MAT4210 - an overview

A few words about preparing for the exam: The exam will be oral, so you should focus on concepts, definitions, examples and counterexamples in your preparation. The oral exam will not be anything like the mandatory assignment: you may be asked for some basic computations, but nothing complicated. Think about how the topics fit together, and why terms are defined the way they are.
Example questions:

- "What is a sheaf? Why do we introduce sheaves? Can you give an example? A non-example?"
- "What is the Hausdorff axiom? Why do we include it?"

Some of the main examples: Affine space, projective space, conics, plane curves, hypersurfaces, cuspidal curve, nodal cubic, twisted cubic, quadratic cone $Z\left(x z-y^{2}\right)$, quadric surface $Z(x w-y z)$, rational normal curves, Veronese varieties, the Veronese surface, Segre embedding, $\mathbb{A}^{n}-0$, blow-ups.

Here is a checklist of the topics covered through the course. The points marked with * are especially important.

Chapter 1: Algebraic sets

Key definitions

\mathbb{A}^{n}
$Z(S)$
$I(X)$ and $A(X)$

Key results

* Hilbert's Nullstellensatz; the relationships between $Z(I)$ and $I(X)$.
* Bijection between closed subsets and radical ideals

Key examples

Hypersurfaces
Conics
Affine twisted cubic

Chapter 2: Zariski topology

Key definitions

* The Zariski topology
* $D(f)$

Irreducible spaces
Noetherian spaces

* Dimension of a topological space
* Polynomial maps

Key results

$D(f)$ form a basis
X irreducible iff $I(X)$ is prime
maximal ideals \leftrightarrow points
prime ideals \leftrightarrow irreducible spaces
radical ideals \leftrightarrow closed subsets
Decomposition into irreducible subsets

* $\operatorname{dim} X=\operatorname{dim} A(X)$
*. $\operatorname{Hom}_{A S}(X, Y)=\operatorname{Hom}_{\text {alg }}(A(Y), A(X))$

Key examples

Hyperelliptic curve $y^{2}-P(x)=0$
$(x, y) \mapsto(x, x y)$
Quadrics (and diagonalization)

Chapter 3: Varieties

Key definitions

* $k(X)$, rational functions

The maximal open set of definition for a rational function

* $\mathcal{O}_{X, p}$
* Ringed spaces; sheaf of k-valued functions
* Pullback ϕ^{*}

Morphisms of ringed spaces

* The structure sheaf of a variety \mathcal{O}_{X}

Affine variety
Prevariety
Open subprevarieties; closed subprevarieties

* Hausdorff axiom,
* Varieties

Products of varieties; universal property. Especially for affine varieties. Hausdorff axiom vs. the diagonal Δ

Key results

* \mathcal{O}_{X} is a sheaf
$\mathcal{O}_{X}(D(f))$ and $\mathcal{O}_{X, p}=A(X)_{m_{p}}$
$D(f)$ is an affine variety
Morphisms from prevarieties into affine space
* X prevariety, Y affine:

$$
\operatorname{Hom}(X, Y)=\operatorname{Hom}\left(A(Y), \mathcal{O}_{X}(X)\right)
$$

Consequences of this formula
Affine varieties satisfy the Hausdorff axiom
Products of varieties exist

Key examples

$Z(x y-z w)$
Sheaf of continuous, differentiable, constant, holomorphic, regular functions. $\mathbb{A}^{n}-0$ not affine
The affine line with two origins
Nodal cubic
cuspidal cubic

Chapter 4: Projective varieties

Key definitions

* \mathbb{P}^{n} as a quotient space
* \mathbb{P}^{n} as a (pre)variety

Homogeneous coordinates
Distinguished open sets; coordinates
Regular functions on projective varieties

* \mathcal{O}_{X} for a projective variety
$S(X)$
How to define morphisms of (quasi)projective varieties

Key results

* Projective Nullstellensatz

Subvarieties of \mathbb{P}^{n} vs cones vs homogeneous ideals

* Distinguished open sets are homomorphic/isomorphic to affine spaces

Projective varieties are varieties (affine cover; Hausdorff axiom)

* Global regular functions are constant: $\mathcal{O}_{X}(X)=k$

Key examples

\mathbb{P}^{n}
Linear projection
Projective twisted cubic

Chapter 5: Segre and Veronese varieties

Key definitions

Closed embedding
Rational normal curves; affine and projective
Segre embeddings
Veronese embeddings

Key results

Criteria for being a closed embedding (local on target; left section which is a section)
There is a unique RNC through any $n+3$ in linearly general position
The ideals of RNC, Segre and Veronese are generated by quadrics (minors of certain matrices). (Only superficial knowledge of the proof needed).
Nullstellensatz for $\mathbb{P}^{n} \times \mathbb{P}^{m}$; bihomogeneous ideals

* Veronese variety vs. space of hypersurfaces (e.g., conics)

Key examples

The blow-up of \mathbb{P}^{2} as a subvariety of $\mathbb{P}^{1} \times \mathbb{P}^{2}$.
Spaces of polynomials

Chapter 6: Rational maps

Key definitions

Rational maps
Birational maps
Maximal domain of definition
Blow-up at a point
Blow-up at a regular sequence

Key results

* Main theorem of rational maps: dominant rational maps $\phi: X \rightarrow Y=k$-algebra
homomorphisms $k(Y) \rightarrow k(X)$
Birational automorphisms of P^{1} are automorphisms

Key examples

Quadrics are rational
Linear projections

Key results

* Jacobian criterion (affine and projective case)

Non-singular points are dense
Normalization

Key examples

nodal cubic; cuspidal cubic; quadric cone.
Desingularizations via blow-ups

Chapter 9: Curves

Key results

Local rings of curves are DVRs

* Extensions of rational maps of (non-singular) curves always extend to morphisms

Normalizations of curves exist

* Fields of tr.deg 1 over $k=$ non-singular projective curves over k

Elliptic curves are irrational

Chapter 11: Bezout's theorem

Key definitions

Local multiplicity
Hilbert functions
Degree
Regular sequences

Key results

* Bezout's theorem

Superficial knowledge of the proof of Bezout
Hilbert-Serre

Key examples

* Computations of local multiplicities for plane curves and surfaces

Degree of hypersurfaces; twisted cubic

Chapter 12: Applications of Bezout's theorem
Key results
Automorphisms of projective space
The theorems of Pappus and Pascal
Bound for number of singular points

