Chapter 5 : Segre and Veronese varieties
Deln $\phi: Y \rightarrow X$ is a closed embedding

$$
L^{Y} \rightarrow S^{r} x
$$ if the image $V=\phi(Y)$ is closed in X and ϕ induces an isomorphism $\phi: Y \xrightarrow{\sim} V \subset X$.

$\uparrow V$ has a canonical vane ty shoncture, bering a do oed subset of Y.
ex The morphism $\left.A^{\prime} \longrightarrow A\right|^{3}$

$$
t \longmapsto\left(t, t^{2}, t^{3}\right)
$$

is a closed embedding onto the twisted cubic $\subset \subset A^{3}$.
Being an embedding is a local property on the target X :
Lemma If $\phi: Y \rightarrow X$ is a morphism, and
$U=\left\{U_{i}\right\}$ is a collection of opens covering $\phi(Y)$. Then
ϕ is an embedding $\left.\Leftrightarrow \phi\right|_{\phi^{-1}\left(U_{i}\right)}: \phi^{-1}\left(U_{i}\right) \longrightarrow U_{i}$ is an embedding for all:
" \Rightarrow " ϕ an embeddrig $\left.\Rightarrow \phi\right|_{\phi^{-1}\left(v_{i}\right)}$ embeddrig
(image is closed, and restriction of isomorphism is isomorphism)
" Given ϕ such that each reshichion is an embedding:
ϕ infective $\sqrt{ }$
ϕ closed $\left(\phi(z)\right.$ is closed iff $\phi(z) \cap U_{i}$ closed $)$ $\leadsto \phi$ is a homeomorphism onto $\phi(Y) \quad \phi\left(\phi^{-1} U_{i} \cap Z\right)$
Need to show $\left(\left.\phi\right|_{\phi(Y)}\right)^{-1}$ is a morphism.
Let $U \subseteq Y$ be open and $f \in O_{Y}(U)$.
Need to check that $\left.f \circ \phi^{-1}\right|_{\phi(u)}$ is regular on $\phi(u)$.
Bering regular is a local property \sim clog $U=\phi^{-1}\left(U_{i}\right) \cap U$ In that case, $\left.f \circ \phi^{-1}\right|_{\phi(0)}$ is regular because $\left.\phi\right|_{\phi^{-1}\left(v_{i}\right)}$ is an isomorphism so that $\left.\phi^{-1}\right|_{\phi(0)}$ is a morphism

Lemma Assume that $\phi: A^{n} \longrightarrow A^{n+m}$ has a left section which is a projection. Then ϕ is a closed embedding.

Suppose $\sigma:\left.\left.A\right|^{m+n} \rightarrow A\right|^{n}$ is the section

$$
\left(z_{1}, \ldots, z_{m+n}\right) \mapsto\left(z_{1}, \ldots, z_{n}\right)
$$

$\sigma: X \rightarrow Y$ is a byft-selion of $f: Y \rightarrow X$ if

$\sigma \circ f=i d_{X}$

The composition $\left.A A^{n} \xrightarrow{\Phi} A\right|^{m+n} \xrightarrow{\sigma} A l^{n}$ is the identity
$\Rightarrow \phi$ is bijective onto its image $V=\phi\left(A A^{n}\right)$.
ot: $_{V} V \rightarrow A A^{n}$ is an inverse to $\phi \sim \phi$ is an embedding.

Rational normal curves
Affine version

$$
\begin{aligned}
\phi: A^{\prime} & \longrightarrow A^{d} \\
t & \longrightarrow\left(t, t^{2}, \ldots, t^{d}\right)
\end{aligned}
$$

The image C is given by the equations $z_{i}=z_{1}^{i} \quad i=2 . . l$ A left section of ϕ is given by $A^{d} \longrightarrow A^{\prime} \quad\left(z_{1} . . z_{d}\right) \mapsto z_{1}$ $\longrightarrow \phi$ is an embedding.

Projective version

$$
\begin{aligned}
& \mathbb{P}^{\prime} \xrightarrow{\phi} \mathbb{P}^{d} \\
& \left(x_{0}: x_{1}\right) \longmapsto\left(x_{0}^{R}: x_{0}^{d-1} x_{1}: \cdots ; x_{1}^{d}\right)
\end{aligned}
$$

prop ϕ is a closed embedding.
Let $U_{0}=D_{+}\left(u_{0}\right)$. Then

$$
\phi^{-1}\left(U_{0}\right)=D_{+}\left(x_{0}\right) \subseteq \mathbb{P}^{1}
$$

The restriction $\left.\phi\right|_{\phi^{-1}\left(U_{0}\right)}$ is given by

$\left.\Rightarrow \phi\right|_{D_{+}\left(x_{0}\right)}$ is an embedding
A symmetric argument shows that $\left.\phi\right|_{D_{+}\left(x_{1}\right)}$ is an embedding.
These two open sets cover $\mathbb{P}^{\prime} \Longrightarrow \phi$ is an embedding.
ex For $d=2$, this is $\mathbb{P}^{\prime} \rightarrow \mathbb{P}^{2} \quad\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right)$. The image is the conic $C=Z\left(u_{1}^{2}-u_{0} u_{2}\right) \int \begin{aligned} & \text { this is } \\ & \text { inducible }\end{aligned}$
ex For $d=3$, this is $\mathbb{P}^{1} \rightarrow \mathbb{R}^{3} \quad\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}^{3}: x_{0}^{2} x_{1}: x_{0} x_{1}^{2}: x_{1}^{3}\right)$
The image is the twisted cubic $z_{+}(I) \subset \mathbb{P}^{3}$ where

$$
I=\left(u_{1}^{2}-u_{0} u_{2}, u_{0} u_{3}-u_{1} u_{2}, u_{2}^{2}-u_{1} u_{3}\right) .
$$

Using the substitutions
$u_{1}^{2} \leftrightarrow u_{0} u_{2}$ may write any $f \in k\left[u_{0}, \ldots, u_{3}\right]$ modulo I as $u_{1} u_{2} \mapsto u_{0} u_{3} \quad \sim$

$$
u_{2}^{2} \mapsto u_{1} u_{3} \quad f\left(u_{0}, u_{1}, u_{2}, u_{3}\right)=a_{d}\left(u_{0}, u_{3}\right)+b_{d-1}\left(u_{0}, u_{3}\right) u_{1}+c\left(u_{d-1}, u_{3}\right) u_{2}
$$

If $f \in I(c)$, then modulo I.

$$
f\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)=a\left(s^{3}, t^{3}\right)+b\left(s^{3}, t^{3}\right) s^{2} t+c\left(s^{3}, t^{3}\right) s t^{2} \equiv 0
$$

exponents of t mod 3 :
\sim if this is $\equiv 0$, then a, b, c are 0 .

$$
\leadsto f \in I
$$

If u_{0}, \ldots, u_{d} are projective coordinates, the ideal of the image $C:=\phi\left(\mathbb{P}^{1}\right)$ is the ideal I generated by the 2×2 minors of the matrix

$$
\left[\begin{array}{lllll}
u_{0} & u_{1} & u_{2} & \cdots & u_{d-1} \\
u_{1} & u_{2} & u_{3} & \cdots & u_{d}
\end{array}\right]
$$

Note that all the 2×2 minors of

$$
\left[\begin{array}{ccccc}
x_{0}^{d} & x_{0}^{d-1} x_{1} & x_{0}^{d-2} x_{1}^{2} & \cdots & x_{0} x_{1}^{d-1} \\
x_{0}^{d-1} & x_{0}^{d-2} x_{1}^{2} & x_{0}^{d-3} x_{1}^{3} & \cdots & x_{1}^{d}
\end{array}\right]
$$

are zero. Hence $I \subseteq I(C)$.
2: Requires an algebraic computation similar to the above. See the notes.

The Segre embedding
$m, n \geqslant 1$

$$
\begin{aligned}
\sigma_{m, n} & : \mathbb{P}^{m} \times \mathbb{P}^{n} \longrightarrow \mathbb{P}^{(m+1)(n+1)-1} \\
\quad\left(x_{0}: \cdots: x_{m}\right) \times\left(y_{0}: \cdots: y_{n}\right) & \longmapsto\left(x_{0} y_{0}: x_{0} y_{1}: \ldots: x_{i} y_{j}: \ldots: x_{m} y_{n}\right)
\end{aligned}
$$

Write $u_{i j} \quad i=0 \ldots m, j=0 \ldots n \quad$ on $\mathbb{P}^{m n+m+n}$

$$
M=\left(\begin{array}{cccc}
u_{00} & u_{01} & \cdots & u_{0 n} \\
\vdots & & & \vdots \\
u_{m 0} & u_{m 1} & \cdots & u_{m n}
\end{array}\right)
$$

The matrix $\left(x_{0}, \ldots, x_{m}\right)^{t}\left(y_{q}, y_{n}\right)=\left(\begin{array}{ccc}x_{0} y_{0} & x_{0} y_{1} & \cdots \\ x_{0} y_{n} \\ \vdots & \ddots & \vdots \\ x_{m} y_{0} & \cdots & \\ x_{m} y_{n}\end{array}\right)$
has rank ≤ 1 for all $x_{i}, y_{j} \in k$ \sim all the 2×2 minors vanish
the image of $\sigma_{m, n}$ is contained in $Z_{+}(I)$ where I is the idea geneated by the 2×2 - minors of M.
ex

$$
\begin{aligned}
& \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow[\left(x_{0}: x_{1}\right) \times\left(y_{0}: y_{1}\right)]{\sigma_{1,1}} \longrightarrow \mathbb{P}^{3} \\
\sim & \text { image } \left.=x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{2}\right)=:\left(u_{0} u_{3}: u_{1}: u_{1} u_{2}\right)
\end{aligned}
$$

Prop The segre map $\sigma_{m, n}$ is a closed embedding.
 by the 2×2-minors of M.

For $\quad 0 \leq s \leq m \quad$ consider the open sets

$$
0 \leq t \leq n
$$

$$
\begin{aligned}
& U=D_{+}\left(x_{s}\right) \times D_{+}\left(x_{t}\right) \subset \mathbb{P}^{m} \times \mathbb{P}^{n} \\
& D=D_{+}\left(u_{s t}\right) \quad \mathbb{P}^{m n+m+n}
\end{aligned}
$$

Note that $\sigma^{-1}(D)=U$
\longrightarrow so suffices to show that $\left.\phi\right|_{D}$ is a closed embedeling.
We have $U \simeq A^{m} \times A^{n}$ and $U \cong A l^{m n+m+n}$
(coordinates $\left.\frac{x_{i}}{x_{s}}, \frac{y_{j}}{y_{t}}\right) \quad\left(\right.$ coordinates $\left.\frac{u_{l j}}{u_{s t}}\right)$
The corresponding morphism

$$
\begin{aligned}
& A^{m} \times A^{n} \longrightarrow A^{m n+m+n} \\
& \left(\frac{x_{i}}{x_{s}}\right)\left(\frac{y_{j}}{y_{t}}\right) \mapsto\left(\frac{x_{i} y_{j}}{x_{s} y_{t}}\right)=\left(\frac{u_{i j}}{u_{s t}}\right)
\end{aligned}
$$

If we set $i=s$, we recover $\frac{y_{j}}{y_{t}}=\frac{u_{s j}}{u_{s t}}$.
If we set $j=t$, we recover $\frac{x_{i}}{x_{s}}=\frac{u_{i t}}{u_{s t}}$
\therefore We get a left section $\left.A 1^{m n+m+n} \xrightarrow{\psi} A\right|^{m} \times A^{n}$
from the two murphisms

$$
A^{m n+m+n} \longrightarrow A^{m} \xrightarrow{m} \quad \frac{u_{i j}}{u_{s t}} \mapsto \begin{cases}\frac{x_{i}}{x_{s}} & \text { if } j=t \\ 0 & \text { otherwise }\end{cases}
$$

$$
\left.\left.A\right|^{m n+m+n} \longrightarrow A\right|^{m} \quad \frac{u_{i j}}{u_{s t}} \longmapsto \begin{cases}\frac{y_{j}}{y_{t}} & \text { if } i=s \\ 0 & \text { otherwise }\end{cases}
$$

ψ is a projection $\Rightarrow \sigma$ is an embedding

The image equals $Z(I)$:
Let $v \in Z \cdot(I)$ and suppose $w \log$ that $v \in D_{+}\left(u_{00}\right)$
so that $v=\left(1: v_{01}: \cdots: v_{m n}\right) \in Z(I)$
(Champing order of rerws/cohmus of M does not change I)
Let
denote the matrix M with $u_{i j} \doteq v_{i j}$ substituted for the entries (chosen so that $v_{00}=1$)

$$
m=\left(\begin{array}{ccccc}
1 & v_{01} & v_{02} & \cdots & v_{0 n} \\
v_{10} & v_{01} v_{10} & \cdots & & \vdots \\
v_{20} & v_{01} v_{20} & \cdots & & \\
\vdots & & & \\
v_{m 0} & v_{01} v_{m 0} & \cdots & v_{m 0} v_{o n}
\end{array}\right) \text { (since the rank }=1 \text {) }
$$

Define $\quad X_{i}=V_{i o}$

$$
y_{j}=v_{0 j} \quad \sim x_{i} y_{j}=v_{i 0} v_{0 j}
$$

$\longrightarrow V$ is in the image of σ.

In fact, the minors generate all the relations, so

$$
I\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)=I
$$

Cor The product of two projective variefies is projective. $\begin{aligned} & X \subset \mathbb{R}^{m} \\ & Y \subset \mathbb{R}^{n}\end{aligned} \quad X \times Y \subset \mathbb{P}^{m} \times \mathbb{R}^{n}$ is a closed subset $\leadsto X \times Y \subset \mathbb{P}^{m} \times \mathbb{R}^{n}$ is a closed subvariety. $\leadsto X \times Y \hookrightarrow \mathbb{P}^{m} \times \mathbb{P}^{n} \hookrightarrow \mathbb{R}^{m n+m+n}$
is a closed embedelnig, so $X X Y$ is projective.

A Nullstellensatz for $\mathbb{P}^{m} \times \mathbb{P}^{n}$
Let $R=k\left[x_{0} \ldots x_{m} ; y_{0} \ldots y_{n}\right]$.
R has a bigrading given by $\operatorname{deg} x_{i}=(1,0)$
$\operatorname{deg} y_{j}=(0,1)$
We say $F \in R$ is bihomogeneous, if $F \in R_{a, b}$ for some a, b.
This is $\Leftrightarrow F(s x, t y)=s^{a} t^{b} F(x, y)$.

If a is a bihomogeneons ideal, we get an algebraic set

$$
Z_{+}(a) \subseteq \mathbb{P}^{m} \times \mathbb{P}^{n}
$$

Conversely, for any subset $X \subset \mathbb{P}^{m} \times \mathbb{P}^{n}$ we get an ideal in R

$$
I(X)=\angle f \in R \quad \left\lvert\, \begin{aligned}
& f \text { bihomogeneous } \\
& f(x)=0 \quad \forall x \in X
\end{aligned}\right.
$$

Nate: The ideals

$$
\begin{aligned}
& m_{+}=\left(x_{0}, \ldots, x_{m}\right) \\
& n_{+}=\left(y_{0}, \ldots, y_{n}\right)
\end{aligned}
$$

both define the empty set.
we call them the inelesant ideals of R.

Nullstellensatz for $\mathbb{P}^{m} \times \mathbb{P}^{n}$
The assignments

$$
\begin{aligned}
& a \longmapsto z_{+}(a) \\
& z \longmapsto I(z)
\end{aligned}
$$

give a $1-1$ comespondence

$$
\left\{\begin{array}{l}
\text { closed algebonic } \\
\text { subsets of } \mathbb{P}^{n} \times \mathbb{R}^{n}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\text { radical bilomogeneons } \\
\text { ideals } a \subseteq \mathbb{R}^{2} \\
\text { not containing } m_{+} \cap n_{+}
\end{array}\right\}
$$

ex the polynomial $F=u_{0} x_{1}-u_{1} x_{0}$ defines a closed algebmic set $Z(F) \subset \mathbb{P}^{1} \times \mathbb{P}^{2}$.
$\left(u_{0} x_{1}-u_{1} x_{0}\right)$ prime $\Rightarrow Z(f)$ is ind vincible $u_{0} u_{0} x_{1} x_{i} x_{2}$ the blow-up of \mathbb{P}^{2} at $\left.1000: 1\right)^{\prime \prime}$
Com also verify this locally: In the $n_{0}=1$ chant, we have $F \cap D_{+}\left(x_{0}\right)$ ismophic to the afthic hyprempace

$$
z\left(X_{1}-u X_{0}\right) \subset A B^{3}
$$

$X_{1}-u X_{0}$ is irreducible \Rightarrow ok
Same hades by sypuremy in the $u_{1}=1$ chant. $\Rightarrow Z(F)$ ineelucible.
Moreover, $Z(F)$ has dimension 2 , as $Z\left(X_{1}-u X_{0}\right) \subseteq H 1^{2}$ has dimension 2.

The Veronese embedding
$d>0$

$$
\phi: \underset{\left(x_{0} \cdots \cdots x_{n}\right) \mapsto\left(\begin{array}{c}
\mathbb{P}^{i_{0}} \cdots x_{n}^{i_{n}} \\
x_{0} \cdots x_{n} \\
i_{0}+\cdots+i_{n}-d
\end{array}\right)}{\mathbb{P}^{N}} \quad N=\binom{n+d}{d}-1
$$

\uparrow all monomials of degree d in lexicographic order.

$$
\left(x_{0}: x_{1}\right) \longmapsto\left(x_{0}^{d}: x_{0}^{l-1} x_{1}: \cdots: x_{1}^{d}\right)
$$

This is exactly the rational normal curve (which we know is an embedding)
ex $n=d=2$

$$
\begin{aligned}
& \mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{5} \\
& \left(x_{0}: x_{1}: x_{2}\right) \longrightarrow\left(x_{0}^{2}: x_{0} x_{1}: x_{0} x_{2}: x_{1}^{2}: x_{1} x_{2}: x_{2}^{2}\right)
\end{aligned}
$$

The image is the Veronese surface.

Notation
$R=k\left[x_{0}, \ldots, x_{n}\right]$ with the usual grading
$\tau=$ the set of multiindexes $I=\left(a_{0}, \ldots, a_{n}\right)$ sit $\sum a_{i}=d$ and $a_{i} \geqslant 0 .<N+1$ of these
$\pm \in \mathcal{L} \leadsto$ monomial $M_{I}=x_{0}^{a_{0}} \cdots x_{n}^{a_{n}}$ of degree d. and a houngeneous coordinate u_{I} on \mathbb{P}^{N}.
$A^{N+1}=$ affine space with underlying k-vector space R_{d}
For $F \in R_{d} \rightarrow$ can express $F=\sum a_{I} \cdot M_{I}$.
$\phi: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}$
$[x] \longmapsto\left(m_{I}(x)\right)$
ϕ is well-defined: all m_{I} have the same degree
ϕ is a morphism: the m_{I} do not simultaneously vanish ayublue.

Prop The Veronese morphism $\phi: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}$ is a closed embedding.
Consider $U=D_{+}\left(x_{0}\right) \subset \mathbb{P}^{n}$
Here the morphism is

$$
\begin{aligned}
& \text { morphism is } \\
& A^{n} \longrightarrow D_{+}\left(m_{d, 0, \ldots 0)}\right) \simeq A A^{N} \quad \mid \text { of degree } \leq d \\
& \left(z_{1}, \ldots z_{n}\right) \longmapsto\left(z_{1}, z_{2}, \ldots, z_{n}, z_{1}^{2}, b_{1}, z_{2}, \ldots, z_{n}^{d}\right)
\end{aligned}
$$

this is an enubeddnin, because projection onto the first n coordinates gives a left section.
By symmetry, this holds also for the subsets $D_{+}\left(m_{(0,0,0,0, \ldots 0)}\right)$ These form an open cover of $\phi\left(\left.A\right|^{n}\right) \sim$ DONE

Pap The homogeneous ideal of the image X of the Veronese embedding is generated by the quadncs

$$
m_{I} m_{J}-m_{K} m_{L}
$$

for all multiondices I, J, K, L s.t $\quad I+J=K+L$.
For the proof, see the Notes.

Cor Let $f\left(x_{0}, \ldots, x_{n}\right)$ be a non-zers homogeneous polynomial. Then
$D_{+}(f)=\mathbb{P}^{n}-Z_{+}(f) \quad \leftarrow$ k ow this is Or is an affine variety.
Let $d=\operatorname{deg} f$ and consider the Veronese embedding

$$
\mathbb{P}^{n} \xrightarrow{\phi} \mathbb{P}^{\binom{n+\alpha}{d}-1}
$$

If $f=\sum a_{I} m_{I} \in k\left[x_{0}, \ldots, x_{n}\right]$, then

$$
z_{t}(f)=\phi^{-1}(z(L)) \text { where } L=\sum a_{I} u_{I}
$$ is a linear polynomial in un

Note that $\mathbb{P}^{N}-Z(L) \simeq D_{+}(L) \cong A^{N}$ is affine.
We have

$$
D_{+}(f)=\mathbb{P}^{n}-z(f)=\phi^{-1}\left(\mathbb{P}^{N}-z(L)\right)
$$

so $D_{t}(f)$ is also affine.

Cor $\quad X \subseteq \mathbb{P}^{n}$ a subvariety which is not a point If $f x_{0} \in k\left[x_{0}, \ldots, x_{n}\right]$ is homogeneous \uparrow or more geneally algebraic set.

$$
\begin{aligned}
& \text { then } Z_{+}(f) \cap X \neq \varnothing \\
& \text { If } Z_{+}(f) \cap X=\varnothing \text {, then } \\
& X \subseteq D_{+}(f) .
\end{aligned}
$$

Hence X is a closed subvariety of an affine variety $\Rightarrow X$ is itself affine.
However, if X is both affine and projective, then it is a point II
\uparrow
Note that this is not true for $A I^{n}$ \sim projective varieties are better!

Conics and the Veronese surface
Recall that a conic is a curve $C \subset \mathbb{P}^{2}$ defined by a quadratic form in x_{0}, x_{1}, x_{2}

$$
\begin{equation*}
q=a_{00} x_{0}^{2}+a_{01} x_{0} x_{1}+a_{02} x_{0} x_{2}+a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \tag{*}
\end{equation*}
$$

Let \mathbb{p}^{5} denote the projective space with homogeneous coordinates

$$
u_{00}, u_{01}, u_{02}, u_{11}, u_{12}, u_{22} .
$$

We may then view \mathbb{P}^{5} as the variety parameterizing conics That is, a point $\left(a_{00}: a_{01}: a_{02}: a_{11}: a_{12}: a_{22}\right) \in \mathbb{P}^{5}$ conesponds to the conic (*) (and the conespondence is clearly 1-1 if we note that scaling (*) does not change C).

Note that some q's above give degenerate conics, i.e
(1) A double line $\left(a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}\right)^{2}$
(2) A union of two lines $\left(a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}\right)\left(b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}\right)$

smooth conics

(2)

(1)

These two give vise to subvarichies of the \mathbb{P}^{5} :
(1) Note that

$$
\begin{aligned}
\left(a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}\right)^{2}=a_{0}^{2} x_{0}^{2} & +2 a_{0} a_{1} x_{0} x_{1}+2 a_{0} a_{2} x_{0} x_{2}+a_{1}^{2} x_{1}^{2} \\
& +2 a_{1} a_{2} x_{1} x_{2}+a_{2}^{2} x_{2}^{2} .
\end{aligned}
$$

Hence the subvariety of \mathbb{P}^{5} conesponding to conics (1) is parameterized by

$$
\begin{aligned}
& \mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{5} \\
& \left(a_{0}: a_{1}: a_{2}\right) \longmapsto\left(a_{0}^{2}: 2 a_{0} a_{1}: 2 a_{0} a_{2}: a_{1}^{2}: 2 a_{1} a_{2}: a_{2}^{2}\right)
\end{aligned}
$$

Up to a linear change of variables, this is exactly the Veronese surface! © this requires char $\neq 2$
\therefore The Veronese surface is the algebraic variety which paranneterizes double lines in \mathbb{T}^{2}.
(2) The conics which are unions of lines are deternuned by

$$
\begin{aligned}
\left(a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}\right)\left(b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}\right)= & \left(a_{0} b_{0}\right) x_{0}^{2}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x_{0} x_{1} \\
& +\left(a_{0} b_{2}+a_{2} b_{0}\right) x_{0} x_{2}+\left(a_{1} b_{1}\right) x_{1}^{2} \\
& +\left(a_{1} b_{2}+a_{2} b_{1}\right) x_{1} x_{2}+\left(a_{2} b_{2}\right) x_{2}^{2}
\end{aligned}
$$

We thus consider the map

$$
\begin{aligned}
& \mathbb{P}^{2} \times \mathbb{P}^{2} \longrightarrow \mathbb{P}^{5} \\
& {[a] \times[b] \longmapsto\left(a_{0} b_{0}: a_{0} b_{1}+a_{1} b_{0}: \cdots: a_{2} b_{2}\right)}
\end{aligned}
$$

The image is a cubic hypersurface $x=z_{+}(F) \subset \mathbb{P}^{5}$.
Here

$$
F=\operatorname{det}\left(\begin{array}{lll}
u_{00} & u_{01} & u_{02} \\
u_{10} & u_{11} & u_{12} \\
u_{20} & u_{21} & u_{22}
\end{array}\right)
$$

Note that X contains the Veronese surface $V \subset \mathbb{P}^{5}$. In fact the two are very closely related:

- X is singular, and $V=\sin g(X)$ (more on this
- V is given by the 2×2 minors of the 3×3 matrix defining X.
- X is the secant variety of V.

In other words,

The geometry of spaces of polynomials
Let $\mathbb{P}^{d}=$ projective space on the vector space V with basis $\left\{1, x, \ldots, x^{d}\right\}$

$$
\therefore\left(a_{0}: \cdots: a_{d}\right) \in \mathbb{P}^{d} \longleftrightarrow a_{0}+a_{1} x+\cdots+a_{d} x^{d} \text { modulo scalars }
$$

λ a partition of d (i.e. $\left.\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \quad \sum \lambda_{i}=d\right)$
$\longrightarrow V_{\lambda}=\left\{p(x) \mid p\right.$ has r woos $x_{1} \ldots x_{r}$ with multiflikikes $\left.\lambda_{1} \ldots \lambda_{r}\right\}$
This is the image of the "multiplication map"

$$
\begin{aligned}
\mathbb{P}^{\prime} \times \cdots x \mathbb{P}^{\prime} & \longrightarrow \mathbb{P}^{d} \\
\left(u_{1}: v_{1}\right) \times \cdots x\left(u_{r}: v_{r}\right) & \longmapsto\left(u_{1} x+v_{1}\right)^{\lambda_{1}} \cdots\left(u_{r} x+v_{r}\right)^{\lambda_{r}}
\end{aligned}
$$

Hence V_{λ} is irreducible $\Rightarrow V_{\lambda}$ is a projective variety.

Degree 2

$$
\begin{array}{ll}
a_{0}+a_{1} x+a_{2} x^{2} & \longleftrightarrow a=\left(a_{0}: a_{1}: a_{2}\right) \in \mathbb{P}^{2} \\
a_{0}+a_{1} x & \longleftrightarrow\left(a_{0}: a_{1}: 0\right) \leadsto \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{2}
\end{array}
$$

$a_{0}+a_{1} x+a_{2} x^{2}$ has a repeated roof $\Leftrightarrow a \in Z\left(a_{1}^{2}-y_{0} a_{2}\right)$

Constants

Degree 3

$$
p(x)=a x^{3}+b x^{2}+c x+d \quad \longleftrightarrow p=(a: b: c: d) \in \mathbb{P}^{3}
$$

$p(x)$ has a repeated root \Leftrightarrow the discriminant

$$
\begin{aligned}
& a_{2}^{2} a_{1}^{2}-4 a_{3} a_{1}^{3}-4 a_{2}^{3} a_{0} \\
& -27 a_{3}^{2} a_{0}^{2}+18 a_{0} a_{1} a_{2} a_{3}=0
\end{aligned}
$$

V_{211}
$p(x)$ has a triple root $\Leftrightarrow p(x)=(c x+d)^{3}$ for $c, d \in k$

$$
\Leftrightarrow \quad a \in\left(c^{3}: 3 c^{2} d: 3 c d^{2}: d^{3}\right)
$$

$\Leftrightarrow a$ lies on the twisted cubic C

$$
\begin{aligned}
& C=Z(I) \\
& I=2 \times 2 \text { minors of }\left(\begin{array}{ccc}
3 u_{0} & u_{1} & u_{2} \\
u_{1} & u_{2} & 3 u_{3}
\end{array}\right)
\end{aligned}
$$

Degree 4

$$
p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e \leftrightarrow(a: b: c: d: e) \in \mathbb{P}^{4}
$$

We have 4 partitions of 4 :
(all vooks distinct)
expected dimension:

21
22
31
4
V_{21}
$p(x)$ has a double root $\Leftrightarrow p(x)=(u x+v)^{2}\left(\omega_{2} x^{2}+\omega_{1} x+\omega_{0}\right)$

$$
\begin{aligned}
= & x^{4}\left(u^{2} w_{2}\right)+\left(u^{2} w_{1}+2 u v \omega_{2}\right) x^{3} \\
& +\left(u^{2} w_{0}+2 u v w_{1}+v^{2} w_{2}\right) x^{2} \\
& +\left(2 u v w_{0}+v^{2} \omega_{1}\right) x+v^{2} \omega_{0}
\end{aligned}
$$

$\Leftrightarrow p$ lies on the image of

$$
\begin{aligned}
& \mathbb{P}^{1} \times \mathbb{P}^{2} \cdots \mathbb{P}^{4} \\
& (u, v) \times\left(u_{0} ; w_{1}: w_{2}\right) \mapsto\left(u^{2} w_{2}: u^{2} \omega_{1}+2 u v w_{2}: \ldots\right)
\end{aligned}
$$

$\Leftrightarrow \quad p \in Z(\Delta)$ where

$$
\Delta=256 a^{3} e^{3}-192 a^{2} b d e^{2}+\ldots
$$

(huge polynomial)

$$
V_{31}
$$

$p(x)$ has a triple rot $\Leftrightarrow p(x)=(u x+v)^{3}\left(\omega_{1} x+\omega_{0}\right)$
$\Leftrightarrow p$ lies on the image of

$$
\begin{aligned}
& \mathbb{P}^{1} \times \mathbb{P}^{1} \ldots \mathbb{P}^{4} \\
& (u: v) \times\left(w_{0}: w_{1}\right) \longmapsto\left(u^{3} w_{1}: u^{3} w_{0}+3 u^{2} w_{1}: \cdot .\right)
\end{aligned}
$$

$\Leftrightarrow \quad p \in Z(q, c)$

$$
\begin{aligned}
& p=12 a e-3 b d+c^{2} \\
& c=27 a d^{2}+27 b^{2} e-27 b d c+8 c^{3}
\end{aligned}
$$

V_{22}
$p(x)$ has two repeated roofs $\Leftrightarrow p(x)=\left(u_{1} x+u_{0}\right)^{2}\left(v_{1} x+v_{0}\right)^{2}$

$$
\begin{aligned}
& =x^{4}\left(u_{1}^{2} v_{1}^{2}\right)+x^{3}\left(2 u_{1}^{2} v_{0} v_{1}+2 u_{0} u_{1} v_{1}^{2}\right) \\
& +x^{2}\left(u_{1}^{2} v_{0}^{2}+4 u_{0} u_{1} v_{0} v_{1}+u_{0}^{2} v_{1}^{2}\right) \\
& +x\left(2 u_{0} u_{1} v_{0}^{2}+2 u_{0}^{2} v_{0} v_{1}\right)+u_{0}^{2} v_{0}^{2}
\end{aligned}
$$

$\Leftrightarrow p$ is in the image of

$$
\begin{aligned}
& \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \ldots \mathbb{P}^{4} \\
& \left(u_{0}: u_{1} \mid \times\left(v_{0}: v_{1}\right) r\left(u_{1}^{2} v_{1}^{2}: \ldots\right)\right. \\
\Leftrightarrow & p \in Z(I) \\
& I=\text { ideal of } 5 \text { cubics! }
\end{aligned}
$$

Rum h $Z(I)$ is the projected Veronese surface in \mathbb{p}^{4}
V_{4}
$p(x)$ has a quadruple roof $\Leftrightarrow p \in V_{4}=C_{4}$
the rational normal curve of degree 4 .

$$
\mathbb{p}^{4} \supset V_{2,11} \supset V_{2,2}^{V_{3,1}}>V_{4}
$$

