Chapter 9 - Curves
Defn A curve is a variety of dimension 1.
If
$$p \in X$$
 is a point, then $A = O_{X,P}$ is
a local ning of dimension 1.
Lemma Lef $(A_{i}m)$ be a local ning of dim 1. TFAE:
(1) The mayorimal ideal m is principal
(2) A is a PID and all ideals are powers of m
(3) A is integrally closed (in $K = K(A)$).

(1)=>(2): Let m=(x) and let $a \leq A$ be an ideal. \sim) $a \leq m$ since A is local.

Knull's intersection theorem => $\bigcap_{i > 0} m^{i} = 0$ \longrightarrow pick n such that $a \leq m^{n} \land a \notin m^{n+1}$ \implies Pick $c : x^{n} \in a$ such that $x^{n} \in m^{n} - m^{n+1}$ $\implies c \notin m => c$ is a unit (A is local)

$$\sim$$
 $(X^{n}) \subseteq a \longrightarrow a = (X^{n}).$

(2) =>(3): PID
$$\Rightarrow$$
 UFD => integrally closed
(3) \Rightarrow (1): Suppose A is integrally closed in K = K(A).
Pick any element $x \in m$.
A methanian + dim 1 \Rightarrow $\exists y \in A - (x)$
such that $(x:y) = m$
 \Rightarrow $yx^{-1}m \subseteq A$
Chaim $yx^{-1}m = A$.
If not, $yx^{-1}m = m$.
 $m f \cdot g \cdot + faithful A - module \Rightarrow yx^{-1} untegral
 $over A$
 \Rightarrow $yx^{-1} \in A$ (A integrally closed)
 \Rightarrow $y \in (x)$
 \Rightarrow contradicting the assumption on y.
 \Rightarrow chaim $ox$$

Discrete Valuation rings A mig satisfying (1) - (3) is also a discrete valuation ring. Den For a local mig (A, m) as above, we call te A a uniformizing parameter if m = (t).

Any element act can be withen uniquely as

$$a = c \cdot t^n$$

where $c \in A - m = A^x$ is a unit and $n \in \mathbb{Z}$.
 \longrightarrow the same is three for elements in $K = K(A)$
 \longrightarrow we get a function "order of
 $V : K^x \longrightarrow \mathbb{Z}$ vanishing
 $a \longmapsto n$

Note that V(a) >0 if and only if aEA.

Defn A function v: A-o → Z is called a discrete valuation if

v(fq) = v(f) + v(q)
v(f+q) ≥ min (v(f), v(q))
with = if v(f) ≠ v(q).

We sometimes define v(o) = ∞.
A mig A admitting a discrete valuation is

A ning A admitting a discuele valuation is called a discuele valuation ving (DVR).

Ex
Similarly, each
$$A = k[t]_{(t-a)}$$
 is a DVR
via $v(f) = n$ s.t $f = c(t) \cdot t^n$

ex
$$Z_{(p)} = \left\{ \begin{array}{c} a \\ b \end{array} \right| p + b \left\}$$

 $\longrightarrow v: Z_{p} = 0 \longrightarrow Z$
 $\begin{array}{c} a \\ b \end{array} \mapsto lungest power k s.t p^{k} \mid a, \end{array}$

ex X a curve

$$P \notin X$$
 a non-singular point
 $\sim A = O_{X,P}$ is a regular local ring
 $\sim A$ is a DVR.
System of parameters ~ 3 Uniformizer $t \notin M$
 $V: O_{X,P} \xrightarrow{\circ} \sum Z$
 $f = \alpha \cdot t^n \mapsto n$
 $\alpha \notin Q_{X,P}^{X}$

The Extension Lemma

$$X_{0,1-}, X_{n}$$
 coordinates on \mathbb{P}^{n}
 \longrightarrow may assume that $\phi(U-p)$ meets $D = D_{p}(x_{0})$
 $\longrightarrow V = \phi^{-1}(D)$ non-empty open in X

and $\phi: V \longrightarrow D \cong Al^{\gamma}$ is given by n rational functions fi = gi which are regular on V. Chocse a connon X _____ Al go for each i. Cons; der \times (go, gi, -, gn) Want to define \$ using \$. ~) want to show that $\underline{\Psi}(p) \neq (0, ..., 0)$. If so, we get an extension of ϕ by $X \xrightarrow{\Psi} A \xrightarrow{N+1} -0$ To Pn Let t be the uniformizer of Ox,p (viewed as a rational function).

g; = d,(t)t^{vi} where d,(t)
$$\in O_{x,p}$$
 does not varnish at p.

$$V := \min(V_{0}, ..., V_{n})$$

$$\longrightarrow \mu_{i} = v_{i} - v \ge 0 \quad \text{and at least are } \mu_{i} = 0.$$

$$\longrightarrow \text{ replace each } g_{i} \quad \text{by} \quad g_{i} t^{-v} = d(t) t^{v_{i} - v}$$

$$\longrightarrow \text{ the } g_{i} \quad do \quad \text{not all vanish at } p$$

$$\longrightarrow \text{ get a morphism } \overline{p} = \pi \circ \overline{p} \quad \text{as above } \prod$$

The Extension Theorems

Thus X a curve $P \in X$ non-singular point Y a projective variety \rightarrow any variant map $\phi: X - - > Y$ extends to a marphism near p. $Y \subset \mathbb{P}^{m} \longrightarrow \phi: X - - > Y \longrightarrow \mathbb{P}^{m}$ extends to $\overline{\phi}: X \longrightarrow \mathbb{P}^{m}$ at p

and $\overline{\phi}(p) \in Y$ since Y is closed.

The X, Y projective, non-singular curves
X and Y are birational
$$\rightleftharpoons$$
 X \cong Y.

Given X ----> Y o isomerphism with inverse y X, Y non-singular + projective implies that and y extend to morphisms on φ and Y respectively. X we have $\phi \circ \psi = id$ $\psi \circ \phi = id$ on an open set => holds everywhere by Hausdorff axion =) o isomophism

ex This fails for suigubar causes:

$$C = Z_{+}(x_{0}^{3} - X_{1}X_{2}^{2})$$
 is birnhinal to \mathbb{P}^{2}
but not isomorphic. Need won-singular

ex
$$P[x]P[$$
 and P^2 are non-surgular t projective
They are birrational, but not isomorphic
 $r only works$ in dim 1.
 $P[\prod_{n=1}^{\infty} P^2]$

Desingularizations of curves
$$AI^N$$

Given a curve $X \longrightarrow$ would to construct \widetilde{X} ,
a non-singular curve,
 $+$ birationed morphism
 $T: \widetilde{X} \rightarrow X$

In particular,
$$\overline{A} = integral closure of A in theis finite over A.
 $P(X = k(X, y)/(X^3 - y^2) \xrightarrow{\sim} k(t^2, t^3) \text{ has } \overline{A} = k(t)$
 $\overline{A} = A \oplus At.$$$

X an affine vaniety ~? B = integral closure of A(X) in k(X).is a f.g &-algebra. ~> \exists affine vanety X s.t A(X) = B. A(X) SB induces X - TT + X which is finite, since B is fuite/A(X). These have the same function field =) T is also birational.

Prop Any affine vouriely X has a normalization This means: \widehat{X} is normal $\iff O_{\widehat{X},p}$ normale $\forall p \in \widehat{X}$ $\pi: \widehat{X} \to X$ is finite + birational

Universal property of normalization: Any morphism
$$\sigma: Y \longrightarrow X$$

from a normal variety factors as
 $Y \longrightarrow X$
 $\supset X$

Step 2 Pick an affine open
$$V \leq U_1 \wedge U_2$$

s.t. every $P \in U$ is non-singular.

Slep 3 Construct normalizations

$$V_1 \leftarrow V \leftarrow V_2$$

 $V_1 \leftarrow V_2 \leftarrow V_2$
 $T_1, V_1, Z \cup U \leq U_2$

Step 9 " have
$$V_1$$
 and V_2 along U"
 $V_1 \longrightarrow P^N$ some projective embedding
 $V_2 \longrightarrow P^N$ $V_2 := V_2$ projective cures

We have

$$V_{1} \longrightarrow W_{1}$$

$$V_{2} \longrightarrow W_{2}$$

$$V_{2} \longrightarrow W_{2}$$

$$V_{2} \longrightarrow W_{2}$$

$$V_{2} \longrightarrow W_{2}$$

$$\psi_{1} \colon V_{1} \longrightarrow W_{2}$$

$$\varphi_{2} \colon V_{2} \longrightarrow W_{1}$$

$$(extension)$$

$$\varphi_{2} \colon V_{2} \longrightarrow W_{1}$$

$$(heorem)$$

--> morphisms
$$V_1 \xrightarrow{} W_1 \times W_2 \xrightarrow{} (x, \phi(x))$$
 (graphs of $\phi_1 \text{ and } \phi_2$)
 $V_2 \xrightarrow{} W_1 \times W_2$
there agree on $U \subseteq V_1 \circ V_2$ and $\overline{U} = \overline{V_1} = \overline{V_2}$ in W .
Now define $\widehat{X} = V_1 \cup V_2 \subset W$
 V_1, V_2 both normal V
 V_1, V_2 cover $\widehat{X} \xrightarrow{} V$
 \overline{X} birational to $X \vee$
 $\overline{T_1}, \overline{T_2}$ agree on $V \longrightarrow$ she to a morphism $\widehat{X} \longrightarrow X$.

prop If X is projective, then so is
$$\tilde{X}$$
.
We have $\tilde{X} \subset V_1 = V_2$
let $\pi_{\tilde{V}_1} \subset V_1$ be the normalization of V_1 .

$$T_{V_{1}} \text{ induces a valuaral map } \Gamma \longrightarrow X$$

$$\Gamma \text{ non-suingular, } X \text{ projective } \longrightarrow \text{ this extends}$$

$$to a \text{ numphism} \quad Y: \Gamma \longrightarrow X$$

$$\longrightarrow factors \stackrel{as}{\to} \stackrel{X}{\to} \stackrel{X}{\to}$$

Ruck One can also find
$$\hat{X}$$
 via blow ups
e.g. if $X \subset \mathbb{P}^2$ is a plane cure.

$$e^{X} \quad X = Z(X^{3} - y^{2}) CP^{2} \quad n) \quad \widehat{X} = \text{ strict transform of } X$$

$$\text{under } \pi: \operatorname{Bl}_{p} \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}$$

$$\stackrel{\mathbb{P}}{=} p^{1}.$$

The Fundamental theorem for curves
The fiven a field K of tridege
$$K = 1$$

 \longrightarrow I non-surgular projective curve X
(Unique up to unique isomorphism)
s.t $K(X) = K$
Field theory: Can find an $x \in K$ s.t
K is finite, separable over $k(x)$.
 \longrightarrow If $\in K$ s.t $K = k(x)[f]$
and f satisfies an ineducible polynomial
 $y^n + a(x)y^{n-1} + ... + q_0(x) = 0$
This is the equation of a plane curve, (possibly surjube))
with $k(X) = K$.
Now take the projective closure $\overline{Y} \subseteq \mathbb{P}^2$
and lef $\chi = normalization of \overline{Y}$.
Thun X is non-surgular, projective and $k(X) = k(y) = K$.

Rational curves
A curve X is rational if it is birational to
$$\mathbb{P}^1$$

 $\longleftrightarrow k(X) \simeq k(t)$

P'is the only non-singular curve in its birational equivalence class.

Then (Livoth) If $L \subset k(t)$ is a subfield of fr.deg = 1then $\exists x \in L$ such that L = k(x).

Geometric meaning: If
$$\mathbb{P}^{1}$$
 ---> C is a dominant
valiant map, then C is also rational.

Inationality of some cubic curves
Then the curve
$$C = Z(q^2 - x(x-1)(x+1))$$

is not vectional.
Let $L = k(C) = k(x)(y)$
 $y^2 = x(x-1)(x+1)$
we need to show that $L \neq k(t)$.
Step A
Claim For a valuation $v: L \rightarrow Z$
 $v(x)$ is even.
 $y^2 = x(x-1)(x+1)$
 $V(x) = 0 \Rightarrow 0k$
 $21 v(x) = 0 \Rightarrow 0k$
 $21 v(x) = 0 \Rightarrow 0k$
 $21 v(x) > 0 \Rightarrow v(x-1) = min(v(x), v(t)) = v(t) = 0$
 $v(x+1) = v(1) = 0$
 $3) v(x) < 0 \Rightarrow v(x-1) = min(v(x), v(t)) = v(x)$
 $v(x+1) = v(x) \Rightarrow v(x) = v(x)$
 $v(x+1) = v(x) \Rightarrow v(x) = v(x)$

Step B: x is not a square in L
If
$$x = (a + by)^2$$
 in L $1, y$ bassis for
 $\rightarrow x = a^2 + 2aby + b^2y^2$
 $= a^2 + 2aby + b^2 \times (x-1)(x+1)$
Chow #2
 $\rightarrow x = a^2 = b^2 \times (x-1)(x+1)$ (I)
 $a = b^2 = b^2 \times (x-1)(x+1)$ (I)
 $a = b^2 = a^2 = b^2 \times a =$

$$(\underline{T}): \implies (\underline{X}-1)(\underline{X}+1) = \underline{X}(\underline{X}-1)(\underline{X}+1)_{\underline{X}} = b^2 \text{ is a Square}$$

but $V(\underline{X}^2-1) = 1$ where $V = \text{ord}_1$.

Step (In
$$C(t)$$
, any element f which
has $v(f)$ even $\forall v : C(t) \rightarrow \mathcal{E}$ is a square.
 $f = \frac{TT(t-a_i)^{n_i}}{TT(t-b_i)^{n_i}}$
Consider $ord(f)$ and $ord_{b_i}(f)$. If there are

In fact, the same argument works for
any curve of the form
$$y^{2} = p(x)$$

where p(x) = (x - a)(x - b)(x - c) is a separable cubic.