PROBLEM 3.10 The *x*-axis minus the origin is a closed and irreducible subset *Z* of $\mathbb{A}^2 \setminus \{(0,0)\}$. Exhibit regular functions on *Z* that are not restrictions of regular functions on $\mathbb{A}^2 \setminus \{(0,0)\}$. This illustrates why the definition of \mathcal{O}_Z is delicate; functions can locally be extended to ambient space without being globally extendable. HINT: Regular functions on then punctured affine plane $\mathbb{A}^2 \setminus \{(0,0)\}$ are polynomials (see Example 3.6 on page 46).

$$Z = Al' - 0 \qquad \hookrightarrow Al^2 - 0 = : U$$
Note that $Z = Z(y) \subset U$ is closed + inveducible.
The function $\frac{1}{X}$ is regular on $Al' - 0 = D(x) \subset Al'$.
On the other hand, we some that the inclusion
 $i: U \longrightarrow Al^2$
induces an isomorphism $i^*: O(Al^2) \xrightarrow{\sim} O(U)$.
 Al^2

So the polynemials in x and y are the only verticitions from $A_{1}^{2} - 0$.

PROBLEM 3.11 Let X be a variety and let $Y \subseteq X$ be a closed irreducible subset. For any open $U \subseteq X$, let $\mathcal{I}_Y(U)$ be the subset of regular functions on U that vanish on $Y \cap U$. Show that $\mathcal{I}_Y(U)$ is an *ideal* in $\mathcal{O}_X(U)$. Show that if $V \subseteq U$ are two open sets, then ρ_{UV} takes $\mathcal{I}_Y(U)$ into $\mathcal{I}_Y(V)$. Show that \mathcal{I}_Y is a sheaf (of abelian groups, in fact of rings without unit element).

$$\begin{split} I_{Y}(U) &= \begin{cases} f \in O_{X}(U) & | & f(x) = 0 \quad \forall \; x \in Y \cap U \\ \end{cases}. \\ \text{This is on ideal: } f, g \in I(U) =) \quad f + g \in I(U) \\ & f \cdot g \in I(U) \\ & a \cdot f \in I(U) \quad \forall a \in O(U). \\ & \swarrow & \checkmark \\ \end{bmatrix} \\ U \geq V: \quad |f \; f \in I(U) \\ \text{ Hun } \quad f_{UV}(f) = f|_{V} \; \text{ is also zero on } V \cap Y \subseteq U \cap Y. \\ & \frown & \uparrow_{UV}(f) \in I(V) \end{cases}$$

I is a sheaf:

$$I \hookrightarrow O_X$$
 preshoaf of a sheaf \Rightarrow locality holds
automatically
filming: fibren U + covering U: + fi $\in I(U_i)$
 \rightarrow can glube fi to a section $f \in O(U)$
(since O_X is a sheaf)
This has the property that $f|_{U_i} = f_i$
is zero on $U_i \cap Y$.
 $\rightarrow f$ is zero on Y (since $Y \cap U_i$ is
a covering of Y).

3.23 (*Rational cusp.*) Consider the curve *C* in \mathbb{A}^2 whose equation is $y^2 - x^3$. Show that *C* can be parametrized by the map $\phi \colon \mathbb{A}^1 \to \mathbb{A}^2$ defined as $\phi(t) = (t^2, t^3)$. Describe the map $\phi^* \colon A(C) \to A(\mathbb{A}^1)$. Show that ϕ is bijective but not an isomorphism. Show that the function field of *C* equals k(t).

All
$$\xrightarrow{\varphi}$$
 Al²
t $\xrightarrow{\varphi}$ (t², t³)
This is a polynomial map, hence a new phism.
frium a point $(u, v) \in Z(y^2 - x^3)$
We have $u^3 = v^2$ \longrightarrow we may find $a \in b_2$
So that $u = a^2$
 $v = a^3$
 $\xrightarrow{\varphi}$ $(u_1v) = \varphi(a)$. $\xrightarrow{\varphi} dv$ subjective
The map φ is also injective: $(s^2, s^3) = (t^2, t^3)$
 $\xrightarrow{\varphi} s^2 = t^2$ $(s = t t)$
 $s^3 = t^3 \implies s = t$.
The map φ^{*} : $A(C) \longrightarrow A(A^1)$ is given by
 $\frac{b(x,y)}{y^2 - x^3} \implies b(t)$
 $x \implies t^2$
 $y \implies t^3$
 φ is not an isonarphism: 1f it mere, then φ would be an
isomorphism, but φ is not surjective $(im \varphi = b(t^3, t^3))$
 $A(C) \cong b(t^2, t^3)$ which has $b(t)$ as
a fraction field.

3.24 (*Rational node.*) In this exercise we let *C* be the curve in \mathbb{A}^2 whose equation is $y^2 - x^2(x+1)$. Define a map $\phi \colon \mathbb{A}^1 \to \mathbb{A}^2$ by $\phi(t) = (t^2 - 1, t(t^2 - 1))$. Show that $\phi(\mathbb{A}^1) = C$, and describe the map $\phi^* \colon A(C) \to A(\mathbb{A}^1)$. Show that ϕ is not an isomorphism, but induces an isomorphism $\mathbb{A}^1 \setminus \{\pm 1\} \to C \setminus \{0\}$. Show that the function field of *C* equals k(t).

$$\begin{aligned} \varphi: A_{1}^{(1)} &\longrightarrow A_{1}^{(2)} \\ t &\longmapsto (t^{2}-1, t^{3}-t) \\ \varphi(A_{1}^{(1)}) &= C : &\subseteq \text{ is easy}, \\ [t^{3}-t]^{2}-(t^{2}-1)^{2}(t^{2}-1+1) &= t^{2}(t^{2}-1)^{2}-(t^{2}-1)^{2}t^{2} \quad y^{2} = x^{2}(x+1). \\ &= 0 \end{aligned}$$

Let L be the line
$$Z(y - ax)$$
.
We have $L \cap C = Z(y - ax, y^2 - x^3 - x^2)$
 $y^2 - x^3 - x^2 = a^2 x^2 - x^3 - x^2 = x^2(a^2 - x - i)$
 $-7 \quad x = a^2 - i$
 $y = a(a^2 - i)$
 $y = a(a^2 - i)$
 $(let L be the line $vx - uy = o$)
The map ϕ is also injective:
 $(s^2 - i, s^3 - s) = (t^2 - i, t^3 - t)$
 $s^2 - i = t^2 - i$ $-s = \pm t$
 $s^3 - s = t^3 - t$ $-r = (t^3 - t) = t^3 - t$ $-s = t$.$

The map A(C) A(A!) $k[X_1y] \longrightarrow k(t)$ $x \longrightarrow t^2 - 1$ $y \longrightarrow t^3 - t$ Not surjective: Innerse equals $b(t^2-1, t^3-t) \not\subseteq b(t)$ On AI'- 5t1 we can de fine an inverse to \$ $\begin{array}{cccc} C - 0 & & & & \\ & & & \\ (x, y) & & & \\ & & & \\ (x, y) & & & \\ & & & \\ \end{array} \begin{array}{cccc} \chi & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ S/x is regular on C-0, and \$0 \$ = id C-0: $\begin{pmatrix} x, y \end{pmatrix} \rightarrow \begin{pmatrix} y_{x} \end{pmatrix} \rightarrow \begin{pmatrix} (y_{x})^{2} - I \end{pmatrix} \begin{pmatrix} y_{y} \end{pmatrix}^{3} - \begin{pmatrix} y_{y} \end{pmatrix} \end{pmatrix}$ $\begin{pmatrix} \chi^{3} + \chi^{2} \\ \chi^{2} \end{pmatrix} \begin{pmatrix} y \end{pmatrix} \begin{pmatrix} (x^{3} + x^{2}) \\ \chi^{3} \end{pmatrix} \begin{pmatrix} y \end{pmatrix}$ *Α*(ς₀ ψ φ $t \rightarrow (t^{2}-1, t^{3}-t) \rightarrow \frac{t^{3}-t}{t^{2}-t} = t \quad (t \neq \pm 1!).$ \rightarrow ϕ defines an isomorphism $C-0 \simeq A^{1} - \{\pm 1\}$. -> C-O and Al'-(±1) have isomorphic function fields $k(c) = k(c-0) = k(A|-\{\pm i\}) = k(A|) = k(\epsilon).$

3.25 Let *C* be one of the curves from the two previous exercises. Show that, except for finitely many, every line through the origin intersects *C* in exactly one other point. What are the exceptional lines in the two cases? Use this to give a geometric interpretation of the parametrizations in the previous exercises.

For
$$(= Z(y^2 - x^3))$$
 $L = Z(y = ax)$
 \longrightarrow $(nL = Z(y^2 - x^3, y - ax) = Z(x^2(a^2 - x), y - ax)$
 $2nd$ interaction point = (a^2, a^3) for $a \neq o$
 $exceptional$ lines: $y = o$ and $x = o$
panelization from previous exercise = projection from (9.0).

4.4 Show that two different lines in \mathbb{P}^2 meet in exactly one point.

.

4.5 Show that *n* hyperplanes in \mathbb{P}^n always have a common point of intersection. Show that n general hyperplanes meet in exactly one point.

A linear hyperplane in
$$\mathbb{P}^{n}$$
 is a hypersurface $H=\mathbb{P}(\mathbb{A})$, where
 $\lambda = a_{0} x_{0} + ... + a_{n} x_{n}$ where $a_{0,...,a_{n}} \in \mathbb{R}$
distribut
4.4 Gravin two lines $L_{1} = \mathbb{P}(a_{0} x_{0} + a_{1} x_{1} + a_{2} x_{2})$
 $L_{2} = \mathbb{P}(b_{0} x_{0} + b_{1} x_{1} + b_{2} x_{2})$

4.5 Let
$$H_i = Z(\lambda_i)$$
 where λ_i is a linear form
Note that $\lambda_{i,...,\lambda_n}$ openents a proper prime ideal I
in $k[x_0,...x_n]$. We also have codim $I \leq n$ by
Knull's Hampkidealsatz, so $Z(I) \subseteq AI^{n+1}$ has dimension $\geq n$.
Hence $Z_+(I) = \pi(Z(I) - 0)$ is non-empty.

If the $\lambda_{1,...,\lambda_{n}}$ are general, the coordinate change $x_{0} = x_{0}$ $x_{i} = \lambda_{i}$ i=1...n

defines an isomorphism $b(x_0, -x_n) \xrightarrow{\phi} b(x_0, -x_n)$. Hence $Z(\lambda_1, -\lambda_n) = \phi(Z(x_1, --x_n)) = \phi((1:0:...:0)).$