \mathcal{A}^{l} & \longrightarrow & \mathcal{A}^{d} \\ & t & \longmapsto & (t_{1}, t^{2}, \dots, t^{d}) \end{aligned}$$

The image C is given by the equations $Z_{i} = Z_{i}^{i}$ i=2...dA left section of ϕ is given by $AI^{d} \longrightarrow AI'$ $(Z_{1...Z_{d}}) \mapsto Z_{i}$ $\longrightarrow \phi$ is an embedding.

Projective version

$$\begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

Prop ϕ is a closed embedding. Let $U_{o} = D_{+}(u_{o})$. Then $\phi^{-1}(U_{o}) = D_{+}(x_{o}) \subseteq P^{1}$ The restriction $\phi|_{\phi^{-1}(U_{o})}$ is given by $A_{1}^{1} \xrightarrow{d|_{D_{+}(w_{o})}} A_{1}^{d} \xrightarrow{t \longrightarrow (t, t^{2}, ..., t^{d})}$ $\int_{P^{1}}^{Q_{w_{o}}} \xrightarrow{P^{d}} T_{hiv}$ is the affine RNC $\Longrightarrow \phi|_{D_{+}(x_{o})}$ is an embedding. A symmetric augument shows that $\phi|_{D_{+}(x_{o})}$ is an embedding. These two open sets cover $P^{1} \longrightarrow \phi$ is an embedding.

ex For d=2, this is
$$\mathbb{P}^{1} \to \mathbb{P}^{2}$$
 (x₀: x₁) → (x₀²: x₀x₁: x₁²).
The image is the conic C= Z(u₁² - u₀u₂) this is ineclucible

$$\begin{array}{l} \clubsuit \quad \mbox{For } d=3, \mbox{ this is } \mathbb{P}^1 \rightarrow \mathbb{P}^3 \quad (x_0:x_1) \mapsto (x_0^3:x_0^2x_1:x_0x_1^2:x_1^3) \\ \mbox{ The image is the twisted cubic } \mathbb{Z}_{+}(\mathbb{I}) \subset \mathbb{P}^3 \mbox{ where } \\ \mathbb{I} = (u_1^2 - u_0u_2, u_0u_2 - u_1u_2, u_2^2 - u_1u_3). \end{array}$$

Using the substitutions

$$u_1^2 + su_0 u_2$$
 May write any $f \in k[u_0, ..., u_3]$ modulo I as
 $u_1 u_2 \mapsto u_0 u_3$ ~ 2
 $u_2^2 \mapsto u_1 u_3$ $f[u_0, u_1, u_2, u_3] = a[u_0, u_3] + b[u_0, u_3]u_1 + c[u_0, u_3]u_2$

$$\begin{aligned} & \text{If } f \in I(c), \text{ then modulo } I, \\ & f(s^3, s^2t, st^2, t^3) = a(s^3, t^3) + b(s^3, t^3) s^2t + c(s^3, t^3) st^2 \equiv 0 \end{aligned}$$

exponents of t mod 3: 0 1 2 \sim if this is $\equiv 0$, then a, b, c are 0. \sim $f \in I$. Prop If $u_0, ..., u_d$ are projective coordinates, the ideal of the image $C := \phi(\mathbb{P}^1)$ is the ideal I agenerated by the 2x2 minors of the matrix $\begin{bmatrix} u_0 & u_1 & u_2 & \cdots & u_{d-1} \\ u_1 & u_2 & u_3 & \cdots & u_d \end{bmatrix}$

Note that all the ZXZ minors of

 $\begin{bmatrix} x_{0}^{d} & x_{0}^{d-1}x_{1} & x_{0}^{d}x_{1}^{2} & \cdots & x_{0}^{d-1} \\ x_{0}^{d-1} & x_{0}^{d-2}x_{1}^{2} & x_{0}^{d-3}x_{1}^{2} & \cdots & x_{1}^{d} \end{bmatrix}$

one zero. Hence $I \subseteq I(C)$,

2: Requires an algebraic computation similar to the above. See the notes.

The Segre embedding m,n >1 $\sigma : \mathbb{P} \times \mathbb{P} \longrightarrow \mathbb{P}$ $(x_0: \dots: x_m) \times (y_0: \dots: y_n) \mapsto (x_0 y_0 : x_0 y_1 : \dots : x_i y_j : \dots : x_m y_n)$ Tlexicogniphic ordening Write Uij i=0...m, j=0...n on PMn+m+n rank 1 $M = \begin{pmatrix} u_{oo} & u_{o1} & \cdots & u_{on} \\ \vdots & & \vdots \\ u_{mo} & u_{mi} & \neg \neg & u_{mn} \end{pmatrix}.$ The matrix $(x_{o_{1} \cdots , x_{m}})^{t} (y_{q \cdots , y_{n}}) = \begin{pmatrix} x_{o} y_{o} & x_{o}y_{1} & \cdots & x_{o}y_{n} \\ \vdots & & & \vdots \\ x_{m}y_{o} & \cdots & & x_{m}y_{n} \end{pmatrix}$ has rank El for all Xi, y; Ek) all the 2x2 minors vanish where I is the ideal geneated by the 2x2 - minors of M. $\overset{\mathcal{C}_{\mathbf{x}_{0}}}{\overset{\mathcal{C}_{\mathbf{x}_{1}}}{(\mathbf{x}_{0}:\mathbf{x}_{1})\mathbf{x}(\mathbf{y}_{0}:\mathbf{y}_{1})}} \xrightarrow{\mathcal{C}_{\mathbf{x}_{1}}} \mathbb{P}^{3}$ $\overset{(\mathbf{x}_{0}:\mathbf{x}_{1})\mathbf{x}(\mathbf{y}_{0}:\mathbf{y}_{1})}{(\mathbf{x}_{0}:\mathbf{y}_{0}:\mathbf{x}_{0}\mathbf{y}_{0}:\mathbf{x}_{0}\mathbf{y}_{1}:\mathbf{x}_{1}\mathbf{y}_{0}:\mathbf{x}_{1}\mathbf{y}_{1})} = : (u_{0}:u_{1}:u_{2}:u_{3})$ \sim , image = Z₊ (u₀u₂ - u₁u₂)

Prop The segre wap
$$\sigma_{m,n}$$
 is a closed embedding.
The image equals $Z(I)$ where I is the ideal generated
by the $2\pi^2 - manors of M$.
For $0 \leq s \leq m$ consider the open sets
 $0 \leq t \leq n$
 $U = D_t(x_s) \times D_t(x_t) \subset P^m \times P^n$
 $D = D_t(u_{st}) \subset P^{mn+m+n}$
Note that $\sigma^{-1}(D) = U$
 \longrightarrow so suffices to show that $\phi|_D$ is a closed embedding.
We have $U \simeq A^m \times A^n$ and $U \cong A^{mn+m+n}$
 $(conditudes \frac{x_i}{x_s}, \frac{y_s}{y_t})$ $(conditudes \frac{u_{ij}}{u_{st}})$
The corresponding morphism
 $A^m \times A^n \longrightarrow A^{mn+m+n}$
 $(\frac{x_i}{x_s})(\frac{y_j}{y_t}) = (\frac{x_i y_s}{x_s y_t})$
If we set $i = s$, we recover $\frac{y_i}{y_t} = \frac{u_{x_i}}{u_{st}}$.
If we get a left section $A^{mn+m+n} \longrightarrow A^m \times A^n$
from the two morphisms
 $A^{mn+m+n} \longrightarrow A^m$ $u_{ij} \mapsto \begin{cases} x_i & if & j=t \\ 0 & dharmise \end{cases}$

Al^{mn+m+n}
$$\longrightarrow$$
 Al^m $\xrightarrow{u_{ij}}_{u_{st}} \longrightarrow \begin{cases} \frac{y_{ij}}{y_{st}} & \text{if } i=s \\ 0 & \text{otherwise} \end{cases}$
 $\forall is u projection \implies \sigma is on embedding \checkmark$

The image equals
$$2(I)$$
:
Let $v \in Z(I)$ and suppose $w \log flast $v \in D_{+}(v_{00})$
so that $v = (1 : v_{01} : \cdots : v_{mn}) \in Z(I)$
(Champing order of vorws/columns of M does not change I)
Let $M = \begin{pmatrix} 1 & * & * \\ * & - & - \\ v & - & - \end{pmatrix}$ dende the matrix M
 $M = \begin{pmatrix} 1 & v_{01} & v_{02} & \cdots & v_{0n} \\ v_{10} & v_{01}v_{02} & \cdots & v_{0n} \\ v_{10} & v_{01}v_{02} & \cdots & v_{0n} \end{pmatrix}$
 $M = \begin{pmatrix} 1 & V_{01} & V_{02} & \cdots & V_{0n} \\ v_{10} & v_{01}v_{02} & \cdots & v_{0n} \\ v_{10} & v_{01}v_{20} & \cdots & i \\ v_{20} & v_{01}v_{20} & \cdots & i \\ v_{m0} & v_{m0}v_{m0} \end{pmatrix}$ (suice the value = 1)
Define $X_i = V_{i0}$
 $J_i = V_{0j}$ $\longrightarrow X_i y_j = V_{i0} V_{0j}$
 $-2 \quad V \quad ij in the image of σ .$$

In fact, the minors generate all the relations, so $I(P^{n}_{x}P^{n}) = I.$

Cor The product of two projective variefies is projective.

$$X \subset \mathbb{P}^{m} \longrightarrow X \times Y \hookrightarrow \mathbb{P}^{m} \times \mathbb{P}^{n}$$
 is a closed subset
 $Y \subset \mathbb{P}^{n} \longrightarrow X \times Y \hookrightarrow \mathbb{P}^{m} \times \mathbb{P}^{n}$ is a closed subvariety.
 $\longrightarrow X \times Y \hookrightarrow \mathbb{P}^{m} \times \mathbb{P}^{n} \hookrightarrow \mathbb{P}^{m}$
 $\longrightarrow X \times Y \hookrightarrow \mathbb{P}^{m} \times \mathbb{P}^{n} \hookrightarrow \mathbb{P}^{m}$

A Nullstellensatz for
$$\mathbb{P}^{m} \times \mathbb{P}^{n}$$

Let $R = k[x_{0}...x_{m}; y_{0}...y_{n}]$.
R has a bigrading given by deg $x_{i} = (1,0)$
deg $y_{j} = (0,1)$
We say FER is bihomogeneous, if FE Raib for some a,b.
This is \iff $F(ex, ty) = s^{a}t^{b}F(x,y)$.
If α is a bihomogeneous ideal, we get an
algebraic set
 $Z_{t}(\alpha) \subseteq \mathbb{P}^{m} \times \mathbb{P}^{n}$
Convervely, for any subset $X \subset \mathbb{P}^{m} \times \mathbb{P}^{n}$ we
get an ideal in R
 $I(X) = \int f \in \mathbb{R} \mid \int f(x) = 0 \quad \forall x \in X$

Note: The ideals $M_{+} = (X_{0}, ..., X_{m})$ $n_{+} = (Y_{0}, ..., Y_{n})$ both define the empty set. We call them the inelevant ideals of R. Nullstellensatz for P"×P" The assignments

$$\begin{array}{ccc} a & \longmapsto & \mathcal{Z}_{+}(a) \\ & \mathcal{Z} & \longmapsto & \mathcal{I}(\mathcal{Z}) \end{array}$$

give a 1-1 convespondence

$$\begin{cases} closed algebraic \\ subsets of $\mathbb{P}^{n} \times \mathbb{P}^{n} \end{cases} \longleftrightarrow \ \begin{cases} vadical bihomogeneous \\ ideals a \leq R \\ not containing M_{t} \cap N_{t} \end{cases}$$$

Ex the polynomial
$$F = u_0 X_1 - u_1 X_0$$
 defines a
closed algebraic set $Z(F) \subset IP^T \times IP^2$.
 $(u_0 X_1 - u_1 X_0)$ prime $\Rightarrow Z(F)$ is invelucible f^T at $Co:o:n$,
Can also verify this locally: In the $u_0 = 1$ chant, we have
 $F \land D_2(X_0)$ isomorphic to the affine hyperiface
 $Z(X_1 - u_1 X_0) \subset AI^3$.
 $X_1 - u_1 X_0$ is irreducible $\Rightarrow OK$
Same holds by sympthy in the $u_1 = 1$ chant. $\Rightarrow Z(F)$ invecticible.
Moreover, $Z(F)$ has dimension Z_1 as $Z(X_1 - u_1 X_0) \subseteq HT^2$

The Veronese embedding

$$d_{70}$$
 $\phi: IP^{n} \longrightarrow IP^{N} N = {\binom{n+d}{d}} - 1$
 $(x_{0}:...:x_{n}) \longmapsto (x_{0}^{i_{0}} - x_{n}^{i_{n}})$
 $i_{0}+..+i_{n}=d$
 $\wedge all monomials$
of degree d
 $i_{n} = 1: p^{1} \longrightarrow IP^{\binom{d_{11}}{1}-1}$
 $(x_{0}:x_{1}) \longmapsto (x_{0}^{d}: x_{0}^{i_{1}}x_{1}: ...:x_{n}^{d})$
This is exactly the rational normal curve (which we know
 $is a_{n} embedding)$

Notetion

$$R = k[x_{0}, ..., x_{n}]$$
 with the usual grading
 $T_{i} = He$ set of multividences $I = (a_{0}, ..., a_{n})$
s.t. $\Sigma a_{i} = d$ and $a_{i} \neq 0$.
 $K = k[x_{0}, ..., x_{n}]$

$$T \in \mathcal{I}$$
 ~ monomial $M_{I} = x_{0}^{a_{0}} - x_{n}^{a_{n}}$ of degree d.
and a homogeneous coordinate U_{I} on \mathbb{P}^{N} .

$$AI^{N+1} = affine$$
 space with underlying k-vector space R_d
For $F \in R_d$ ~3 can express $F = \sum a_I \cdot M_I$.

$$\varphi: P^{n} \longrightarrow P^{N}$$

$$[x] \longmapsto (m_{I}(x))$$

 ϕ is well-defined: all $m_{\rm I}$ have the same degree ϕ is a morphism: the $m_{\rm I}$ do not simultaneously vanish anywhere.

Prop The Yevenese morphism $\phi: p^n \longrightarrow p^N$ is a closed embedding. Considur $U = D_+(x_0) \subset P^n$ Here the morphism is $A_1^n \longrightarrow D_+(m_{u,0\dots0}) \simeq A_1^N \int of degree \leq d$ $(z_1, -z_n) \longrightarrow (z_1, z_2, ..., z_n, z_1^2, z_1^2, z_2, ..., z_n^d)$ This is an embedding, because projection onto the first n coordinates gives a left section. By symmetry, this holds also for the subsets $D_+(m_{(q,qd,q,-0)})$ These form an open cover of $\phi(A_1^n) \longrightarrow DaNE$

Pnp The homogeneous ideal of the image X of the
Venonese embedding is generated by the quadros
$$M_{\rm I} \,{}^{\rm M}{}_{\rm J} - {}^{\rm M}{}_{\rm K} \,{}^{\rm M}{}_{\rm L}$$

for all multiundices 1, J, K, L s.t 1+J=K+L.
For the proof, see the Notes.

Cor Let
$$f(x_{0},...,x_{n})$$
 be a non-zero homogeneous
polynomial. Then
 $D_{+}(f) = \mathbb{P}^{n} - \mathbb{Z}(f)$ C know this is an
is an affine variety. Ushen degree $f \ge 1$.
Let $d = deg f$ and consider the Veronese embedding
 $\mathbb{P}^{n} \xrightarrow{\varphi} \mathbb{P}^{\binom{n+d}{d}} - 1$
If $f = \mathbb{Z} \cong_{\mathbb{I}} \mathbb{M}_{\mathbb{I}} \in \mathbb{R}[x_{0},...,x_{n}]$, then
 $\mathbb{Z}(f) = \phi^{-1}(\mathbb{Z}(L))$ where $L = \mathbb{Z} \cong_{\mathbb{I}} \mathbb{M}_{\mathbb{I}}$
is a linear polynomial in $\mathbb{M}_{\mathbb{I}}$
Note that $\mathbb{P}^{N} - \mathbb{Z}(L) \cong D_{+}(L) \cong \mathbb{H}^{N}$ is affine.
We have
 $D_{+}(f) = \mathbb{P}^{n} - \mathbb{Z}(f) = \phi^{-1}(\mathbb{P}^{N} - \mathbb{Z}(L))$
so $D_{+}(f)$ is also affine. \square

Cor
$$X \subseteq \mathbb{P}^n$$
 a subvariety which is not a point
If $f \in k(x_0, ..., x_n)$ is homogeneous 1 or more geneally
then $Z(f) \cap X \neq \emptyset$
If $Z(f) \cap X = \emptyset$, then
 $X \subseteq D_{+}(f)$.
Hence X is a closed subvariety of
an affine variety =) X is itsely affine.
However, if X is both affine and projective, then it is a point \square

A Note that this is not true for Al" ~ projective vanishies are better !

Conics and the Veronese surface Recall that a conic is a curve $C \subset IP^2$ defined by a quadratic form in $X_0, X_1/X_2$

$$q = a_{00} X_0^2 + a_{01} X_0 X_1 + a_{02} X_0 X_2 + a_{11} X_1^2 + a_{12} X_1 X_2 + a_{22} X_2^2 \quad (*)$$

We may then view
$$P^5$$
 as the variety parameterizing conics
that is, a point $(a_{00}: a_{01}: a_{02}: a_{11}: a_{12}: a_{22}) \in IP^5$ consponds to
the conic (**) (and the conspondence is clearly 1-1 if
we note that scaling (**) does not change C).

Note that some q's above give degenerate conics, i.e (1) A double line $(a_0 \times_0 + a_1 \times_1 + a_2 \times_2)^2$ (2) A union of two lines $(a_0 \times_0 + a_1 \times_1 + a_2 \times_2)$ (boxoth $\times_1 + b_2 \times_2$)

These two give vise to subvanchies of the
$$\mathbb{P}^{5}$$
:
(i) Note that
 $(a_0x_0 + a_1x_1 + a_2x_2)^2 = a_0^2 x_0^2 + 2a_0a_1 x_0x_1 + 2a_0a_2 x_0x_2 + a_1^2 x_1^2 + 2a_1a_2 x_1x_2 + a_2^2 x_2^2$.
Hence the subvancety of \mathbb{P}^5 corresponding to convics (1)
is parameterized by
 $\mathbb{P}^2 \longrightarrow \mathbb{P}^5$
 $(a_0: a_1: a_2) \longmapsto (a_0^2: 2a_0a_1: 2a_0a_2: a_1^2: 2a_1a_2: a_2^2)$
Up to a linear change of variables, this is exactly
the Veronese surface ! This requires chark = 2
 \therefore The Veronese surface is the algebraic variety

which parameterizes double lines in IP?

(2) The conics which are unions of lines are determined by

$$(a_0 \times_0 + a_1 \times_1 + a_2 \times_2) (b_0 \times_0 + b_1 \times_1 + b_2 \times_2) = (a_0 \ b_0) \times_0^2 + (a_0 b_1 + a_1 b_0) \times_0 \times_1$$

 $+ (a_0 b_2 + a_2 \ b_0) \times_0 \times_2 + (a_1 \ b_1) \times_1^2$
 $+ (a_1 \ b_2 + a_2 \ b_1) \times_1 \times_2 + (a_2 \ b_2) \times_2^2$

The geometry of spaces of polynomials
Let
$$\mathbb{P}^{d} = projective space on the vector space
 V with basis $\{2, x, ..., x^{d}\}$
 $\therefore (u_{0}: ...: a_{d}) \in \mathbb{R}^{d} \iff a_{0} + a_{1}x + ... + a_{d}x^{d}$ modulo scalars
 λ a parktion of d (i.e. $\lambda = (\lambda_{1}, ..., \lambda_{r}) \in \lambda_{i} = d$)
 $\longrightarrow V_{\lambda} = \{2p(x) \mid p \text{ has } r \text{ rods } x_{1}...x_{r} \text{ with multiplikes } \lambda_{r}...\lambda_{r}\}$
This is the image of the "multiplication map"
 $\mathbb{P}^{1}x - x \mathbb{P}^{1} \longrightarrow \mathbb{P}^{d}$
 $(u_{1}:v_{1})x - x(u_{r}:v_{r}) \mapsto (u_{1}x + v_{1})^{1} - (u_{r}x + v_{r})^{\lambda_{r}}$
[tence V_{λ} is irreducible $= V_{\lambda}$ is a projective variety.$$

 $C = Z\left(a_1^2 - 4a_0a_2\right)$

polynomials with a repeated voot

Constants

Degree 9

$$p(x) = a_{x}x^{y} + b_{x}x^{2} + c_{x}x^{2} + d_{x} + e_{z} \Leftrightarrow (a;b;c;d;e) \in \mathbb{P}^{9}$$

We have 9 partitions of 9 : expected dimension:
1 | | | | (all vools distribut) 9
2 | double vool 3
2 double vool 3
2 double vool 3
2 double vool 1
4 guadruple vool 1
1
P(x) has a double vool $\iff p(x) = (u_{x}+v)^{2}(u_{x}x^{2}+u_{1}x+u_{0})$
 $= x^{9}(u_{w}x^{2}) + (u^{2}u_{1}+2uvw_{2})x^{3}$
 $+ (u^{2}w_{0}+2uvw_{1}+v^{2}w_{2})x^{2}$
 $+ (2uvw_{0}+v^{2}w_{1})x+v^{2}w_{0}$
 $\iff p$ lies on the image of
 $p(x) \times (u_{0};u_{1};w_{2}) \mapsto (u^{2}w_{2}:u^{2}w_{1}+2uvw_{2}...)$
 $\iff p \in 2/\Delta$ where
 $\Delta = 256 a^{3}e^{3} - 192a^{2}bde^{2} + ...-$
 $(bugg polynomia())$

V31
p(x) has a triple vool
$$\Leftrightarrow$$
 $p(x) = (ux+v)^{3}(w_{1}x+w_{0})$
 \Leftrightarrow p lies on the image of
 $p^{1}xp^{1} - - - p p^{4}$
 $(u:v)x(w_{0}:w_{1}) \mapsto (u^{3}w_{1}: u^{3}w_{0} + 3u^{2}w_{1}: -)$
 \Leftrightarrow $p \in Z(q, C)$
 $p = 12ae - 3bd + c^{2}$
 $c = 27ad^{2} + 27b^{2}e - 27bdc + 8c^{3}$

V_{22}

$$p(x) \text{ has find repeated vools (=) } p(x) = (u_1 x + u_0)^2 (V_1 x + v_0)^2$$
$$= x^4 (u_1^2 v_1^2) + x^3 (2u_1^2 v_0 v_1 + 2u_0 u_1 v_1^2)$$
$$+ x^2 (u_1^2 v_0^2 + 4u_0 u_1 v_0 v_1 + u_0^2 v_1^2)$$
$$+ x (2u_0 u_1 v_0^2 + 2u_0^2 v_0 v_1) + u_0^2 v_0^2$$

$$= p is in the image of $\frac{10^{1} \times 10^{1} - - -}{10^{2} \times 10^{2} \cdot - -}$ [P⁴
 $\frac{10^{2} \times 10^{2} \times 10^{2} \cdot - -}{10^{2} \times 10^{2} \cdot - -}$]$$

Ruch Z(I) is the projected Veronese surface in pY V_{y} p(x) has a guadruple roof $rightarrow p \in V_{y} = C_{y}$ the rational p(x) has a guadruple roof $rightarrow p \in V_{y} = C_{y}$ the rational $rightarrow p \in V_{y}$ th

$$\mathbb{P}^{4} \supset V_{z,h_{1}} \supset V_{z,z} \rightarrow V_{y}$$