PROBLEM 7.4 Compute the singular points of the *Steiner surface*

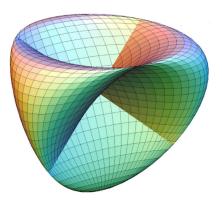
$$Z(x^2y^2 + y^2z^2 + z^2x^2 - xyz) \subset \mathbb{A}^3$$

$$F = x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2} - xyz$$

$$\frac{\partial f}{\partial x} = 2xy^{2} + 2xz^{2} - yz$$

$$\frac{\partial f}{\partial y} = 2yx^{2} + 2zy^{2} - xz$$

$$\frac{\partial f}{\partial t} = 2y^{2}z + zx^{2}z - xy$$



Note:
$$Xyz = -4(x^2y^2 + y^2z^2 + z^2x^2 - Xyz)$$

+ $X(2xy^2 + 2xz^2 - yz)$
+ $Y(2yx^2 + 2zy^2 - xz)$
+ $Z(2y^2z + 2zy^2 - xz)$

 \sim , suig (X) $\leq Z(xyz)$.

By symmetry, we consider
$$x=0$$
:
 $(F, \Im_{x}^{F}, \frac{\partial}{\partial y}, \frac{\partial F}{\partial z}, \chi) = (Y^{Z}Z^{2}, YZ, 2Z, Y^{2}, 2Y^{2}Z, \chi)$
 $= (\chi, YZ) = (\chi, Y) \cap (\chi, Z)$

$$\sim$$
 sing(X) = $Z(X,Y) \cup Z(X,Z) \cup Z(Y,Z)$

PROBLEM 7.5 For $X = Z(f_1, ..., f_r) \subset \mathbb{A}^n$ we define the *tangent bundle of* X has the set

$$T(X) = \{(x,v) \in X \times \mathbb{A}^n | \sum_{i=1}^n \frac{\partial f_j}{\partial x_i}(x) \cdot v_i = 0 \text{ for all } j\}$$

Show that T(X) is an affine variety, and describe the morphism $p: T(X) \to X$ given by the first projection.

$$X_{1} - X_{n}, V_{1} - V_{n} \quad coordinates \quad on \quad Al^{2n}:$$

$$T(X) = Z(f_{1}, ..., f_{r}, g_{1}, ..., g_{n}) \quad C \quad Al^{2n}$$

$$g_{k} = \sum_{j=1}^{n} \frac{\partial f_{k}}{\partial X_{i}}(x) \cdot V_{i}$$

$$T(X) \quad is \quad an \quad affine \quad vaniety.$$
For $a = (a_{1}, ..., a_{n}) \in X_{j}$ the fiber of $p: T(X) \longrightarrow X$
is given by
$$P^{-1}(a) = Z(X_{1} - a_{1}, ..., X_{n} - a_{n},$$

$$\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial X_{i}}(a_{1} \cdot V_{i}) \dots \sum_{i=1}^{n} \frac{\partial f_{i}}{\partial X_{i}}(a_{1} \cdot V_{i})$$

$$= \bigcup \{taugent \ lines \ passing \ theorem a \ d_{1}$$

8.3 Let $\phi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be the rational map that sends $(x_0 : x_1 : x_2)$ to $(x_2^2 : x_0x_1 : x_0x_2)$. Determine largest set of definition. Show that ϕ is birational, and determine what curves are collapsed.

$$\begin{aligned} \alpha_{\phi} &= \left(\begin{pmatrix} \chi_{2}^{2}, \chi_{0}\chi_{1}, \chi_{0}\chi_{2} \end{pmatrix} = \begin{pmatrix} \chi_{2}, \chi_{0}\chi_{1} \end{pmatrix} = \begin{pmatrix} \chi_{0}, \chi_{2} \end{pmatrix} \cap \begin{pmatrix} \chi_{1}, \chi_{2} \end{pmatrix} \right) \\ & \ddots & \bigcup_{\phi} &= \mathbb{P}^{2} - \begin{cases} (0:1:0), (1:0:0) \\ 0:1:0 \end{pmatrix}, (1:0:0) \\ & \downarrow \\ \psi_{0} &= \chi_{2}^{2} \\ & \chi_{1} &= \chi_{0}\chi_{1} \\ & \chi_{2} &= \chi_{2} \\ & \chi_{1} &= \chi_{0}\chi_{1} \\ & \chi_{2} &= \chi_{2} \\ & \chi_{2} &= \chi_{2} \\ & \chi_{2} &= \chi_{2} \\ & \chi_{0} &= \chi_{1} \\ & \chi_{0} &: \chi_{1} &: \chi_{2} \end{pmatrix} \end{aligned}$$
on $\mathcal{U}_{0} = 0: \quad \mathcal{Z} \begin{pmatrix} \chi_{2} \end{pmatrix}$ expenses contracted to $(0:1:0)$

8.4 Let $\phi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be the rational map that sends $(x_0: x_1: x_2)$ to $(x_2^2 - x_0 x_1: x_1^2: x_1 x_2)$. Determine the set largest set where ϕ is defined. Show that ϕ is birational, and determine what curves are collapsed.

on
$$u_1 = 0$$
: $x_1 = 0$
 $Z(x_1)$ gets contracted to $(1:0:0)$ V

8.5 Let $\phi \colon \mathbb{A}^2 \to \mathbb{A}^4$ be the map defined by

$$\begin{split} \phi(x,y) &= (x,xy,y(y-1),y^2(y-1)) \\ & \mathsf{U}_{\mathsf{t}} \; \mathsf{u}_{\mathsf{x}} \quad \mathsf{u}_{\mathsf{x}} \quad \mathsf{u}_{\mathsf{Y}} \end{split}$$

a) Show that $\phi(0,0) = \phi(0,1) = (0,0,0,0)$, and that ϕ is injective on $U = \mathbb{A}^2 \setminus \{(0,0), (0,1)\}.$

b) Show that $\phi|_U$ is an isomorphism between U and its image. HINT: $\phi|_U$ takes values in $V = \mathbb{A}^4 \setminus Z(x)$ and the map $V \to \mathbb{A}^2$ sending (u, v, w, t) to (u, v) is a left section for $\phi|_U$.

c) Show that the image of ϕ is given by the polynomials ut - vw, $w^3 - t(t - w)$ and $u^2w - v(v - u)$.

c)
$$f_1 = ut - vw$$
 $x = \phi(H^2)$ $T = (R, R_2, R_3)$
 $f_2 = w^3 - f(t-w)$ $\sim colin I = 2$
 $f_3 = h^2 W - V(V-w)$ AI^4 since X has dim 2.
Claim: $Z(T) =: W$ is invaluable.
In $D_+(u)$ bet $u = 1$ Ai^3
 $I|_{u=1} = (t-vw, v^2 - v-w, w^3 + wt - t^2)$
elemente $t: (v^2 - v - w)$ Ai^2 invaluable.
There could be an inval component in $u \ge 0$.
Check $D_+(v)$ $v=1$
 $I|_{w=1} = (w - ut, w^3 + wt - t^2, u^2 W + u - 1)$
elemente $w: (u^3 t + u - 1)$ invaluable v
If $Z(T)$ is not invaluable. Here would be a comparent in $w = v = 0$.
In $D_+(w)$: $w = 1$
 $(w^2 - v - u^2)$ invaluable v $(w = v - u^2)$
 $u = vw$ $(u^3 t + u - 1)$ invaluable v
 $v = (u^2 - t - 1)$ invaluable.
Here could be used the point $u = v = w = 0$ $in the closure of $Z(T|_{w=1})$ $v$$

9.1 Assume that v is a discrete valuation on a field *K*. Show that the set $A = \{x \in K \mid v(x) \ge 0\}$ is discrete valuation ring by showing that $\{x \in K \mid v(x) > 0\}$ is a maximal ideal generated by one element.

A is a subonicy of
$$K \checkmark V: K \longrightarrow Z$$

Lef $m = \{x \in K \mid v(x) > 0\}$.
 $V(xy) = v(x) + v(y)$
 M is an ideal \checkmark
 $A - m = \{x \in K \mid v(x) = 0\}$
 if $y \in A - m$, then also $y' \in A - m = 2$ $A - m$ consists of units
 $= 2$ A is a local migning with maximal ideal m .
 M is principal:
 $W[og V: K \rightarrow Z$ is surjective (otherwise lef $v' = \frac{V}{N}$, where $\leq v(K) > = (N) \leq Z$)
Let tek be an element with $v(t) = 1$

Let
$$f \in K$$
 be an element with $v(t) = i$
 $\longrightarrow f \in M \subset A$
Claim $m = (t)$.
If $a \in M$ =) $v(a) \neq i = 2$ $v(at^{-1}) = v(a) - v(t^{-1}) \neq 0$
 $\Rightarrow at^{-1} \in A$ =) $a = (at^{-1}) \cdot t \in (t) \Rightarrow 0t$.

10.4 Let $\phi: X \to Y$ be a morphism of varieties and $r \in \mathbb{N}_0$ a non-negative integer. Show that the set $\{y \in Y \mid \dim \phi^{-1}(y)\} = r$ is locally closed.

We showed that the sets

$$W_r = \{y \in Y\} dim \phi^{-1}(y) \gg r\}$$

are closed.
We are interested in $W_r - W_{r+1}$; this is open in W_r
 $\Rightarrow W_r - W_{r+1} = U \cap W_r$ is locally closed
indered
typ.

PROBLEM 10.9 Asume that *p* and *q* are two relatively prime numbers. Let $C \subseteq \mathbb{A}^2$ be the image of the map $\phi \colon \mathbb{A}^1 \to \mathbb{A}^2$ given as $t \mapsto (t^p, t^q)$. Show that $C = Z(x^q - y^p)$. Prove that ϕ is a finite map and determine all fibres of ϕ .

The map is induced by

$$k[x,y] \xrightarrow{\Theta} k[t]$$

 $x \xrightarrow{-} t^{P}$
 $y \xrightarrow{-} t^{9}$

(p,q)=1 ~> her $\theta = (y^{\dagger} - x^{2})$ is prime

$$\frac{1}{yP_{-xq}} \sim k[t^{P}, t^{q}] \subset k[t]$$

and $k[t]$ is finite as a module over $k[t^{P}, t^{q}] \sim$

$$\phi$$
 quarifie f $\phi'(q)$ for $\forall q \in Y$.
 f $\forall y = 1$ $\int \int C$
 $\downarrow \phi$
 $\downarrow \phi$

$$\phi$$
 queuri finite V
 ϕ not finite: $A(C) = \frac{k[x_1y]}{x_{y-1}} \sim k[x_1x']$
Not finite as a $k[x_1]$ -module