Mandatory assignment MAT4210 - Spring 2022

The assignment must be submitted via Canvas by 14:30, Thursday February 24th.
You need to solve at least 3.5 problems to pass. If you have any questions or comments about the problems, feel free to email me at johnco@math. uio.no.

All varieties are over the field $k=\mathbb{C}$.
Problem 1. Show that a quasiaffine variety is quasiprojective. Is the converse true?

Problem 2. a) Which of the following varieties are isomorphic?
(1) \mathbb{A}^{2}.
(2) $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(3) $Z(f) \subset \mathbb{A}^{3}$, where $f=x+y+z+1$
(4) $Z(f) \subset \mathbb{A}^{3}$, where $f=x^{2}+y^{2}+z^{2}+1$.
(5) $Z_{+}(F) \subset \mathbb{P}^{3}$, where $F=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
(6) $X \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$ defined by $x_{0} y_{0}-x_{1} y_{1}=0$.
b) For each variety X in problem a), compute $\mathcal{O}_{X}(X)$.

Problem 3. Consider the closed algebraic set $Z_{+}(I) \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
x_{1} y_{0}-x_{0} y_{1}=x_{2} y_{0}-y_{2} x_{0}=0
$$

Compute its dimension and describe its irreducible components.

Problem 4. Consider the cubic surface

$$
X=Z_{+}\left(x_{0} x_{1}^{2}-x_{2} x_{3}^{2}\right) \subset \mathbb{P}^{3}
$$

i) Compute all singular points of X;
ii) Show that X is rational.

Problem 5. Consider the quotient space $X=\mathbb{A}^{3}-0 / \sim$ where the equivalence relation is defined by

$$
(x, y, z) \sim\left(t x, t y, t^{2} z\right)
$$

a)* Show that X has the structure of a variety.
b) Compute $\mathscr{O}_{X}(X)$.
c) Show that X admits an embedding $X \hookrightarrow \mathbb{P}^{3}$ as a quadric surface. Deduce that X is projective.
d) Find all singular points of X.
(Possible hints: Work on the "distinguished open sets" $D_{+}(x), D_{+}(y), D_{+}(z)$. In one of the charts, you will see the quadric cone $v^{2}=u w$. There is also a convenient map $\mathbb{A}^{3}-0 \rightarrow \mathbb{P}^{3}$. You may solve these problems in any order, if that makes it easier.)

