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Glueing

Warning: Very, very preliminary version. Version prone to errors.
Version 0.2— last update: 4/23/15 11:06:13 AM
Have added the existence proof for products we did yesterday (April 22)

Glueing sheaves

The setting is a scheme with an open covering {U
i

}
i2I with a sheaf F

i

on each
open subset U

i

. As usual the sheaves can take values in any category, but the principal
situation we have in mind is when the sheaves are sheaves of abelian groups. The
intersections U

i

\ U

j

are denoted by U

ij

, and triple intersections U

i

\ U

j

\ U

k

are
written as U

ijk

.
The glueing data in this case consist of isomorphism ⌧

ji

: F
i

|
Uij ! F

j

|
Uij . The idea

is to identify sections of F
i

|
Uij with F

j

|
Uij using the isomorphisms ⌧

ij

. For the glueing
process to be feasible, the ⌧

ij

’s must satisfy the three conditions

⇤ t

ii

= id
Fi ,

⇤ ⌧

ji

= ⌧

�1
ij

,

⇤ ⌧

ki

= ⌧

kj

� ⌧
ji

,

where the last identity takes place where it can; that is, on the triple intersection U

ijk

.
Observe that the three conditions parallel the three requirements for a relation being
an equivalence relation; the first reflects reflectivity, the second symmetry and the third
transitivity.

The third requirement is obviously necessary for glueing to be possible. A section
s

i

of F
i

|
Uijk

will be identified with its image s

j

= ⌧

ij

(s
i

) in F

j

|
Uijk

, and in its turn, s
j

is
going to be equal to s

k

= ⌧

kj

(s
j

). Then, of course, s
i

and s

k

are enforced to be equal,
which means that ⌧

ki

= ⌧

kj

� ⌧
ji

.

Proposition �.� In the setting as above, there exists a unique sheaf F on X such that
there are isomorphisms �

i

: F |
Ui ! F

i

satisfying �
j

= ⌧

ij

��
j

over the intersections U
ij

.

Proof: Let V ✓X be an open set and let V

i

= U

i

\ V and V

ij

= U

ij

\ V . We are
going to sections of F over U , and they are to be obtained by glueing sections of the
F

i

’s along V

i

using the isomorphisms ⌧
ij

. We define

�(V, F ) = { (s
i

)
i2I | ⌧ji(si|Vij) = s

j

|
Vij }✓

Y

i2I

�(V
i

, F

i

). (1)

The ⌧
ij

’s are maps of sheaves and therefore are compatible with all restriction maps,
so if W ✓V is another open set, one has ⌧

ij

(s
i

|
Wij) = s

j

|
Wij if ⌧

ji

(s
i

|
Vij) = s

j

|
Vij . By
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this, the defining condition in (1) is compatible with componentwise restrictions, which
hence can used for restriction in F . We have thus defined a presheaf.

The first step in the remaining proof, is to establish the isomorphisms �
i

: F |
Ui ! F

i

,
and to avoid getting confused by the names of the indices, we work with a fixed index
↵ 2 I. Suppose V ✓U

↵

is an open set. Then naturally one has V = V

↵

, and projecting
from the product

Q
i

�(V
i

, F

i

) onto the component �(V
↵

, F

↵

) = �(V, F
↵

) gives us a
map of presheaves1

�

↵

: F |
V↵ ! F

↵

. This map sends (s
i

)
i2I to s

↵

. We treat lovers of
diagrams with a display:

�(V, F ) //

�↵
''

Q
i2I �(Vi

, F

i

)

p↵

✏✏

�(V, F
↵

),

and proceed to verify that the map just defined gives us the searched for isomorphism:
To begin with, on the intersections V

↵�

the requirement in the proposition that
�

�

= ⌧

�↵

� �
↵

is fulfilled. This follows immediately since by the second property of the
glue, one has s

�

= ⌧

�↵

(s
↵

)
It is surjective: Take a section � of F

↵

over some V ✓U

↵

and define s = (⌧
i↵

(�|
Vi↵))i2I .

Then s satisfies the condition in (1), and is a legitimate element of �(V, F ); indeed, by
the third glueing condition we obtain

⌧

ji

(⌧
i↵

(�|
Vji↵)) = ⌧

j↵

(�|
Vji↵)

for every i, j 2 I, and that is just the condition in (1). As ⌧
↵↵

(�|
V↵↵) = � by the first

property of the glue, the element s projects to the section � of F
↵

.
It is injective: This is clear, since if s

↵

= 0 if follows that s
i

|
Vi↵ = ⌧

i↵

(s
↵

) = 0 for all
i 2 I. Now F

↵

is a sheaf and the V

i↵

constitute an open covering of V
↵

. We conclude
that s

↵

= 0 by the locality axiom for sheaves.
The next step is to show that F is a sheaf, and we start withe patching axiom: So

assume that {V
↵

} is an open covering of V ✓X and that s

↵

2 �(V
↵

, F ) is a bunch of
sections matching on the intersections V

↵�

. Since F |
Ui\V is a sheaf—we just checked

that F |
Ui is isomorphic to F

i

—the sections s

↵

|
V↵\Ui patch together to give sections s

i

in �(U
i

\ V, F ) matching on U

ij

\ V . This last condition means that ⌧
ij

(s
i

) = s

j

. By
definition (s

i

)
i2I then this is a section in �(V, F ) restricting to s

i

, and we are done.
The locality axiom is easy to verify and is left to reader to verify (do it!). o

Problem �.�. Show the uniqueness statement in the proposition. X

Glueing maps of sheaves

This is may be the easiest glueing situation we encounter in this course. The setting
is as follows. We are given two sheaves F and G on the scheme X and an open covering

1Restrictions operating componentwise, it is straight forward to verify this map being compatible
with restrictions.
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{U
i

}
i

of X. On each open set U

i

we are given a map �

i

: F |
Ui ! G|

Ui of sheaves, and
the glueing conditions

⇤ �

i

|
Uij = �

j

|
Uij

are assumed to be satisfied for all i, j 2 I. In this context we have

Proposition �.� There exists a unique map of sheaves � : F ! G such that �|
Ui = �

i

.

Proof: The salient point is this: Take any s 2 �(V, F ) where V ✓X is open, and
let V

i

= U

i

\ V . Then �

i

(s|
Vi) is a well defined element in �(V

i

, G), and it holds true
that �

i

(s|
Vij) = �

j

(s|
Vij) by the glueing condition. Hence the sections �

i

(s|
Vi)’s of G|

Vij

patch together to a section of G over V which we define to be �(s). The checking of
all remaining details is hassle-free and left to the zealous student. o

The glueing of schemes

The possibility of glueing different schemes together along open subschemes, gives
rise many new scheme. The most prominent one being the projective spaces. The
glueing process is also an important part in many general existence proofs, like in the
construction of the fiber-product, which exists without restrictions in the category of
schemes.

In the present context of scheme-glueing we are given a family {X
i

}
i2I of schemes

indexed by the set I. In each of the schemes we are given a collection of open subschemes
X

ij

which are the glue lines in the process; the contacting surfaces that are to be glued
together; i.e., in the glued scheme they will be identified and will be equal to the
intersections of X

i

and X

j

. The identifications of the different pairs of the X

ij

’s are
encoded by a family of scheme-isomorphisms ⌧

ji

: X
ij

! X

ji

. Furthermore, we let
X

ijk

= X

ik

\X

ij

— this are different parts of the triple intersection before the glueing
has been done—and we have to assume that ⌧

ij

(X
ijk

) = X

jik

. Notice that X

ijk

is an
open subscheme of X

i

.
The three following glueing condition, very much alike the ones we saw for sheaves,

must be satisfied for the gluing to be doable:

⇤ ⌧

ii

= id
Xi .

⇤ ⌧

ij

= ⌧

�1
ji

.

⇤ The isomorphism ⌧

ij

takes X

ijk

into X

jik

and one has ⌧
ki

= ⌧

kj

� ⌧
ji

.

Proposition �.� Given glueing data as above. Then there exists a scheme X with
open immersions  

i

: X
i

! X such that  
i

|
Xij =  

j

|
Xji � ⌧ij, and such that the images

 

i

(X
i

) form an open covering of X. Furthermore one has  
i

(X
ij

) =  

i

(X
i

) \  
j

(X
j

).
The scheme X is uniquely characterized by these properties

— 3 —



Notes 3—Glueing MAT4215 — Vår 2015

Proof: To build the scheme X we first build the underlying topological space X and
subsequently equip it with a sheaf of rings. For the latter, we rely on the patching
technic for sheaves presented in proposition �.�. And finally, we need to show that X

is locally affine, but this follows immediately once the immersions  
i

are there—the
X

i

’s are schemes and are locally affine.
On the level of topological spaces, we start out with the disjoint union

`
i

X

i

and
proceed by introducing an equivalence relation on it. We require that to points x 2 X

ij

and x

0 2 X

ji

be equivalent if x0 = ⌧

ij

(x)—observe that if the point x does not lie in
any X

ij

with i 6= j, we leave it alone, and it will not be equivalent to any other point.
The three glueing conditions imply readily that we obtain an equivalence relation

in this way . The first requirement entails that the relation is reflexive, the second that
it is symmetric and the third ensures it is transitive. The topological space X is then
the defined to be the quotient of

`
i

X

i

by this relation, and we declare the topology
on X to be the quotient topology. If ⇡ denotes the quotient map, a subset U of X is
open if and only if ⇡�1(U) is open.

Topologically the maps  
i

: X
i

! X are just the maps induced by the open inclu-
sions of the X

i

’s in the disjoint union
`

i

X

i

. They are clearly injective since a point
x 2 X

i

never is equivalent to another point in X

i

. Now, X has the quotient topology
so a subset U of X is open if and only if ⇡�1(U) is ope, and this holds if and only if
 

�1
i

(U) = X

i

\ ⇡�1(U) is open for all i. In view of the formula

⇡

�1( 
i

(U)) =
[

j

⌧

ji

(U \X

ij

)

we may conclude that each  
i

is and open immersion.
To simplify notation we now identify X

i

and  

i

(X
i

), which is in concordance with
our intuitive picture of X as being the union of the X

i

’s with points in the X

ij

’s
identified according to the ⌧

ij

’s. Then X

ij

becomes X
i

\X

j

ant X
ijk

becomes the triple
intersection X

i

\X

j

\X

k

.
On X

ij

we have the isomorphisms ⌧ ]
ji

: O
Xj |Xij ! O

Xi |Xij ; the sheaf-part of the
scheme-isomorphisms ⌧

ji

: X
ij

! X

ji

. In view of the third glueing condition ⌧
ki

= ⌧

kj

�⌧
ji

above valid on X

ijk

, we obviously have ⌧ ]
ki

= ⌧

]

ji

� ⌧ ]
kj

. The two first glueing conditions
translate into ⌧

]

ii

= id and ⌧

]

ji

= (⌧ ]
ji

)�1. The end of the story is that the glueing
properties needed to apply proposition �.� are satisfied, and we are enabled to glue the
different O

Xi ’s together and thus to equip X with a sheaf of rings. This sheaf of rings
restricts to O

Xi on each of the open subsets X

i

, and therefore it is a sheaf local rings.
So (X,O

X

) is a locally ringed space that is locally affine, hence a scheme.
The uniqueness property is, as usual, left to the industrious student. o
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Before and after glueing

Global sections of glued schemes

The standard exact sequence for computing global sections from an open covering
is valuable tool in the settimng of glued schemes. If X is obtained by blueing the open
subschemes X

i

along ⌧
ji

: X
ij

! X

ji

it reads:

0 // �(X,O
X

) ↵ //
L

i

�(X
i

,O
Xi)

⇢

//
L

i,j

�(X
ij

,O
Xij)

where ⇢(s
i

)
i2I = (s

i

|
Xij � ⌧

ij

(s
j

|
ji

)) and ↵s = ( ]
i

(s))
i2I

The glueing of morphisms

Assume given schemes X and Y and an open covering {U
i

}
i2I of X. Assume further

that there is given a family of morphisms � : U
i

! Y which mach on the intersections
U

ij

= U

i

\ U

j

. The aim of this paragraph is show that they can be glued together to
give a morphism X ! Y :

Proposition �.� In the situation just described, there exists a unique map of schemes
� : X ! Y such that �|

Ui = �

i

Proof: Clearly the underlying topological map is well defined, so if U ✓Y is an open
set, we have to define �] : �(U,O

Y

) ! �(U,�⇤OX

) = �(��1
U,O

X

). So take section
� of O

Y

over U . This gives sections t

i

= �

]

i

(s) of O
X

|
Ui , but since �]

i

and �

]

j

restrict
to the same map on U

ij

, one has t

i

|
Uij = t

j

|Uij . The t

i

therefore patch together to a
section of O

X

over U , which is the section we are aiming at: We define �](s) to be t.
The checking of the remaining details is left to student (as usual). os o

A property of the global sections

For a general scheme one may consider Spec�(X,O
X

), which in general is different
from X—in many cases Spec�(X,O

X

) is just point—but there is a canonical map
X ! Spec�(X,O

X

) enjoying the following universal property:

Proposition �.� Let X be any scheme. Then there is a canonical (unique) map of
schemes X ! Spec�(X,O

X

) inducing the identity on global sections of the structure
sheaves.
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Proof: Let {U
i

} be an affine open covering of X. The restriction maps �(X,O
X

) !
�(U

i

,O
X

) are ring homomorphisms and therefore they induce maps between the prime
spectraSpec�(U

i

,O
X

) Spec�(X,O
X

). Now the restriction map from sections of O
X

over X to sections of O
X

over U

i

\ U

j

is equal to the one from X to U

i

followed
by the one from U

i

to U

i

\ U

j

; or expressed with a formula ⇢X
Ui\Uj

= ⇢

Ui
Ui\Uj

� ⇢X
Ui

, or
for the diagrammoholics, with a diagram like the one below, where all four maps are
restrictions; in geometric terms the vertical maps correspond to the inclusions U

i

✓X

and U

j

✓X, the skew ones are  
i

and  
j

. The two composition are  
i

|
Ui\Uj and  

j

|
Ui\Uj ,

and that the diagram commutes, means they are equal.

�(U
i

,O
Ui)

((

�(U
i

\ U

j

,O
Ui\Uj)

//

OO

✏✏

�(X,O
X

)

�(U
j

,O
Uj)

66

So the restrictions of the maps  
i

and  
j

to the intersection U

i

\U
j

coincide, and hence,
by the gluing lemma for maps, they patch together to a map X ! Spec�(X,O

X

). By
construction  ] induces the identity on global sections of the structure sheaves. o

Corollary �.� The canonical map  : X ! Spec�(X,O
X

) is universal among the
maps from X to affine schemes; i.e., Any map ↵ : X ! SpecA factors as ↵ = ↵

0 �  
for a unique map ↵0 : Spec�(X,O

X

) ! SpecA.

Proof: The map ↵ is induced by the ring map ↵] : A ! �(X,O
X

). o

Examples

Projective line In elementary courses on complex function theory one learns about
the Riemann sphere. That is the Wessel plane with one point added, the point at
infinity. If z is the complex coordinate centered at the origin, the inverse 1/z is the
coordinate centered at infinity. Another name for the Riemann sphere is the complex
projective line, denoted P1

C.
The construction of P1

C can be vastly generalized, and works in fact over any ring
A. Let u be a variable (“the coordinate function at the origin”). and let U1 = SpecA[u].
The inverse u

�1 is a variable as good as u (“the coordinate at infinity”), and we let
U2 = SpecA[u�1]. Both are copies of the affine line A1

A

over A.
Inside U1 we have the open set U12 = D(u) which is canonically equal to the prime

spectrum SpecA[u, u�1], the isomorphism coming from the inclusion A[u]✓A[u, u�1].
In the same way, inside U2 there is the open set U21 = D(u�1). This is also canoni-
cal isomorphic to the spectrum SpecA[u�1

, u], the isomorphism being induced by the
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inclusion A[u�1]✓A[u�1
, u]. Hence U12 and U21 are isomorphic schemes (even canoni-

cally), and we may glue U1 to U2 along U12. The result is called the projective line over
A and is denoted by P1

A

.

Glueing two affine lines to get P1

Proposition �.� One has �(P1
,OP1

A
) = A.

Proof: The standard exact sequence gives us

�(P1
,OP1

A
) // �(U1,OX

)� �(U,O
X

) //

'
✏✏

�(U12,OX

)

'
✏✏

A[u]� A[u�1]
⇢

//
A[u, u�1]

and the map ⇢ sends a pair (f(u), g(u�1)) of polynomials with coefficients in A, one in
the variable u and one in u

�1, to their difference. We claim that the kernel of ⇢ equals
A; i.e., the polynomials f and g must both be constants.

So assume that f(u) = g(u), and let f(u) = au

n + lower terms in u , and in a
similar way, let g(u�1) = bu

�m + lower terms in u

�1 , where both a 6= 0 and b 6= 0,
and without loss of generality we may assume that m � n. Now, assume that m � 1.
Upon multiplication by u

m we obtain b+ u

m

h(u) = u

m

f(u) for some polynomial h(u),
and putting u = 0 we get b = 0, which is a contradiction. Hence m = n = 0 and we
are done. o

A more fancy example The rings Z(2) and Z(3) are both DVR’s with maximal
ideal being (2) and (3) respectively. Their fraction field are both equal to Q. Let
X1 = SpecZ(2) and A2 = SpecZ3. Both have a generic point that is open, so there is
a canonical open immersion SpecQ ! X

i

for i = 1, 2. Hence we can glue. We obtain
a scheme with one point ⌘ to closed points. Let us compute the global sections using
the classical restriction sequence for the open covering {X1, X2}

�(X,O
X

) // �(X1,OX

)� �(X2,OX

) //

=

✏✏

�(X1 \X2,OX

)

=

✏✏

Z(2) � Z(3)
⇢

// Q
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the map ⇢ send a pair (an�1
, bm

�1) to the difference an

�1 � bm

�1, hence the kernel
consists of diagonal, so to speak, in Z(2) � Z(3), that is the intersection Z(2) \ Z(3).
This is a semi local ring with two maximal ideals (2) and (3). Hence there is a map
X ! SpecZ(2) \ Z(3) and it is left as an exercise to show this is an isomorphism.

More generally, if P = {p1, . . . , pr} is a finite set different primes one may let
X

p

= SpecZ(p) for p 2 P . There is, as in the previous case, canonical open embedding
SpecQ ! X

p

. Let the image be {⌘
p

}. Obviously the glueing conditions are all satisfied
(the transition maps are all equal to idSpecQ and X

pq

= {⌘
p

} fora all p), and then we
do the glueing and obtain an X. Again, to compute the global sections, we get the
sequence

�(X,O
X

) //
L

p2P �(X
p

,O
X

) //

=

✏✏

L
p,q2P �(X1 \X2,OX

)

=

✏✏L
p2P Z(p)

⇢

//
L

p,q2P Q.

The map r sends the sequence (a
p

)
p2P to the sequence (a

p

� a

q

)
p,q2P and the kernel of

⇢ is the intersection A

P

=
T

p2P Z(p), which is a semilocal ring whose maximal ideals
are the (p)A

p

’s for p 2 P . There is a canonical morphism X ! SpecA
p

, and again we
leave it to the industrious student to verify that this is an isomorphism.
An even more fancy example! In the previous example we worked with a finite
set of primes, but the hypothesis of the glueing theorem impose no restriction on the
number of schemes to be glued together, and we are free to take P infinite, for example
we can use the set P of all primes! And the glued scheme XP is a peculiar animal:
It is not affine and not noetherian, but locally noetherian. There is a map � : XP !
SpecZ which is bijective but not a homeomorphism, but the property that for all open
subsets U ✓ SpecZ the map induced on sections �] : �(U,OSpecZ) ! �(��1

U,O
XP) is

an isomorphism!
We obtain as before a scheme XP by glueing the different SpecZ(p)’s together along

the generic points. However, when computing the global sections things, we see things
change. The kernel of ⇢ is still

T
p2P Z(p), but now, this intersection equals Z! Indeed a

rational number ↵ = a/b lies in Z(p) precisely when the denominator b does not have
p as factor, so lying in all Z(p), means that b has no non-trivial prime-factor. That is,
b = ±1, and ↵ 2 Z.

There is a morphism XP ! SpecZ which one may think about as follows. Each of
the schemes SpecZ(p) maps in a natural way into SpecZ, the mapping being induced
by the inclusions Z✓Z(p). The generic points of the SpecZ

p

’s are all being mapped to
the generic point of SpecZ. Hence they patch together to give a map XP ! SpecZ.
This is a continuous bijection by construction, but it is not a homeomorphism! Indeed,
the subsets SpecZ(p) are open in XP by the glueing construction, but they are not open
in SpecZ.

The scheme XP is locally noetherian but not noetherian. It is not affine. The sets
U

p

= XP \ {(p)} map bijectively to D(p)✓ SpecZ and �(U
p

,O
XP) = Z

p

, but U

p

and
D(p) are not isomorphic.
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Problem �.�. Show that the scheme XP is locally noetherian but not noetherian.
Show that for any U ✓ SpecZ, one has �(��1(U),O

XP) = �(U,OSpecZ). Conclude that
�

�1(U) is not affine.

X

Problem �.�. Glue X2 to itself along the generic point to obtain a scheme X. Show
that X is not affine. Hint: Show that �(X,O

X

) = Z(2). X

Products

One of the most fundamental properties of schemes is the unrestricted existent of fiber
products Citing. It is extremely useful in many situations and takes on astonishingly
versatile roles. We begin the paragraph with recalling the definition of the fibre product
of sets, then slide into a very general situation to discuss fibre product in general
categories, for then to return to the present context of schemes. We prove the existence
theorem, and finish up by discussing a series of examples.

Recall the fibre product in the category Sets of sets. The departure is from two sets
X1 and X2 both with a map to a third set S; i.e., we are given a diagram

X1

�1   

X2

�2~~

S

The fibre product X1⇥S

X2 is a defined as X1⇥S

X2 = { (x, y) | �(x) =  (y) }. Clearly
the diagram, where ⇡1 and ⇡2 denote the restrictions of two projections to the fiber
product, is commutative,

X1 ⇥S

X2

⇡2

%%

⇡X1

yy

X1

�X1 %%

X2

�2
yy

S

And more is true; the fibre product enjoys a universal property. Given any two maps
f1 : Z ! X1 and f2 : Z ! X2 such that �1 � f

X1 = �2 � f2 there is a unique map
f : Z ! X1 ⇥S

X2 such that ⇡1 � f = f1 and ⇡2 � f = f2; just use the map whose
two components are f1 and f2 and observe that it takes values in X1 ⇥S

X2 since the
relation �1 � f1 = �2 � f2 holds.

The name fiber product stems from the fact that the fiber of the map � = �

i

� ⇡
i

from X ⇥
S

Y to S over a point s 2 S, is just the direct product of the fibers of �1 and
�2 over s, that is ��1(s) = �

�1
1 (s)⇥ �

�1
2 (s).
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The fiber product in general categories The notion of a fiber product—
expressed as the solution to a universal problem—can mutatis mutandis be formulated
in any category C. Given any two maps  

i

: X
i

! S in the category C. An object—
that we shall denote by X1 ⇥S

X2—is said to be the fiber product (fiberproduktet) of
the objects X

i

—or more precisely of the two maps  
i

: X
i

! S—if the following two
conditions are fulfilled:

⇤ There are two maps ⇡
i

: X1 ⇥S

X2 ! X

i

in C such that  1 � ⇡1 =  2 � ⇡2 (called
the projections).

⇤ For any two maps �
i

: X ! X

i

in C such that � �  1 = � �  2, there is a unique
map � : X ! X1 ⇥S

X2 such that ⇡
i

� � = �

i

for i = 1, 2.

If the fiber product exists, it is unique up to a unique isomorphism as is true for any
solution to a universal problem. However, it is a good exercise to check this in detail
in this specific situation.

Problem �.�. Show that if the fiber product exists, it is unique up to a unique iso-
morphism. X

Recall the functor h

X

: C ! Sets that to any object T in C associates the set
h

X

(T ) = Hom
C

(T,X) and to any map ↵ : T 0 ! T in C associates the map h

x

(↵) : h
X

(T 0) !
h

X

(T ) sending f to f �↵. The given maps  
i

gives rise to maps of functors2
h

 i : hXi !
h

S

sending a map f 2 h

Xi(T ) to the composition  
i

� f . The universal property of the
fiber product translates into the following. For any T in C, one has the equivalence of
functors from C (or isomorphism if you want):

h

X1⇥SX2 = h

X1 ⇥S

h

X2 (2)

where the map send  2 h

X1⇥SX2(T ) to the pair ⇡
i

�  . This formulation says that
for any object T in the category C, the set Hom

C

(T,X1 ⇥
S

X2) of maps into the
fiber product is the fiber product of the two sets Hom

C

(T,X
i

) over Hom
C

(T, S), which
sometimes is useful.

There is a shorter notation based on the category of objects over S where S an
object in C. The objects in this new category are maps  : X ! S in C and maps
from  : X ! S to  0 : Y ! S are maps f : X ! Y rendering the following diagram
commutative

X

f

//

 

��

Y

 

0
��

S

This category is denoted C/S. If  : X ! S is an object from C/S one uses the
shorthand notation X/S fort  : X ! s; the map  is understood. One furthermore

2Normally these are called natural transformstiond.
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h

X/S

(Y/S) = HomC/S((, X)/S, Y/S), and with these conventions the relation (2) takes
the form

h

X⇥SY/S
= h

X/S

⇥ h

Y/S

.

Products of affine schemes

The affine category is equivalent to the category of rings and the category of rings
we have the tensor product. It has the universal property dual to the one of fibered
product that we are interested in. To be precise, assume that A1 and A2 are B-algebras,
i.e., we have two maps of rings ↵

i

A1 A2

B

↵1

>>

↵2

``

There maps �
i

: A
i

! A1 ⌦B

A2 sending a to a⌦ 1 respectively 1⌦ a. They are B-
algebra homomorphism since aa0 ⌦ 1 = (a⌦ 1)(a0 ⌦ 1) respectively 1⌦ aa

0 = (1⌦ a)(1⌦ a

0),
and they fit into the following commutative diagram as ↵1(b)⌦ 1 = 1⌦ ↵2(b) by the
definition of the tensor product A1 ⌦B

A2.

A1 ⌦B

A2

A1

�1

::

A2

�2

dd

B

↵1

99

↵2

ee

(3)

Moreover the tensor product is universal in this respect. Indeed, assume that �
i

: A
i

!
C are B-algebra homomorphisms, i.e., �1 � ↵1 = �2 � ↵2; or said differently, they fit
into the commutative diagram analogous to (3) with the b

i

’s replaced by the �
i

’s. The
association a1 ⌦ a2 ! �1(a1)�(a2) is bi-B-linear, and hence it extends to a B-algebra
homomorphism � : A1 ⌦B

A2 ! C, that obviously have the property that � � �
i

= �

i

.
The map � is te unique B-algebra homomorphism � : A1 ⌦B

A2 ! C with ���
i

= �

i

.
Applying the Spec-functor to all this, we get the diagram

Spec(A1 ⌦B

A2)

⇡1
vv

⇡2

((

SpecA1

((

SpecA2

vv

SpecB

(4)

and the affine scheme Spec(A1 ⌦B

A2) enjoys the property of being universal among
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affine schemes sitting in a diagram like 4. Hence Spec(A1 ⌦B

A2) equipped with the two
projections ⇡1 and ⇡2 is the fibered product in the category A↵Sch of affine schemes.
One even has the stronger statement that is the fuber product in the bigger category
Sch of schemes.

Proposition �.� Given �

i

: SpecA
i

! SpecB. Then Spec(A1 ⌦B

A2) with the two
projection ⇡1 and ⇡2 defined as above is the fiber product of the SpecA

i

’s in the category
of schemes. That is, if Z is a scheme and  

i

: Z ! SpecA
i

are morphisms with  1�⇡1 =
 2 � �2, there exists a unique morphism  : Z ! Spec(A1 ⌦B

A2) such that ⇡
i

�  =  

i

for i = 1, 2.

Proof: We know that the proposition is true whenever Z is an affine scheme; so the
salient point is that Z is not necessarily affine. For short we let X = Spec(A1 ⌦B

A2).
The proof is just an application of the glueing lemma for morphisms. One covers Z

by open affine U

↵

such that the intersections U

↵�

= U

↵

\ U

�

are affine as well (this
can be done, e.g., by refining any open affine cover using distinguished open sets). By
the affine case of the proposition, for each U

↵

we get a map  

↵

: U
↵

! X, such that
 

↵

� ⇡
i

=  

i

|
U↵ , and by the uniqueness part of the affine case, these maps coincide

on the intersections U

↵�

, and the can be patched together to a map  : Z ! X. It is
unique since the  

↵

’s are unique. o

A useful lemma

Lemma �.� If X⇥
S

Y exists and U ✓X is an open subscheme, then U⇥
S

Y exists and
is (canonicaly isomorphic to) an open subset of X⇥

S

Y and projections restrict to pro-
jections. Indeed ⇡�1

X

(U) with the two restrictions ⇡
Y

|
⇡

�1
X (U) and ⇡

X

|
⇡

�1
X (U) as projections

is a product.

Proof: The situation is displayed as follows:

Y

⇡

�1
X

(U)

✏✏

99

� � //
X ⇥

s

Y

⇡X

✏✏

⇡Y

OO

U

� � //
X,

and we shall verify that ⇡�1
X

(U) and two projections restricted to ⇡�1
X

(U) satisfy the
universal property. If Z is a scheme and �

X

: Z ! U and �
Y

: Z ! Y are two morphisms
over S we may consider �

U

as a map into X, and therefore they induce a map of schemes
� : Z ! X ⇥

S

Y whist �
X

= ⇡

X

�� and �
Y

= ⇡

Y

��. Clearly ⇡
X

�� = �

U

takes values
in U and therefore � takes values in ⇡

�1
X

(U). It follows immediately that � is unique
(see the exercise below), and we are through o

— 12 —



Notes 3—Glueing MAT4215 — Vår 2015

Problem �.�. Assume that U ✓X is an open subscheme and let ◆ : U ! X be the
inclusion map. Let �1 and �2 be two maps of a schemes from a scheme Z to U and
assume that ◆ � �1 = ◆ � �2. Then �1 = �2. X

Lemma �.� Assume that U ✓S is an open set and that the two structure maps  
X

: X !
S and  

Y

: Y ! S both takes values in U . Then X ⇥
U

Y = X ⇥
S

Y , with the interpre-
tation that if one of them exists, the other does as well.

Proof: Clear o

The glueing process

The following proposition will be basis for all glueing necessay fro the construction:

Proposition �.� Let  
X

: X ! S and  

Y

: Y ! S be two maps of schemes, and
assume that there is an open covering {U

i

}
i2I of X such that U

i

⇥
S

Y exist for all
i 2 I. Then X ⇥

S

Y exists. The products U

i

⇥
S

Y form an open covering of X ⇥
S

Y

and projections restrict to projections.

Proof: We need some notation. Let U
ij

= U

i

\U

j

be the intersections of the U

i

’s,and
let ⇡

i

: U
i

⇥
S

Y ! U

i

denote the projections. By lemma �.� there are isomorphisms
✓

ji

: ⇡�1
i

(U
ij

) ! U

ij

⇥
S

Y , and glueing functions we shal use ⌧
ji

= ✓

�1
ij

�✓
ji

that identifies
⇡

�1
i

(U
ij

) with ⇡�1
j

(U
ij

). The picture is like this

U

i

⇥
S

Y ◆ ⇡

�1
i

(U
ij

)
✓ji

'
//
U

ij

⇥
S

Y

✓

�1
ij

'
//
⇡

�1
j

(U
ji

)✓U

j

⇥
S

Y.

The glueing maps ⌧
ij

clearly satisfy the glueing conditions being compositions of
that the particular form, and the scheme emerging from glueing process is X ⇥

S

Y .
The two projections are essential parts of product. The projection onto Y is there

all the time since we never touch Y during the construction. The projection onto X

is obtained by glueing the projections ⇡
i

along the ⇡�1
i

(U
ij

). By lemma �.� we know
that the when we identify ⇡�1

i

(U
ij

) as the product U
ij

⇥
S

Y the projection ⇡
ij

onto U

ij

corresponds to the restriction ⇡
i

|
⇡

�1
i (Uij)

. This means that ⇡
i

|
⇡

�1
i (Uij)

= ⇡

ij

� ✓
ji

. To say
that ⇡

i

|
⇡

�1
i (Uij)

and ⇡

j

|
⇡

�1
j (Uij)

becomes equal after glueing is to say that ⇡
i

|
⇡

�1
i (Uij)

=

⇡

j

|
⇡

�1
j (Uij)

� ⌧
ji

(remember that in the glueing process we identify points x and ⌧
ji

(x)),
but this holds true since

⇡

j

|
⇡

�1
j (Uij)

� ⌧
ji

= ⇡

ij

� ✓
ij

� ⌧
ji

= ⇡

ij

� ✓
ij

� ✓�1
ij

� ✓
ji

= ⇡

ij

� ✓
ji

= ⇡

i

|
⇡

�1
i (Uij),

and we can glue the ⇡
i

’s together to obtain ⇡
X

.
It is a matter of easy verification that the the glued scheme with the two projection

has the universal property.

o
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It is worth while commenting that the product X⇥
S

Y is not defined as a particular
scheme, it is just an isomorphism class of schemes (having the fundamental property
that there is a unique isomorphism respecting the projections between any two). In
the proof above both ⇡�1

i

(U
ij

) and ⇡�1
j

(U
ij

) are products of U
ij

⇥
S

Y , but the are not
equal only canonically isomorphic. In the construction we could use any of them, or as
we in fact did, we can use any non-specified representative in the isomorphism class.
This makes the situation much symmetric in i and j.

An immediate consequence of the glueing proposition �.� is the following lemma,
that is the case when S is affine.

Lemma �.� Assume that S is affine, then X ⇥
S

Y exists

Proof: First if Y as well is affine, we are done. Ideed, cover X by open affine sets U
i

.
Then U

i

⇥
S

Y exists by the affine case, and we are in the position to apply proposition
�.� above. We then cover Y by affine open sets V

i

. As we just verified, X⇥
S

V

i

all exists
and applying proposition �.� once more, we can conclude that X ⇥

S

Y exists. apply
the glueing o

The final reduction

Let {S
i

} be an open affine covering of S and let U

i

=  

�1(S
i

) and V

i

=  

�1
Y

(S
i

).
By lemma �.� the products U

i

⇥
Si Vi

all exists. Using the following lemma and for the
third time the glueing proposition �.� we are trough:

Lemma �.� With current notation, we have the equality U

i

⇥
Si Vi

= U

i

⇥
S

Y .

Proof: The key diagram is

Z

f

��

g

��

U

i

 X |Ui ��

Y

 Y��

◆ V

i

S

where f and g are given maps. If one follows the left path in the diagram, one ends up
in S

i

, and hence the same must hold following the right path. But then, V
i

being equal
the inverse image  �1

Y

(S
i

), it follows that g necessarily factors through V

i

, and we are
done. o

Notation.

If S = SpecA on often writes X ⇥
A

Y in short for X ⇥SpecA Y . If S = SpecZ, one
writes X ⇥ Y . In case Y = SpecB the shorthand notation X ⌦

A

B is frequently seen
as well—it avoids writing Spec twice.
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Examples

We start out by some nice examples.
Varieties over an algebraically closed field First in the important case
that X and Y are varieties over the algebraically closed field k and S Spec k, i.e., two
integral schemes of finite type over k. Then the product X ⇥

k

Y will be a variety
(i.e., an integral scheme of finite type over k) and the closed points of the product
X ⇥

k

Y will be the direct product of the closed points in X and Y ; indeed on level of
functors h

X⇥kY
(k) is the product h

X

(k)⇥h

Y

(k), and closed points correspond to maps
Spec k ! X.

It is not entirely obvious that A⌦
k

B is an integral domain when A and B are,
and in fact, in general it is by no means true. But it holds true whenever A and B are
of finite type over the field k and k is algebraically closed. The standard reference for
this is Zariski and Samuel’s book Commutative algebra I which is the Old Covenant
for algebraists. It is also implicit in Hartshorn’s book, exercise 3.15 b) on page 22.
Non algebraically closed field In this case the situation is more complicated.
The simple and good example being SpecC⇥SpecRSpecC. This scheme has two distinct
closed points and is not integral, it is not even connected! The example also shows that
the underlying set of the fiber product is not necessarily equal to the fiber product of
the underlying sets (in this case this is just one point). So we issue a warning: The
product of integral schemes is in general not necessarily integral!

The tensor product C⌦R C is in fact isomorphic to the direct product C⇥C; indeed,
we compute

C⌦R C = C[t]/(t2 + 1) = C[t]/(t� i)(t+ i) = C[t]/(t� i)⇥ C[t]/(t+ i) = C⇥ C

where we have used the Chinese remainder theorem in the last equation.
This little example can easily be generalize: Assume that L is a simple, separable

field extension of K of degree d; that is L = K(↵) where the minimal polynomial f(t)
of ↵ over K is separable and of degree d. Assume further that ⌦ is a field extension of
K in which f(t) splits completely; e.g., a normal extension of L or any algebraically
closed field containing K; then one has L⌦

K

⌦=⌦⇥ . . .⇥ ⌦ where the product has d

factors. And SpecL⇥ Spec⌦ has d connected components and is not integral.

Problem �.�. With the assumptions of the discussion above, show that it holds rue
that L⌦

K

⌦=⌦⇥ . . .⇥ ⌦. X

Another example along same lines shows that X ⇥
S

Y is necessarily reduced even
if both X and Y are. let k be a non-perfect field in characteristic p. This means that
there is an a 2 k that is not a p-th power of any element in k. Let L = k(b) where
b

p = a, that is L = k[t]/(tp � a). As T p � a is irreducible over k, this is a field, but one
has

L⌦
k

L = L[T p � a] = L[t]/(tp � b

p) = L[t]/((t� b)p)

which is not reduced. So we issue a second warning: the fiber product of integral schemes
is not in general necessarily reduced!
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One can elaborate these example and construct an example of two noetherian sche-
mes X and Y such that X ⇥

S

Y is not noetherian, even if S is the spectrum of a
field.

For example one may take L to the sub field of Q generated by all elements such
that ⇠2n = 2 for some n. Then L is the union of the ascending chain of fields

Q✓Q(
p
2)✓Q(

4
p
2)✓Q(

8
p
2)✓ . . . L

Then of course L being a field is noetherian as is Q, but L⌦Q Q is not! Indeed,
Q( 2r

p
2)⌦Q is isomorphic to the direct product of 2r-copies of Q so L⌦Q Q is the union

of a sequence of subrings each being a direct product of a steadily increasing number
of copies of Q.
Problem �.�. Show in detail that L⌦Q Q is not noetherian. X

Geometric points

If X is a scheme a geoemrtric point (et geometrisk punkt) consists of an algebrai-
cally closed field k and a morphism Spec k ! X. Giving such a geowmeyric point is
equivalent to give a point x 2 X and a field extension k(x)✓ k.

For example
Example �.�. One has SpecQ⇥SpecZ SpecQ = SpecQ. Indeed, there is only one ring
homomorphism from Q to any ring, so hSpecQ(T ) is either a singleton or empty. It
follows that the fibre product hSpecQ(T ) ⇥Z hSpecQ(T ) either is a singleton or empty,
hence OK. e

Problem �.�. Show that if A is a B-algebra with property that there is at most one
B-algebra homomorphism A ! C for any A-algebra C then SpecA ⇥SpecB SpecA =
SpecA. Hint: This is a straight forward verification of the universal property of the
tensor product. X

Problem �.�. Let p and q be two different primes. Show that SpecF
p

⇥SpecZSpecFq

=
;. X

Problem �.��. Show that if SpecA and SpecB are affine schemes of finite type over
a field k, then SpecA⇥

k

SpecB is non-empty. Is the same true if one of them is not of
finite type? Hint: Yes, e.g., show OK if A and B are field extensions of k. X

Problem �.��. Recall that Z(p) denotes the localization of Z in the prime ideal (p)
generated by p. Show that SpecZ(p) ⇥SpecZ SpecZ(p) = SpecZ(p). X

Problem �.��. Assume that p and q are two different primes. Show that SpecZ
p

⇥SpecZ
SpecZ

q

= SpecQ. X

Problem �.��. Let X be the scheme obtained by glueing X2 = SpecZ(p) to it self
along the generic point. Show that X ⇥Z X is obtained by glueing four copies of X2

together along the generic points. Show that the diagonal �✓X⇥SpecZX is the glueing
of two of them and therefore is not closed. X
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