Corollary 5.16 The product of two projective varieties is projective.
Proof: Let the two projective varieties be X and Y with $X \subset \mathbb{P}^{n}$ and $Y \subset \mathbb{P}^{m}$. The Zariski topology on a product is stronger than the product topology, and hence the product $X \times Y$ is closed in $\mathbb{P}^{n} \times \mathbb{P}^{m}$. The topological space $X \times Y$ carries both the sheaf of regular functions considered a product variety and the sheaf of regular functions considered a closed subvariety of $\mathbb{P}^{n} \times \mathbb{P}^{m}$, but of course, the two coincide. By the proposition $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is isomorphic to a closed subvariety of $\mathbb{P}^{m n+n+m}$ via the Segre embedding, and consequently the product $X \times Y$ is as well isomorphic to a closed subvariety.

Problem 5.6 Verify that the two sheaves alluded to in the proof are equal. Hint: This is a local question.

$$
X \times Y \subset \mathbb{P}^{n} \times \mathbb{P}^{n} \quad \text { closed } V
$$

\rightarrow two sheaves: $F=O_{X \times Y} \quad$ (product variety)

$$
g=0_{x \times Y \subset \mathbb{p}^{n} \times \mathbb{p}^{n}} \text { (subvanicty) }
$$

The sheaf F was constructed as follows:
Take affine $U \subseteq X$ and $V \subseteq Y$.
If $U \subseteq A^{n}$ and $V \leq A^{m}$ have affine coorchinate mics

$$
A(u)=k\left[x_{1} \ldots x_{n}\right] /\left(h_{n} \ldots f_{s}\right) \quad A(v)=k\left[y_{1} \ldots y_{m}\right] /\left(g_{1} \ldots g_{t}\right)
$$

then $\quad f(U \times V)=\frac{k\left[x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right]}{\left(f_{1} \ldots f_{s}, g_{1} \ldots g_{t}\right)}$.

Now consides

$$
\begin{aligned}
& D\left(x_{i}\right) \simeq A^{n} \\
& D\left(y_{i}\right) \simeq A^{n}
\end{aligned}
$$

$\leadsto D\left(x_{i}\right) \times\left. D\left(y_{j}\right) \simeq A\right|^{m+n}$ is an aftie open in $\mathbb{P}^{n} \times \mathbb{P}^{m}$
avel $U=X \cap D\left(x_{i}\right)$
are afte subset,
By constuction, $\quad U \times V \subseteq A^{n} \times A^{m}$ is a subvaniety

$$
\leadsto G(U \times V)=\{f: U \times V \rightarrow k \text { requinv }\}
$$

$\begin{aligned} & G_{i} \text { if } \varphi_{i}:\left.\left.F\right|_{v_{i}} \rightarrow g\right|_{v_{i}} \\ & v_{i} \text { overdeming av } x \\ & \text { s.a } \varphi_{i}=\phi_{j} \text { pi } v_{i} \cap v_{j}\end{aligned}=\frac{k\left[x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right]}{\left(f_{1} \cdots f_{s} g_{1} \ldots g_{t}\right)}$

$$
\Rightarrow \varphi: F \rightarrow \quad \sim(U \times V)
$$

\therefore There are natual isonorphisms $g(U \times V) \xrightarrow{\varphi_{i j}} F(U \times V)$
for $V=D_{+}\left(x_{i}\right) \quad i=0,-n$

$$
\begin{aligned}
& V=D_{+}\left(x_{i}\right) \quad i=0 .-n \\
& V=D_{+}\left(y_{j}\right) j=0,-m
\end{aligned} \leadsto U \times V \text { form an open cover of } X \times Y
$$

The $Q_{i j}$ agree on the overlups $\left(U_{i} \times V_{j}\right) \cap\left(U_{k} \times V_{l}\right)$
ghe to an isomorphism $g \simeq F$.

1) Any subuady $F \subset \mathbb{P}_{x}^{\prime} \mathbb{P}^{\prime}$ is given by $F=Z(f)$
for some bihomogeneous $f \in k\left(x_{0}, x_{1}, y_{0}, y_{1}\right]$.
If F is a fiber of $\mathbb{T}_{x}^{\prime} \times \mathbb{P}^{\prime} \xrightarrow{p_{1}} \mathbb{P}^{\prime}$, then $F=Z_{+}(l)$ where $l=a_{0} x_{0}+a_{1} x_{1} \quad$ (ie. $f=p_{1}^{*} l$)

This eucheds as a line in $\mathbb{1}^{3}$: the ideal of the image is given by the barrel of

$$
\begin{aligned}
& \mathbb{P}_{x}^{\prime} \times \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{3} \quad k\left[u_{0}, u_{1}, u_{2}, u_{3}\right] \xrightarrow[\substack{u_{0} \rightarrow x_{0} y_{0} \\
u_{1} \rightarrow x_{1} y_{0} \\
u_{2} \rightarrow x_{0} y_{1} \\
u_{3} \rightarrow x_{1} y_{1}}]{ } \frac{\theta}{l\left(x_{0}, x_{1}, y_{0}, y_{1}\right]} \\
& r\left(x_{0} y_{0}, x_{1} y_{0}, x_{0} y_{1}, x_{1} y_{1}\right)=0 \text { mad } a_{x_{0}}+b x_{1} \\
& a_{0} x_{0} y_{0}+a, x_{1} y_{0}=a_{0} u_{0}+a_{1} u_{1}=0 \\
& a_{0} x_{0} y_{1}+a_{1} x_{1} y_{1}=a_{0} u_{2}+a_{1} u_{3}=0 \\
& \left(a_{0} u_{0}+a_{1} u_{1}, a_{0} u_{2}+a_{1} u_{3}\right) \subseteq \operatorname{ker} \theta
\end{aligned}
$$

This is an equality, since both have ht $2=\operatorname{codim} l$.
$\Rightarrow F$ embeds as $z_{+}\left(a_{0} u_{0}+a_{1} u_{1}, a_{0} u_{2}+a_{1} u_{3}\right)$ which is a line in \mathbb{P}^{3}.

6.2 Let $\psi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ be the map $\psi(x, y)=(x, x y)$. Determine the ideals $\psi^{*} \mathfrak{m}_{(a, b)}$ and the fibres $\psi^{-1}(a, b)$ for all points $(a, b) \in \mathbb{A}^{2}$.

$$
\begin{aligned}
& m_{a b}=(u-a, v-b) \\
& \psi^{*} m_{a b}=(x-a, x y-b)=(x-a, a y-b) \\
& \Psi^{-1}(a, b)=Z(x-a, a y-b) \\
& a=0, b \neq 0 \Rightarrow \Psi^{-1}(a, b)=Z(x, b)=\varnothing \\
& a=0, b=0 \Rightarrow \Psi^{-1}(a, b)=Z(x)=y-a x i s \\
& a \neq 0 \quad \Rightarrow \psi^{-1}(a, b)=Z\left(x \sim a, y-\frac{b}{a}\right)=\left\{\left(a, \frac{b}{a}\right)\right\} .
\end{aligned}
$$

$$
\left(X, O_{X}\right) \xrightarrow{\varphi}\left(Y, O_{Y}\right)
$$

$\varphi: X \rightarrow Y \quad$ Continelig av.

+ for able $U \subseteq Y \rightarrow \phi^{*}: O_{Y}(U) \rightarrow O_{X}\left(\phi^{-1} U\right)$

$$
f \longmapsto \phi^{*} f
$$

$$
J=\left(x_{0}-x_{1}, x_{2}, x_{3}\right)
$$

Problem 6.13 Show that $x_{0}-x_{1}, x_{2}, x_{3}$ is a system of parameters at the origin for $Z\left(x_{0} x_{1}-x_{2} x_{3}\right)$. A $\left.\right|^{4}$
Enough to show $x_{0}, x_{1} \in \sqrt{J}$
(then $\sqrt{J}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is the maximal icleal))

$$
\begin{array}{r}
\left(x_{0}-x_{1}, x_{2}, x_{3}, x_{0} x_{1}-x_{2} x_{3}\right) \\
=\left(x_{0}-x_{1}, x_{2}, x_{3}, x_{0} x_{1}\right) \\
=\left(x_{0}-x_{1}, x_{2}, x_{3}, x_{0}^{2}\right)
\end{array}
$$

$\sim x_{0} \in \sqrt{J}$ and $x_{1} \in \sqrt{J}$ also.
systems of parameters:
$A \operatorname{dim} n$
$m \subset A$ maximal ident
$x_{1} \ldots x_{n}$ system of parables if

$$
\begin{aligned}
& \quad\left(x_{1} \ldots x_{n}\right) \text { is m-primearlf } \\
& \sqrt{\left(x_{1} \ldots x_{n}\right)}=m
\end{aligned}
$$

Problem 6.15 Assume that X is a (irreducible) variety and that Y is a curve. Show that all components of all fibres of a dominant amorphism $\phi: X \rightarrow Y$ are of codimension one in X.

Wog Y is affine.
Pick a NNL $Y \xrightarrow{\pi} A)^{\prime}$ (finite)

$\leadsto w \log \quad Y=A^{\prime}$.
If $\left.p \in A\right|^{\prime}$, then $\phi^{-1}(p)=Z\left(\phi^{*} m_{p}\right)$
"

$$
=Z\left(\phi^{*}(x-a)\right)
$$

This is clefinced by 1 equation
\Rightarrow codim 1 by Krull.

Problem 7.1 Show that for $X=Z(I) \subset \mathbb{A}^{n}$ and $p=(0, \ldots, 0)$,

$$
T_{p} X=Z\left(f^{(1)} \mid f \in I\right)
$$

where $f^{(1)}$ denotes the linear part of $f \in k\left[x_{1}, \ldots, x_{n}\right]$.
Take $f \in I$ and wite $f=f^{(1)}+g$ where $g \in m^{2}$

$$
\begin{aligned}
& v \in T_{p} x \Leftrightarrow \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(0) \cdot v_{i}=0 \quad \forall f \in I \quad m=\left(x, \ldots x_{n}\right) \\
& f^{(1)}=a_{1} x_{1}+\ldots+a_{n} x_{n} \quad \Longleftrightarrow \sum_{i=1}^{n} a_{i} v_{1}=0 \\
& \\
& \Leftrightarrow f^{(1)}\left(v_{i}\right)=0 \\
& \\
& \Leftrightarrow v_{i} \in Z\left(f^{(1)}\right)
\end{aligned}
$$

