Mandatory assignment MAT4210 – Spring 2022

The assignment must be submitted via Canvas by 14:30, Thursday February 24th. You need to solve at least 3.5 problems to pass. If you have any questions or comments about the problems, feel free to email me at johnco@math.uio.no.

All varieties are over the field $k = \mathbb{C}$.

Problem 1. Show that a quasiaffine variety is quasiprojective. Is the converse true?

Problem 2. a) Which of the following varieties are isomorphic?

(1) \mathbb{A}^2 . (2) $\mathbb{P}^1 \times \mathbb{P}^1$. (3) $Z(f) \subset \mathbb{A}^3$, where f = x + y + z + 1(4) $Z(f) \subset \mathbb{A}^3$, where $f = x^2 + y^2 + z^2 + 1$. (5) $Z_+(F) \subset \mathbb{P}^3$, where $F = x_0^2 + x_1^2 + x_2^2 + x_3^2$. (6) $X \subset \mathbb{A}^2 \times \mathbb{P}^1$ defined by $x_0y_0 - x_1y_1 = 0$. b) For each variety X in problem a), compute $\mathcal{O}_X(X)$.

Problem 3. Consider the closed algebraic set $Z_+(I) \subset \mathbb{P}^2 \times \mathbb{P}^2$ defined by

 $x_1y_0 - x_0y_1 = x_2y_0 - y_2x_0 = 0$

Compute its dimension and describe its irreducible components.

Problem 4. Consider the cubic surface

$$X = Z_{+}(x_{0}x_{1}^{2} - x_{2}x_{3}^{2}) \subset \mathbb{P}^{3}$$

i) Compute all singular points of X;

ii) Show that X is rational.

Problem 5. Consider the quotient space $X = \mathbb{A}^3 - 0 / \sim$ where the equivalence relation is defined by

$$(x, y, z) \sim (tx, ty, t^2 z).$$

a)* Show that X has the structure of a variety.

- b) Compute $\mathscr{O}_X(X)$.
- c) Show that X admits an embedding $X \hookrightarrow \mathbb{P}^3$ as a quadric surface. Deduce that X is projective.
- d) Find all singular points of X.

(Possible hints: Work on the "distinguished open sets" $D_+(x), D_+(y), D_+(z)$. In one of the charts, you will see the quadric cone $v^2 = uw$. There is also a convenient map $\mathbb{A}^3 - 0 \to \mathbb{P}^3$. You may solve these problems in any order, if that makes it easier.)