MAT4210 - an overview

A few words about preparing for the exam: The exam will be oral, so you should focus on concepts, definitions, examples and counterexamples in your preparation. The oral exam will not be anything like the mandatory assignment: you may be asked for some basic computations, but nothing complicated. Think about how the topics fit together, and why terms are defined the way they are.

Example questions:

- "What is a sheaf ? Why do we introduce sheaves? Can you give an example? D(f) form a basis A non-example?" X irreducible iff I
- "What is the Hausdorff axiom? Why do we include it?"

Some of the main examples: Affine space, projective space, conics, plane curves, radical ideals \leftrightarrow closed subsets hypersurfaces, cuspidal curve, nodal cubic, twisted cubic, quadratic cone $Z(xz-y^2)$, Decomposition into irreducible quadric surface Z(xw-yz), rational normal curves, Veronese varieties, the Veronese dim X = dim A(X)surface, Segre embedding, $\mathbb{A}^n - 0$, blow-ups.

Here is a checklist of the topics covered through the course. The points marked with * are especially important.

Chapter 1: Algebraic sets

Key definitions

 $\begin{array}{l} \mathbb{A}^n \\ Z(S) \\ I(X) \text{ and } A(X) \end{array}$

Key results

* Hilbert's Nullstellensatz; the relationships between Z(I) and I(X).

* Bijection between closed subsets and radical ideals

Key examples

Hypersurfaces Conics Affine twisted cubic

Chapter 2: Zariski topology

Key definitions

* The Zariski topology

D(f)

Irreducible spaces Noetherian spaces * Dimension of a topological space * Polynomial maps

Key results

$$\begin{split} D(f) \text{ form a basis} \\ X \text{ irreducible iff } I(X) \text{ is prime} \\ \text{maximal ideals} \leftrightarrow \text{points} \\ \text{prime ideals} \leftrightarrow \text{irreducible spaces} \\ \text{radical ideals} \leftrightarrow \text{closed subsets} \\ \text{Decomposition into irreducible subsets} \\ ^* \dim X = \dim A(X) \\ ^*.\text{Hom}_{AS}(X,Y) = Hom_{alg}(A(Y),A(X)) \end{split}$$

Key examples

Hyperelliptic curve $y^2 - P(x) = 0$ $(x, y) \mapsto (x, xy)$ Quadrics (and diagonalization)

Chapter 3: Varieties

Key definitions

* k(X), rational functions The maximal open set of definition for a rational function * $\mathcal{O}_{X,p}$ * Ringed spaces; sheaf of k-valued functions * Pullback ϕ^* Morphisms of ringed spaces * The structure sheaf of a variety \mathcal{O}_X Affine variety Prevariety Open subprevarieties; closed subprevarieties * Hausdorff axiom, * Varieties Products of varieties; universal property. Especially for affine varieties. Hausdorff axiom vs. the diagonal Δ

Key results

* \mathcal{O}_X is a sheaf $\mathcal{O}_X(D(f))$ and $\mathcal{O}_{X,p} = A(X)_{m_p}$ D(f) is an affine variety Morphisms from prevarieties into affine space * X prevariety, Y affine:

$$\operatorname{Hom}(X,Y) = \operatorname{Hom}(A(Y),\mathcal{O}_X(X))$$

Consequences of this formula Affine varieties satisfy the Hausdorff axiom Products of varieties exist

Key examples

Z(xy-zw)Sheaf of continuous, differentiable, constant, holomorphic, regular functions. \mathbb{A}^n-0 not affine The affine line with two origins Nodal cubic cuspidal cubic

Chapter 4: Projective varieties

Key definitions

* \mathbb{P}^n as a quotient space * \mathbb{P}^n as a (pre)variety Homogeneous coordinates Distinguished open sets; coordinates Regular functions on projective varieties * \mathcal{O}_X for a projective variety S(X)How to define morphisms of (quasi)projective varieties

Key results

* Projective Nullstellensatz

Subvarieties of \mathbb{P}^n vs cones vs homogeneous ideals

* Distinguished open sets are homomorphic/isomorphic to affine spaces Projective varieties are varieties (affine cover; Hausdorff axiom)

* Global regular functions are constant: $\mathcal{O}_X(X) = k$

Key examples

 \mathbb{P}^n Linear projection Projective twisted cubic

Chapter 5: Segre and Veronese varieties

Key definitions

Closed embedding Rational normal curves; affine and projective Segre embeddings Veronese embeddings

Key results

Criteria for being a closed embedding (local on target; left section which is a section) There is a unique RNC through any n + 3 in linearly general position The ideals of RNC, Segre and Veronese are generated by quadrics (minors of certain matrices). (Only superficial knowledge of the proof needed). Nullstellensatz for $\mathbb{P}^n \times \mathbb{P}^m$; bihomogeneous ideals * Veronese variety vs. space of hypersurfaces (e.g., conics)

Key examples

The blow-up of \mathbb{P}^2 as a subvariety of $\mathbb{P}^1 \times \mathbb{P}^2$. Spaces of polynomials

Chapter 6: Rational maps

Key definitions

Rational maps Birational maps Maximal domain of definition Blow-up at a point Blow-up at a regular sequence

Key results

* Main theorem of rational maps: dominant rational maps $\phi: X \dashrightarrow Y = k$ -algebra homomorphisms $k(Y) \to k(X)$ Birational automorphisms of P^1 are automorphisms

Key examples

Quadrics are rational Linear projections

Chapter 7: More on dimension

Key definitions

Dimension Dominant rational map Finite maps Systems of parameters

Key results

* Lying Over-theorem for finite morphisms * Going Up-theorem for finite and dominanting morphisms Relate dim X and dim Y for a morphism $\phi : X \to Y$ which is i) finite; or ii) dominanting * Noether normalization; geometric interpretation dim X vs $tr.deg_k k(X)$. * Krull's PIT The dimension of the fibers of a morphism * Dimensions of intersections (affine, and projective case)

Key examples

blow-up a parabola mapping to A^1 .

Chapter 8: Non-singular varieties

Key definitions

Tangent space * Tangent space and m/m^2 Regular local rings * singular points Normal varieties

Key results

* Jacobian criterion (affine and projective case) Non-singular points are dense Normalization

Key examples

nodal cubic; cuspidal cubic; quadric cone. Desingularizations via blow-ups

Chapter 9: Curves

Key results

Local rings of curves are DVRs * Extensions of rational maps of (non-singular) curves always extend to morphisms Normalizations of curves exist * Fields of tr.deg 1 over k = non-singular projective curves over kElliptic curves are irrational

Chapter 11: Bezout's theorem

Key definitions

Local multiplicity Hilbert functions Degree Regular sequences

Key results

* Bezout's theorem Superficial knowledge of the proof of Bezout Hilbert–Serre

Key examples

* Computations of local multiplicities for plane curves and surfaces Degree of hypersurfaces; twisted cubic

Chapter 12: Applications of Bezout's theorem

Key results

Automorphisms of projective space The theorems of Pappus and Pascal Bound for number of singular points