Mandatory assignment MAT4210 - Spring 2022

The assignment must be submitted via Canvas by 14:30, Thursday February 24th.
You need to solve at least 3.5 problems to pass. If you have any questions or comments about the problems, feel free to email me at johnco@math. uio.no.

All varieties are over the field $k=\mathbb{C}$.

Problem 1. Show that a quasiaffine variety is quasiprojective. Is the converse true?

By definition, a quasiaffine variety V is an open set in some affine variety $X \subset \mathbb{A}^{n}$. Let $X-V=Z(I)$, where $I \subset A(X)$ is an ideal. Embed \mathbb{A}^{n} in \mathbb{P}^{n} as the distinguished open $D_{+}\left(x_{0}\right)$. Denoting I^{h} by the homogenization of I with respect to x_{0} (a homogeneous ideal in x_{0}, \ldots, x_{n}), we have $V=\bar{X}-Z\left(x_{0}\right) \cup Z\left(I^{h}\right)$, so V is quasiprojective.

The converse is not true: \mathbb{P}^{1} or $\mathbb{P}^{2}-(0: 0: 1)$ are counterexamples (open sets in affine varieties can not contain \mathbb{P}^{1} 's).

Problem 2. a) Which of the following varieties are isomorphic?
(1) \mathbb{A}^{2}.
(2) $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(3) $Z(f) \subset \mathbb{A}^{3}$, where $f=x+y+z+1$
(4) $Z(f) \subset \mathbb{A}^{3}$, where $f=x^{2}+y^{2}+z^{2}+1$.
(5) $Z_{+}(F) \subset \mathbb{P}^{3}$, where $F=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
(6) $X \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$ defined by $x_{0} y_{0}-x_{1} y_{1}=0$.
b) For each variety X in problem a), compute $\mathcal{O}_{X}(X)$.

Label the varieties as X_{1}, \ldots, X_{6}.
X_{1}, X_{3}, X_{4} are affine varieties, with

- $A\left(X_{1}\right)=k[x, y]$
- $A\left(X_{3}\right)=k[x, y, z] /(x+y+z+1) \simeq k[x, y]$
- $A\left(X_{4}\right)=k[x, y, z] /\left(x^{2}+y^{2}+z^{2}+1\right)$

So $X_{1} \simeq X_{3}$, but $X_{1} \not 千 X_{4}$.
The varieties X_{2} and X_{5} are projective, and in fact isomorphic, since $\mathbb{P}^{1} \times \mathbb{P}^{1}$ embeds as a non-singular quadric in \mathbb{P}^{3} and all non-singular quadrics are isomorphic (via a linear coordinate change).
X_{6} is neither affine nor projective. Not affine: X_{6} contains the \mathbb{P}^{1} given by $(0,0) \times \mathbb{P}^{1}$. Not projective: X_{6} admits a non-constant global regular function: $X_{6} \rightarrow \mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$.
b) X_{1}, X_{3}, X_{4} are affine, so $\mathscr{O}_{X}(X)$ is given by $A\left(X_{1}\right), A\left(X_{2}\right), A\left(X_{4}\right)$ above.
X_{2}, X_{5} are projective, so they have $\mathscr{O}_{X}(X)=k$.
For $X=X_{6}$, note that the first projection induces a map

$$
k\left[x_{0}, x_{1}\right] \rightarrow \mathscr{O}_{X}(X)
$$

We claim that this is in fact an isomorphism.
To prove this, note that $\mathbb{A}^{2} \times \mathbb{P}^{1}$ has a covering by two open subsets

$$
D_{+}\left(y_{0}\right) \simeq \mathbb{A}^{3}, \quad \text { and } \quad D_{+}\left(y_{1}\right) \simeq \mathbb{A}^{3}
$$

On $D_{+}\left(y_{0}\right)$, we have coordinates x_{0}, x_{1} and $u=\frac{y_{1}}{y_{0}}$, while on $D_{+}\left(y_{1}\right)$ we have coordinates x_{0}, x_{1} and $v=\frac{y_{0}}{y_{1}}$. In U, X is defined by the equation $x_{0}-x_{1} u=0$, so X is isomorphic to \mathbb{A}^{2} with coordinates x_{1}, u. Similarly, $V \simeq \mathbb{A}^{2}$ with coordinates x_{0}, v.

Now, take an element $f \in \mathscr{O}_{X}(X) .\left.f\right|_{U}$ is an element of $\mathscr{O}_{X}(U)=k\left[x_{1}, u\right]$, thus a polynomial $P\left(x_{1}, u\right)$, whereas $\left.f\right|_{V}=Q\left(x_{0}, v\right)$ is an element of $k\left[x_{0}, v\right]$. These polynomials have to agree on the intersection $U \cap V$; and here we are allowed to write $v=u^{-1}$ and $x_{0}=x_{1} u$. Thus

$$
P\left(x_{1}, u\right)=Q\left(x_{1} u, u^{-1}\right)
$$

If we write $Q(z, w)=\sum a_{i j} z^{i} w^{j}$, the only way that the right hand side is a polynomial in x_{1} and u, is that each monomial $z^{i} w^{j}$ satisfies $i \geq j$. Thus Q is a polynomial in $z\left(=x_{1} u=x_{0}\right)$ and $z w\left(=x_{1} u \cdot u^{-1}=x_{1}\right)$. This implies that f is in fact given by a polynomial in x_{0}, x_{1}.

Problem 3. Consider the closed algebraic set $Z_{+}(I) \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
x_{1} y_{0}-x_{0} y_{1}=x_{2} y_{0}-y_{2} x_{0}=0
$$

Compute its dimension and describe its irreducible components.

Let $W=Z(I)$ where $I=\left(x_{1} y_{0}-x_{0} y_{1}, x_{2} y_{0}-y_{2} x_{0}\right)$ in $R=k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right]$.
Let $p=\left(x_{0}: x_{1}: x_{2}\right) \times\left(y_{0}: y_{1}: y_{2}\right) \in W$. If $x_{0} \neq 0$, then wlog $x_{0}=1$, so $x_{1} y_{0}-y_{1}=$ $x_{2} y_{0}-y_{2}=0$, thus

$$
p=\left(1: x_{1}: x_{2}\right) \times\left(y_{0}: x_{1} y_{0}: x_{2} y_{0}\right)=\left(1: x_{1}: x_{2}\right) \times\left(1: x_{1}: x_{2}\right)
$$

(the equations imply that $y_{0} \neq 0$ also). Thus $p \in \Delta$, where $\Delta \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ is the diagonal, defined by the (prime) ideal

$$
I(\Delta)=\left(x_{1} y_{0}-x_{0} y_{1}, x_{2} y_{0}-y_{2} x_{0}, x_{1} y_{2}-x_{2} y_{1}\right)
$$

If $x_{0}=0$, then $x_{1} y_{0}=x_{2} y_{0}=0$. The only possibility here is that $y_{0}=0$, so $p \in Z\left(x_{0}, y_{0}\right)$. We have shown that $W \subset \Delta \cup Z\left(x_{0}, y_{0}\right)$. Conversely, we clearly have $\Delta \cup Z\left(x_{0}, y_{0}\right) \subseteq W$. These components are clearly irreducible, so

$$
W=\Delta \cup Z\left(x_{0}, y_{0}\right)
$$

is the decomposition into irreducibles.
$\operatorname{dim} \Delta=\operatorname{dim} \mathbb{P}^{2}=2$ and $\operatorname{dim} Z\left(x_{0}, y_{0}\right)=\operatorname{dim} \mathbb{P}^{1} \times \mathbb{P}^{1}=2$, so $\operatorname{dim} W=2$.

Problem 4. Consider the cubic surface

$$
X=Z_{+}\left(x_{0} x_{1}^{2}-x_{2} x_{3}^{2}\right) \subset \mathbb{P}^{3}
$$

i) Compute all singular points of X;
ii) Show that X is rational.

We note that X is irreducible. The jacobian is given by

$$
J=\left(\begin{array}{llll}
x_{1}^{2} & 2 x_{0} x_{1} & -x_{3}^{2} & -2 x_{2} x_{3}
\end{array}\right)
$$

Thus $p \in X$ is a singular point $\Leftrightarrow r k J=0 \Leftrightarrow p \in Z\left(x_{1}^{2}, 2 x_{0} x_{1},-x_{3}^{2},-2 x_{2} x_{3}\right)=Z\left(x_{0}, x_{3}\right)$. Thus

$$
\operatorname{sing}(X)=X\left(x_{0}, x_{3}\right)
$$

Consider $D_{+}\left(x_{3}\right) \simeq \mathbb{A}^{3}$ and the corresponding open set $U=Z\left(x y^{2}-z\right) \subset X$. Hence a birational parameterization is given by

$$
\begin{array}{rll}
\mathbb{A}^{2} & --\rightarrow & U \\
(u, v) & \mapsto & \left(u, v, u v^{2}\right)
\end{array}
$$

The inverse is given by the projection $U \rightarrow \mathbb{A}^{2}$ onto the two first factors.

Problem 5. Consider the quotient space $X=\mathbb{A}^{3}-0 / \sim$ where the equivalence relation is defined by

$$
(x, y, z) \sim\left(t x, t y, t^{2} z\right)
$$

a)* Show that X has the structure of a variety.
b) Compute $\mathscr{O}_{X}(X)$.
c) Show that X admits an embedding $X \hookrightarrow \mathbb{P}^{3}$ as a quadric surface. Deduce that X is projective.
d) Find all singular points of X.
(Possible hints: Work on the "distinguished open sets" $D_{+}(x), D_{+}(y), D_{+}(z)$. In one of the charts, you will see the quadric cone $v^{2}=u w$. There is also a convenient map $\mathbb{A}^{3}-0 \rightarrow \mathbb{P}^{3}$. You may solve these problems in any order, if that makes it easier.)

Note that X is a topological space via the quotient topology. We let $\pi: \mathbb{A}^{3}-0 \rightarrow X$ for the quotient map.

We will equip X with a sheaf to make it a ringed space, and subsequently show that X is a prevariety and finally a variety.

Let $R=k[x, y, z]$ with the grading $\operatorname{deg} x=\operatorname{deg} y=1$ and $\operatorname{deg} z=2$. We will use the notation $D(x), D(y), D(z)$ for the distinguished open sets.

Define \mathscr{O}_{X} by letting $\mathscr{O}_{X}(U)$ consist of the continuous functions $f: U \rightarrow k$ which are locally of the form g / h where $g, h \in R$ are homogeneous elements of the same degree. Thus $\frac{x^{2}}{z} \in$ $\mathscr{O}_{X}(D(z))$, but $\frac{x}{z} \notin \mathscr{O}_{X}(D(z))$. It is clear that this satisfies the Gluing axiom (same proof as for $\left.\mathbb{P}^{2}\right)$, so we have a ringed space $\left(X, \mathscr{O}_{X}\right)$.

Consider the map

$$
\begin{aligned}
\Phi: \mathbb{A}^{3}-0 & \rightarrow \mathbb{P}^{3} \\
(x, y, z) & \mapsto\left(x^{2}: x y: y^{2}: z\right)
\end{aligned}
$$

Note that $\Phi\left(t x, t y, t^{2} z\right)=\Phi(x, y, z)$, so we get an induced continuous map

$$
\phi: X \rightarrow \mathbb{P}^{3}
$$

Write $u_{0}, u_{1}, u_{2}, u_{3}$ for the homogeneous coordinates on \mathbb{P}^{3}.
Claim: ϕ is a homeomorphism onto the quadric $Q=Z\left(u_{1}^{2}-u_{0} u_{2}\right)$.
We check this on the charts $D(x), D(y), D(z)$.
$D(x)$:
Let us restrict Φ to the subvariety $A_{1}=Z(x-1) \subset \mathbb{A}^{3}-0$ which is isomorphic to \mathbb{A}^{2}. We note that $\Phi\left(A_{1}\right) \subset D_{+}\left(u_{0}\right) \simeq \mathbb{A}^{3}$.
Write $\pi_{1}=\left.\pi\right|_{A_{1}}$ and $\Phi_{1}=\left.\Phi\right|_{A_{1}}$ so that we have a diagram

and $Q \cap D_{+}\left(u_{0}\right)=Z\left(u_{1}^{2}-u_{2}\right) \subset \mathbb{A}^{3}$.
Thus the restriction can be identified with the map

$$
\begin{aligned}
\Phi_{1}: \mathbb{A}^{2} & \rightarrow Z\left(u_{1}^{2}-u_{2}\right) \\
(y, z) & \mapsto\left(y, y^{2}, z\right)
\end{aligned}
$$

This is clearly an isomorphism, with inverse $\left(u_{1}, u_{2}, u_{3}\right) \mapsto\left(u_{1}, u_{3}\right)$. Note that π_{1} is surjective; this implies that ϕ_{1} is also a homeomorphism.
$D(y)$: The same argument as applies.
$D(z)$: Here the situation is a little different: Defining $A_{3}=Z(z-1) \subset \mathbb{A}^{3}-0$ as above, we have a diagram

The restriction π is no longer a homeomorphism: It identifies $(x, y, 1)$ and $(-x,-y, 1)$.
Here Φ restricted to $Z(z-1)$ can be identified with the map

$$
\begin{aligned}
\Phi: \mathbb{A}^{2} & \rightarrow Z\left(u_{1}^{2}-u_{2} u_{0}\right) \subset \mathbb{A}^{3} \\
(x, y) & \mapsto\left(x^{2}, x y, y^{2}\right)
\end{aligned}
$$

This also identifies (x, y) with $(-x,-y)$. This means that the induced ϕ is bijective.
ϕ is also a closed map: Let $V \subset A_{3} / \sim$ be a closed set. By definition this means that $\pi^{-1}(V)$ is closed in $\mathbb{A}^{3}-0$, and hence $W=\pi^{-1}(V) \cap A_{3}$ is closed in $A_{3}=\mathbb{A}^{2}$. We write this as $W=Z(I)$ where $I \subset k[x, y]$ is some ideal. Since W is invariant under $(x, y) \mapsto(-x,-y)$, the polynomials
that define I must be polynomials in $x^{2}, x y, y^{2}$. Thus $W=\Phi^{-1}(Z)$ for some closed subset $Z \subset Z\left(u_{1}^{2}-u_{0} u_{2}\right)$, and we have $\phi(V)=Z$ by the diagram.
(Alternatively, $k\left[x^{2}, x y, y^{2}\right] \subset k[x, y]$ is an integral extension, so by Going-Up Spec $k[x, y] \rightarrow$ Spec $k\left[x^{2}, x y, y^{2}\right]$ is closed. The map Φ is simply the restriction of this map of Spec's restricted to the maximal ideals, so it is again closed. Thus ϕ is also closed.)
This means that ϕ is a homeomorphism.
Next we prove that X is a prevariety, by showing that it is locally isomorphic to an affine variety. Of course we will use the open sets $D(x), D(y)$ and $D(z)$ as the affine cover, and use the homeomorphisms above. To proceed, we need to show that the homeomorphisms ϕ_{i} $i=1,2,3$ induce isomorphisms between the structure sheaves $\left.\mathscr{O}_{X}\right|_{D_{+}(x)}$ and $\mathscr{O}_{A_{1}}$ etc.
The proof of this is almost exactly as in the case for \mathbb{P}^{2}. For instance, for $D_{+}(x)$, let $U \subset D_{+}(x)$ be an open subset and $f \in \mathscr{O}_{X}(U)$. By definition, f can locally (in some $V \subset U$) be written as $f=g / h$, where $g, h \in R$ are homogeneous of the same degree. Then the homeomorphism $\left.\pi_{1}: \mathbb{A}^{2} \rightarrow D_{(} x\right)$ has the property that $\pi_{1}^{*}(g(x, y, z) /(h(x, y, z))=g(1, y, z) / h(1, y, z)$, which is regular, since $h(1, y, z) \neq 0$ in $\pi_{1}^{-1}(V)$. The inverse $\alpha: D(x) \rightarrow \mathbb{A}^{2}$ is given by $(x: y$: $z) \mapsto\left(y / x, z / x^{2}\right)$. If $f \in \mathscr{O}_{\mathbb{A}^{2}}(W)$ is some regular function of the form $g(y, z) / h(y, z)$ then $\alpha^{*} f=G(x, y, z) / H(x, y, z)$ where G, H are the homogenizations of g, h with respect to x. A similar argument works for $D(y)$ and $D(z)$.

What we have shown is that X can be covered by 3 open sets $D(x), D(y), D(z)$, and these are naturally isomorphic to affine varieties. We also have diagrams

so that ϕ_{i} is an isomorphism for each i. But then $X \simeq Q$ as prevarieties. Consequently, X satisfies the Hausdorff axiom, since Q does (being a projective variety).

This completes the proof for a). Along the way, we have also shown c).
b) $\mathscr{O}_{X}(X)=k$ follows since X is isomorphic to a projective variety. But here is a more direct argument to see this. If $f: X \rightarrow k$ is a global regular function, then $\pi^{*} f$ is a global regular function on $\mathbb{A}^{3}-0$, hence a polynomial in $k[x, y, z]$ (for $U=\mathbb{A}^{n}-0$, we have $\mathscr{O}_{\mathbb{A}^{n}}(U)=\mathscr{O}_{\mathbb{A}^{n}}\left(\mathbb{A}^{n}\right)$ for all $n \geq 2$). But $\pi^{*} f$ is also invariant under the scaling $x \mapsto t x y \mapsto t y$ and $z \mapsto t^{2} z$ for $r \in k^{\times}$. This can only happen if $\phi^{*} f$ is in fact constant. But then f is also constant.
d) By a) X is the union of $D(x)=\mathbb{A}^{2} D(y)=\mathbb{A}^{2}$ and $D(z)=Z\left(u w-v^{2}\right)$. Thus the only singular points can lie in $D(z)$, and there is only one, namely the point $p=(0,0,1)$.

Alternatively, one can use the projective embedding $X \subset \mathbb{P}^{3}$, plus the jacobian criterion to get the same conclusion.

