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One of the most fundamental properties of schemes is the unrestricted existent of
fiber products. The fiber product is extremely useful in many situations and takes on
astonishingly versatile roles. We begin the paragraph with recalling the definition of
the fibre product of sets, then slide into a very general situation to discuss fibre product
in general categories, for then to return to the present context of schemes. We prove
the existence theorem, and finish up by discussing a series of examples.
Fiber products of sets. As a warming up we use some lines on recalling the fiber
product in the category Sets of sets. The points of departure is two sets X1 and X2

both equipped with a map to a third set S; i.e., we are given a diagram

X1

 1   

X2

 2~~

S

The fibre product X1 ⇥S X2 is the subset of the cartesian product X ⇥ Y consisting of
the pairs whose two components have the same image in S; that is, we have

X1 ⇥S X2 = { (x1, x1) |  1(x1) =  2(x2) }.
Clearly the diagram below where ⇡1 and ⇡2 denote the restrictions of two projections
to the fiber product—that is, ⇡i(x1, x2) = xi— is commutative,

X1 ⇥S X2

⇡2

%%

⇡1

yy

X1

 1
%%

X2

 2
yy

S

(1)

And more is true; the fibre product enjoys a universal property: Given any two maps
�1 : Z ! X1 and �2 : Z ! X2 such that  1 � �X1 =  2 � �2 there is a unique map
� : Z ! X1 ⇥S X2 such that ⇡1 � � = �1 and ⇡2 � � = �2. To lay your hans on such
an �, just use the map whose two components are �1 and �2 and observe that it takes
values in X1 ⇥S X2 since the relation  1 � �1 =  2 � �2 holds. The data of the two �i’s
is to give a commutative diagram like 1 above with Z replacing the product X ⇥S Y ,
and the universal property is to say that universal—a more precise usage would be to
say it is final (final)—among such diagrams.

The name fiber product stems from t the fiber of the map  =  i � ⇡i from X ⇥S Y

to S over a point s 2 S just being the direct product of the fibers of  1 and  2, that
is  �1(s) =  

�1
1 (s)⇥  

�1
2 (s).
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The fiber product in general categories The notion of a fiber product—
formulated as the solution to a universal problem as above—is mutatis mutandis

meaningful any category C. Given any two arrows  i : Xi ! S in the category C.
An object—that we shall denote by X1 ⇥S X2—is said to be the fiber product (fiber-
produktet) of the objects Xi—or more precisely of the two arrows  i : Xi ! S—if the
following two conditions are fulfilled:

⇤ There are two arrows ⇡i : X1 ⇥S X2 ! Xi in C such that  1 � ⇡1 =  2 � ⇡2 (called
the projections).

⇤ For any two arrows �i : X ! Xi in C such that � � 1 = � � 2, there is a unique
arrow � : X ! X1 ⇥S X2 such that ⇡i � � = �i for i = 1, 2.

If the fiber product exists, it is unique up to a unique isomorphism as is true for a
solution to any universal problem. However, it is a good exercise to check this in detail
in this specific situation.

Problem �.�. Show that if the fiber product exists in the category C, it is unique up
to a unique isomorphism. X

To any object X in C recall that one has the covariant functor hX : C ! Sets
that to any object T in C associates the set hX(T ) = HomC(T,X) and to any arrow
↵ : T 0 ! T in C associates the map hX(↵) : hX(T ) ! hX(T

0) sending f to f � ↵.
The given arrows  i gives rise to maps of functors1

h i : hXi ! hS sending a arrow
f 2 hXi(T ) to the composition  i � f . The universal property of the fiber product
translates into the following. For any object T in C, one has an equivalence of functors
from C (or isomorphism if you want):

hX1⇥SX2

'�! hX1 ⇥S hX2 (2)

where the arrow sends an arrow  2 hX1⇥SX2(T ) to the pair of arrows ⇡i �  . The
content in this formulation says is that for any object T in the category C, the set
HomC(T,X1 ⇥S X2) of arrows into the fiber product is the fiber product of the two
sets HomC(T,X1) and HomC(T,X12)over HomC(T, S), an observation that sometimes
is useful.

Sign seen in the vicinity of certain German universities

1
Normally these are called natural transformstiond.
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Some general notation The two arrows ⇡X �� and ⇡2�� that determine the arrow
� : T ! X ⇥S Y are called the components (komponentene) of �, and the notation
� = (�1,�2) is current. If �1 : Y1 ! X1 and �2 : Y2 ! X2 are two arrows over S, there
is a unique arrow denoted �1 ⇥ �2 from Y1 ⇥S Y2 to X1 ⇥S X2 whose components are
�1 � ⇡Y1 and �2 � ⇡Y2 .

There is a slightly different approach to the fiber product based on the category of
so called objects over S where S an object in C. The objects in this new category are
arrows  : X ! S from C and new arrows from  X : X ! S to  Y : Y ! S are arrows
� : X ! Y rendering the following diagram commutative

X

�
//

 X
��

Y

 Y
��

S

This new category is denoted C/S. If  X : X ! S is an object from C/S one uses
the shorthand notation X/S for  : X ! S; the map  X being understood. One
furthermore puts hX/S(T/S) = HomC/S(T/S,X/S), and with these conventions the
relation (2) takes the form

hX⇥SY/S = hX/S ⇥ hY/S.

If T ! S is an arrow and X/S is an object in C/S the fiber product XT = X ⇥S T

is an object in C/T with the projection onto t as the structural arrow. In case fiber
products over S exists unrestrictedly in C, this give a functor X ! XT from C/S to
C/T ; it acts arrow by sending the arrow � : Y ! X in C/S to the arrow �T = �⇥ idT

that goes from YT ! XT . The object XT and the arrow �T are often called the pull

backs (tilbaketrekningene) of X respectively �. Another frequently used terminology
is to say that XT is obtained from S by the base change (basisforandringen) T ! S,
which is quite a natural notion when thinking of S as the base object in C/S.

Any arrow � : X ! Y induces a natural transformation (or map of functors)
�

⇤ : hX ! hY just by composition; i.e., �

⇤ sends an arrow ↵ : T ! X to � � ↵. One
easily verifies that (�1 � �2)

⇤ = �

⇤
1 � �⇤

2 so the association is functorial.
A simple, but from time to time very useful result is the so called Yoneda lemma.

It says that the association � ! �

⇤ is a bijection between the set of arrows X ! Y

and the set of natural transformations hX ! hY . The nice thing is that you can work
with functors of type hX , whose values are good old sets, and if achieve constructing a
map between them, you have got an arrow in C.

Problem �.�. Prove the Yoneda lemma. X

Problem �.�. Let � : Y ! X be an arrow in C. One says that � is injective or a
monomorphism if � � ↵1 = � � ↵2 entails ↵1 = ↵2 for any pair of arrows ↵i : T ! Y .
Show that � is a monomorphism if and only if �⇤ is injective. X
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Problem �.�. Assume that �i : Yi ! X for i = 1, 2 are two monomorphism. Assume
that hY1(T )✓hY2(T ) for all T . Show that one may factor �2 = � � �1 for a unique
monomorphism � : X1 ! X2. X

Products of affine schemes

The category A↵ of affine schemes, is more or less by definition, equivalent to the
category of rings, and in the category of rings we have the tensor product. The tensor
product enjoys a universal property dual to the one of fibered product. To be precise,
assume that A1 and A2 are B-algebras, i.e., we have two maps of rings ↵i

A1 A2

B

↵1

>>

↵2

``
.

There are two maps �i : Ai ! A1 ⌦B A2 sending a1 2 A1 to a1 ⌦ 1, respectively sending
a2 to 1⌦ a2. Both are ring homomorphism since aa

0 ⌦ 1 = (a⌦ 1)(a0 ⌦ 1) respective-
ly 1⌦ aa

0 = (1⌦ a)(1⌦ a

0), and they fit into the following commutative diagram as
↵1(b)⌦ 1 = 1⌦ ↵2(b) by the definition of the tensor product A1 ⌦B A2 (this is the sig-
nificance of the tensor product being taken over B; one can move elements in B from
one side of the ⌦-glyph to the other).

A1 ⌦B A2

A1

�1
::

A2

�2
dd

B

↵1

99

↵2

ee

(3)

Moreover, the tensor product is universal in this respect. Indeed, assume that �i : Ai !
C are B-algebra homomorphisms, i.e., �1 � ↵1 = �2 � ↵2; or said differently, they fit
into the commutative diagram analogous to (3) with the �i’s replaced by the �i’s. The
association a1 ⌦ a2 ! �1(a1)�(a2) is bi-B-linear, and hence it extends to a B-algebra
homomorphism � : A1 ⌦B A2 ! C, that obviously have the property that � � �i = �i.

Applying the Spec-functor to all this, we get the diagram

Spec(A1 ⌦B A2)

⇡1
vv

⇡2

((

SpecA1

((

SpecA2

vv

SpecB

(4)
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and the affine scheme Spec(A1 ⌦B A2) enjoys the property of being universal among
affine schemes sitting in a diagram like 4. Hence Spec(A1 ⌦B A2) equipped with the
two projections ⇡1 and ⇡2 is the fibered product in the category A↵ of affine schemes.
One even has the stronger statement that is the fiber product in the bigger category
Sch of schemes.

Proposition �.� Given �i : SpecAi ! SpecB. Then Spec(A1 ⌦B A2) with the two

projection ⇡1 and ⇡2 defined as above is the fiber product of the SpecAi’s in the category

of schemes. That is, if Z is a scheme and  i : Z ! SpecAi are morphisms with  1�⇡1 =
 2 � �2, there exists a unique morphism  : Z ! Spec(A1 ⌦B A2) such that ⇡i �  =  i

for i = 1, 2.

Proof: We know that the proposition is true whenever Z is an affine scheme; so the
salient point is that Z not necessarily is affine. For short, we let X = Spec(A1 ⌦B A2).
The proof is just an application of the glueing lemma for morphisms. One covers Z by
open affine U↵ and covers intersections U↵� = U↵ \ U� by open affine subsets U↵�� as
well. By the affine case of the proposition, for each U↵ we get a map  ↵ : U↵ ! X,
such that  ↵ � ⇡i =  i|U↵ , and by the uniqueness part of the affine case, these maps
coincide on the open affines U↵�� and thefore on the intersections U↵�. They can thus
be patched together to a map  : Z ! X, which is is unique since the  ↵’s are unique.

o

Problem �.�. Let A1 and A2 be to B-algebras. Show that one has a canonical iso-
morphism of functors hA1 ⇥ hA2 ' hA1 ⌦B A2 , where hA stands for HomB(A, ?). X

Problem �.�. Assume that A is an B-algebra with the property that HomB(A,C)
either is empty or a singleton whatever the B algebra C is. Show that the canonical
map A⌦B A ! A sending a⌦ a

0 to the product aa

0 is an isomorphism. X

Problem �.�. Let A be a B-algebra and let S✓A be a multiplicative system. Show
that AS ⌦B AS ' AS. X

Problem �.�. Assume that A is an B-algebra. Given two multiplicative systems S✓A

and S

0 ✓A. Show that AS ⌦B AS0 = ASS0 where SS

0 denotes the multiplicative system
consisting of all products ss

0 with s 2 S and s

0 2 S

0. X

Problem �.�. Let k be a field and x and y two variables. Describe k(x)⌦k k(y). X

A useful lemma

Lemma �.� If X⇥SY exists and U ✓X is an open subscheme, then U⇥SY exists and

is (canonicaly isomorphic to) an open subset of X⇥S Y and projections restrict to pro-

jections. Indeed ⇡

�1
X (U) with the two restrictions ⇡Y |⇡�1

X (U) and ⇡X |⇡�1
X (U) as projections

is a fiber product.
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Proof: Displayed the situation appears like

Y

⇡

�1
X (U)

✏✏

99

� � //
X ⇥s Y

⇡X
✏✏

⇡Y

OO

U

� � //
X,

and we are to verify that ⇡�1
X (U) together with the restriction of the two projections to

⇡

�1
X (U) satisfy the universal property. If Z is a scheme and �X : Z ! U and �Y : Z ! Y

are two morphisms over S we may consider �U as a map into X, and therefore they
induce a map of schemes � : Z ! X ⇥S Y whist �X = ⇡X � � and �Y = ⇡Y � �.
Clearly ⇡X �� = �U takes values in U and therefore � takes values in ⇡�1

X (U). It follows
immediately that � is unique (see the exercise below), and we are through o

Problem �.��. Assume that U ✓X is an open subscheme and let ◆ : U ! X be the
inclusion map. Let �1 and �2 be two maps of a schemes from a scheme Z to U and
assume that ◆ � �1 = ◆ � �2. Then �1 = �2. X

When identifying ⇡�1
X (U) with U ⇥S Y , the inclusion map ⇡

�1
X (U)✓X ⇥S Y will

correspond to the map ◆⇥ idY where ◆ : U ! X is the inclusion, so a reformulation of
the lemma is that open immersions stay open immersion under change of basis.

The glueing process

The following proposition will be basis for all glueing necessay fro the construction:

Proposition �.� Let  X : X ! S and  Y : Y ! S be two maps of schemes, and

assume that there is an open covering {Ui}i2I of X such that Ui ⇥S Y exist for all

i 2 I. Then X ⇥S Y exists. The products Ui ⇥S Y form an open covering of X ⇥S Y

and projections restrict to projections.

Proof: We need some notation. Let Uij = Ui \Uj be the intersections of the Ui’s,and
let ⇡i : Ui ⇥S Y ! Ui denote the projections. By lemma �.� there are isomorphisms
✓ji : ⇡

�1
i (Uij) ! Uij⇥SY , and glueing functions we shal use ⌧ji = ✓

�1
ij �✓ji that identifies

⇡

�1
i (Uij) with ⇡�1

j (Uij). The picture is like this

Ui ⇥S Y ◆ ⇡

�1
i (Uij)

✓ji

'
//
Uij ⇥S Y

✓�1
ij

'
//
⇡

�1
j (Uji)✓Uj ⇥S Y.

The glueing maps ⌧ij clearly satisfy the glueing conditions being compositions of
that the particular form, and the scheme emerging from glueing process is X ⇥S Y .

The two projections are essential parts of product. The projection onto Y is there
all the time since we never touch Y during the construction. The projection onto X
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is obtained by glueing the projections ⇡i along the ⇡�1
i (Uij). By lemma �.� we know

that the when we identify ⇡�1
i (Uij) as the product Uij ⇥S Y the projection ⇡ij onto Uij

corresponds to the restriction ⇡i|⇡�1
i (Uij)

. This means that ⇡i|⇡�1
i (Uij)

= ⇡ij � ✓ji. To say
that ⇡i|⇡�1

i (Uij)
and ⇡j|⇡�1

j (Uij)
becomes equal after glueing is to say that ⇡i|⇡�1

i (Uij)
=

⇡j|⇡�1
j (Uij)

� ⌧ji (remember that in the glueing process we identify points x and ⌧ji(x)),
but this holds true since

⇡j|⇡�1
j (Uij)

� ⌧ji = ⇡ij � ✓ij � ⌧ji = ⇡ij � ✓ij � ✓�1
ij � ✓ji = ⇡ij � ✓ji = ⇡i|⇡�1

i (Uij)
,

and we can glue the ⇡i’s together to obtain ⇡X .
It is a matter of easy verification that the the glued scheme with the two projection

has the universal property.

o

It is worth while commenting that the product X⇥S Y is not defined as a particular
scheme, it is just an isomorphism class of schemes (having the fundamental property
that there is a unique isomorphism respecting the projections between any two). In
the proof above both ⇡�1

i (Uij) and ⇡�1
j (Uij) are products of Uij ⇥S Y , but the are not

equal only canonically isomorphic. In the construction we could use any of them, or as
we in fact did, we can use any non-specified representative in the isomorphism class.
This makes the situation much symmetric in i and j.

An immediate consequence of the glueing proposition �.� is the following lemma,
that is the case when S is affine.

Lemma �.� Assume that S is affine, then X ⇥S Y exists

Proof: First if Y as well is affine, we are done. Ideed, cover X by open affine sets Ui.
Then Ui⇥S Y exists by the affine case, and we are in the position to apply proposition
�.� above. We then cover Y by affine open sets Vi. As we just verified, X⇥S Vi all exists
and applying proposition �.� once more, we can conclude that X ⇥S Y exists. apply
the glueing o

The final reduction

Let {Si} be an open affine covering of S and let Ui =  

�1(Si) and Vi =  

�1
Y (Si).

By lemma �.� the products Ui ⇥Si Vi all exists. Using the following lemma and for the
third time the glueing proposition �.� we are trough:

Lemma �.� With current notation, we have the equality Ui ⇥Si Vi = Ui ⇥S Y .
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Proof: The key diagram is

Z

f

��

g

��

Ui

 X |Ui ��

Y

 Y��

◆ Vi

S

where f and g are given maps. If one follows the left path in the diagram, one ends up
in Si, and hence the same must hold following the right path. But then, Vi being equal
the inverse image  �1

Y (Si), it follows that g necessarily factors through Vi, and we are
done. o

Notation.

If S = SpecA on often writes X ⇥A Y in short for X ⇥SpecA Y . If S = SpecZ, one
writes X ⇥ Y . In case Y = SpecB the shorthand notation X ⌦A B is frequently seen
as well—it avoids writing Spec twice.

Diagrams arising from fiber products are frequently called cartesian diagram (kar-
tesiske diagrammer); that is, the diagram

Z

⇡1 //

⇡2
✏✏

X

 X
✏✏

Y

 Y

//
S

is said to be a cartesian diagram if there is an isomorphism Z ' X ⇥S Y with ⇡1 and
⇡2 corresponding to the two projections.

Problem �.��. Let X, Y and Z be three schemes over S. Show that X ⇥S S = X,
that X ⇥S Y ' Y ⇥S X and that (X ⇥S Y )⇥S Z ' X ⇥S (Y ⇥S Z). If T is a scheme
over S, show that X ⇥S T ⇥T Y ' X ⇥S Y . X

Problem �.��. Show by using the univeral property that if � : X 0 ! X and g : Y 0 ! Y

are morphisms over S, then there is morphism f ⇥ g : X 0 ⇥S Y

0 ! X ⇥S Y such that

X

0 ⇥S Y

0 f⇥g
//

⇡X0
✏✏

X ⇥S Y

⇡X
✏✏

X

0 //
X

and a corresponding diagram involving Y and Y

0 commute X
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Examples

Varieties versus Schemes In the important case that X and Y are integral schemes
of finite type over the algebraically closed field k the product of the two as varities
coincides with their product as schemes over k, with the usual interpretation that the
varity assosiated to the scheme X is the set closed points X(k) with induced topology.

The product X ⇥k Y will be a variety (i.e., an integral scheme of finite type over
k) and the closed points of the product X ⇥k Y will be the direct product of the
closed points in X and Y ; indeed, on the level of functors hX⇥kY (k) equals the product
hX(k)⇥ hY (k), and closed points correspond to maps of schemes Spec k ! X.

It is not obvious that A⌦k B is an integral domain when A and B are, and in fact,
in general, even if k is a field, it is by no means true. But it holds true whenever A and
B are of finite type over k and k is an algebraically closed field. The standard reference
for this is Zariski and Samuel’s book Commutative algebra I which is the Old Covenant
for algebraists. It is also implicit in Hartshorn’s book, exercise 3.15 b) on page 22.

However that the tensor product A⌦k B is of finite type over when A and B are,
is straight forward. If u1, . . . , um generate A over k and v1, . . . , vm generate B over k

the products ui ⌦ 1 and 1⌦ vj generate A⌦k B.
Non algebraically closed field This case the situation is more subtle when one
works over fields that are not algebraically closed. To illustrate some of the phenomena
that can occure, we study a few basic examples.

Example �.�. A simple but illustrative example is the product SpecC⇥SpecR SpecC.
This scheme has two distinct closed points, and it is not integral—it is not even con-
nected!

The example also shows that the underlying set of the fiber product is not necessari-
ly equal to the fiber product of the underlying sets, although this was true for varieties
over an algebraically closed field. In the present case the three schems inolved all have
just one element and the their fibre product has just one point. So we issue warnings:
The product of integral schemes is in general not necessarily integral! The underlying
set of the fiber product is not always the fiber product of the underlying sets.

The tensor product C⌦R C is in fact isomorphic to the direct product C⇥C of two
copies of the complex field C; indeed, we compute using that C = R[t]/(t2 + 1) and
find

C⌦R C = R[t]/(t2 + 1)⌦R C = C[t]/(t2 + 1) = C[t]/(t� i)(t+ i) = C⇥ C

where for the last equation we use the Chinese remainder theorem and that the rings
C[t]/(t± i) both are isomorphic to C. equation. e

Example �.�. This little example can easily be generalize: Assume that L is a simple,
separable field extension of K of degree d; that is L = K(↵) where the minimal
polynomial f(t) of ↵ over K is separable and of degree d. Let ⌦ be a field extension of
K in which the polynomial f(t) splits completely—e.g., a normal extension of L or any
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algebraically closed field containing K— then by an argument completely analogous
to the one above one finds that L⌦K ⌦=⌦⇥ . . .⇥⌦ where the product has d factors.
Consequently the product scheme SpecL ⇥Spec k Spec⌦ has an underlying set with
d points, even if the three sets of departure all are prime spectra of fields and thus
singletons.

One may push this further and construct examples where SpecK ⌦Spec k Spec⌦ is
not even noetherian and has infinity many points! e

Problem �.��. With the assumptions of the example above, check the statement that
L⌦K ⌦ ' ⌦⇥ . . .⇥ ⌦, the product having d factors. X

Problem �.��. Assume that A is an algebra over the field k having a countable set
{e1, e2, . . . , ei, . . . } of mutually orthogonal idempotents, i.e., eiej = 0 if i 6= i and
eiei = 1, and assume that eiA ' k. Assume also that every element is a finite linear
combination of the ei’s.
a) Show that the ideal Ij generated by the ei’s with i 6= j is a maximal ideal.

X

Example �.�. In this example we let L 2 C[x, y] be a linear form that is not real,
for example L = x+ iy + 1, and we introduce the real algebra A = R[x, y]/(LL). The
product LL of L and its complex conjugate is a real irreducible quadric; which in the
concrete example is (x+ 1)2 + y

2. The prime spectrum SpecA is therefore an integral
scheme. However, the fiber product SpecA⇥RSpecC is not irreducible being the union
of the two conjugate lines L = 0 and L = 0 in SpecC[x, y].

The scheme SpecA has just one real point, namely the point (�1, 0) (i.e., corre-
sponding to the maximal ideal (x+ 1, y)). The C-points however, are plentiful.

They are contained in the C-points A2
R(C), which are of orbits {(a, b), (a, b)} of the

complex conjugation with (a, b) non-real, and form the subset of those (a, b) such that
L(a, b) = 0. e

Example �.�. Another example along same lines as example �.� shows that the fiber
product X ⇥S Y is not necessarily reduced even if both X and Y are; the point being
to use an inseparable polynomial f(t) in stead of a the separable one in �.�. Let k

be a non-perfect field in characteristic p which means that there is an element a 2 k

not being a p-th power of any element in k. Let L be teh field extension L = k(b)
where b

p = a. That is, L = k[t]/(tp � a). which is a field since t

p � a is an irreducible
polynomial over k. However, upon being tensorized by itself over k, it takes the shape

L⌦k L = L[t]/(tp � a) = L[t]/(tp � b

p) = L[t]/((t� b)p)

which is not reduced, the non-zero element t � b being nilpotent. So we issue a third
warning: the fiber product of integral schemes is not in general reduced! e
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One can elaborate these example and construct an example of two noetherian sche-
mes X and Y such that X ⇥S Y is not noetherian, even if S is the spectrum of a field.
The next examples shows that if X, Y and S are fields, the product X ⇥S Y can even
have an uncountable number of elements!

Example �.�. In this example we take L to the subfield of the field Q of algebraic
numbers that is generated by all the elements a such that a2n = 2 for some n. The field
L is the union of the ascending chain of fields

Q✓Q(
p
2)✓Q(

4
p
2)✓Q(

8
p
2)✓ . . . ✓Q(

2r
p
2)✓ . . . ✓L✓Q

We denote r-th field in the chain Q( 2r
p
2) by Lr. The next field Lr+1 is the quadratic

extension of Lr obtained simply by adjoining 2r+1p
2, or, in other words, the square root

of 2r
p
2.

We let Ar = Lr ⌦Q Q. By the arguments in example xxx Ar this is a finite algebra
of rank 2r over Q. It has fine-structure induced by the smaller algebras As for s  r

which are all subalgebras of Ar. the algebra Ar splits as the direct product of two
copies of Ar�1; indeed, one has Lr ⌦Q Q = Lr ⌦Lr�1 Q⌦Q Lr�1 ⌦Q Q = Ar�1 � Ar�1

since Lr ⌦Lr�1 Q ' Q�Q.
The two idempotents in Ar that induce this splitting are denoted by er,0 and er,1.

They are orthogonal and their sum equals one. Each of the two subalgebras er,✏Ar are
isomorphic to Ar�1 with 1 2 Ar�1 corresponding to er,✏, they contain the idempotens
er�1,✏ which wil correspond to the product er,✏er�1,✏0 in Ar. Working our way down in Ar,
this yields a sequence of idempotents eI = er,✏rer�1,✏r�1 . . . e1,✏1 where I = (✏1, . . . , ✏r) is
a sequence of 1’s and 0’s.

Take any sequence � = (�i)i 2 N. Let I ✓A be generted by the ei,✏i with ✏i /2 �.
Then I is maximal. It contains all product exept

Q
i ei,�i . And these all generate the

same copy of Q✓A!
splits as the direct product of two copies of Ln, i.e., there are two orthogonal

idenpotens idenpotens e and e

0.
Then of course L being a field is noetherian as is Q, but L⌦Q Q is not! Indeed,

Q( 2r
p
2)⌦Q is isomorphic to the direct product of 2r-copies of Q so L⌦Q Q is the union

of a sequence of subrings each being a direct product of a steadily increasing number
of copies of Q. e

Problem �.��. Show in detail that L⌦Q Q is not noetherian. X

Base change

The fiber product is in constant use in algebraic geometry, and it is an astonishingly
versatile and flexible instrument. In different situations it serves quite different purposes
and appears under different names. We shall comment on some of the most frequently
encountered applications, and we begin with notion of base change.

In its simples and earliest appearances base change is just extending the field over
which one works; e.g., in Galois theory, or even in the theory of real polynomals, when

— 11 —



Notes 4—Products MAT4215 — Vår 2015

studying an equation with coefficients in a field k one often finds it fruitful to study the
equation over a bigger field K. Generalizing this to extensions of algebras over which
one works, and then to schemes, one arrives naturally at the fiber product.

If X is a scheme over S and T ! S is map. Considering T ! S as change of base
schemes one frequently writes XT = X ⇥S T and says that XT is obtained from X by
base change (basisforandring) or frequently that XT is the pull back (tilbaketrekningen)
of X along T ! S. This is a functorial construction, since if � : X ! Y is a morphism
over S, there is induced a morphism �T = �⇥ idT from XT to YT over T , and one easily
checks that (� � �0)T = �T � �0

T . The defining properties of �T are ⇡Y � �T = � � ⇡X
and ⇡T � � = ⇡T , as depicted in the diagram:

T

XT = X ⇥S T

�T //

⇡T
55

��⇡X ))

Y ⇥S T

⇡Y
✏✏

⇡T

OO

Y.

Problem �.��. Verify in detail that (� � �0)T = �T � �0
T . X

If P is a property of morphisms, one says that P is stable under base change if for
any T over S, the map fT has the property P whenever f has it. For example, another
way of phrasing lemma �.� on page 5 is to say that being an open immersion is stable
under base change.

Geometric points

If X is a scheme a geoemrtric point (et geometrisk punkt) consists of an algebrai-
cally closed field k and a morphism Spec k ! X. Giving such a geowmeyric point is
equivalent to give a point x 2 X and a field extension k(x)✓ k.

For example

Example �.�. One has SpecQ⇥SpecZ SpecQ = SpecQ. Indeed, there is only one ring
homomorphism from Q to any ring, so hSpecQ(T ) is either a singleton or empty. It
follows that the fibre product hSpecQ(T ) ⇥Z hSpecQ(T ) either is a singleton or empty,
hence OK. e

Problem �.��. Let p and q be two different primes. Show that SpecFp⇥SpecZSpecFq =
;. X

Problem �.��. Show that if SpecA and SpecB are affine schemes of finite type over
a field k, then SpecA⇥k SpecB is non-empty. Is the same true if one of them is not of
finite type? Hint: Yes, e.g., show OK if A and B are field extensions of k. X

Problem �.��. Recall that Z(p) denotes the localization of Z in the prime ideal (p)
generated by p. Show that SpecZ(p) ⇥SpecZ SpecZ(p) = SpecZ(p). X
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Problem �.��. Assume that p and q are two different primes. Show that SpecZ(p)⇥SpecZ
SpecZ(q) = SpecQ. X

Problem �.��. Let X be the scheme obtained by glueing X2 = SpecZ(p) to it self
along the generic point. Show that X ⇥Z X is obtained by glueing four copies of X2

together along the generic points. Show that the diagonal �✓X⇥SpecZX is the glueing
of two of them and therefore is not closed. X

Scheme theoretical fibres

In most parts of mathematics, when one studies a map of some sort, a knowledge
of what the fibres of the map are, is of great help. So also in the theory of schemes.

Suppose that � : X ! Y is a map of schemes and that y 2 Y is a point. We are
aim at giving a scheme theoretical definition of the fiber ��1(y); and having the fiber
product at our disposal, nothing is more natural than defining the fiber to be the fiber
product ��1(Y ) = Spec k(y)⇥Y X, where Spec k(y) ! Y is the map corresponding to
the point y. Recall that k(y) = OY,y/my and the map is the composition Spec k(y) !
SpecOY,y ! Y . For diagrammoholics, the scheme theoretical fiber of � over y fits into
the cartesian diagram

�

�1(y) = X ⇥Y Spec k(x) //

✏✏

X

�

✏✏

Spec k(x) //
Y

.

As the next lemma will show, the underlying topological space of ��1(y) is the
topological fiber, but in addition there is a scheme structure on it. In in many cases it
is not reduced, and this a mostly a good thing since it makes certain continuity results
true.

Proposition �.� The inclusion Xy ! X of the scheme theoretical fiber is a home-

omorphism onto the topological fiber �

�1(y).

Proof: We start with the affine case, obviously Y can always without loss of generality
be assumed to be affine, say Y = SpecB, but to begin with we adopt the additional
assumption that X be affine as well, let’s say X = SpecA.

The map � of affine schemes is induced by a map of rings ↵ : B ! A. Let p✓B be
a prime ideal. We have the following equality between sets

{ q✓A | q prime ideal ,↵�1(q) ◆ p } = { q✓A | q prime ideal , q ◆ pA }.

In the particular case that p is a maximal ideal, the inclusion ↵�1(q) ◆ q is necessarily
an equality, and the sets above describe the fiber set-theoretically:

�

�1(p) = { q✓A | q ◆ pA } ' SpecA/qA.
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But this also describes the good old embedding of SpecA/qA into SpecA identifying it
with the closed subscheme V (qA), and therefore this yields a homeomorphism between
SpecA/pA and the topological fiber ��1(p). On the other hand by standard equalities
between tensor products one has

A/pA = A⌦B B/pB = A⌦B k(y),

and so the scheme theoretical fiber ��1(y) = Xy = X ⇥Y Spec k(y) = SpecA⌦B k(y)
is in a canonical way homeomorphic to the topological fiber.

If p is not a maximal ideal, the set SpecA/pA is strictly bigger than the fiber,
the superfluous prime ideals being those for which ↵

�1q strictly bigger than p. When
localizing in the multiplicative system S = B \ p✓B, these superfluous prime ideals
go non-proper, since they all contain elements of the form ↵(s) with s 2 S. Hence the
points in the fiber correspond to the primes in the localized ring (A/pA)p. Standard
formulas for the tensor product gives on the other hand the equality

(A/pA)p = A⌦B Bp/pBp = A⌦B k(y).

The topologies coincides as well, since Spec(A/pA)p naturally is a subscheme of
SpecA/pA; induced topology being the one a prime spectrum.

In the general case, i.e., when X is no longer affine, we cover X by open, affine Ui’s.
By lemma xxx, displayed in slight rotated version below, we know that U\Xs = Us.This
shows that the scheme theoretical and the topological fiber coincide as topological
spaces.

Us
//

✏✏

U

✏✏

Xs
//

✏✏

X

✏✏

Spec k(y) //
Y

o

Example �.�. We take a look at a simple but classic example: The map Spec k[x, y]/(x�
y

2) ! Spec k[x] induced by the inclusion of B = k[x]✓ k[x, y]/(x � y

2) = A. Geome-
trically one would say it is just the projection of the parabola onto the x-axis.

If a 2 k computing the fiber yields, where k(a) denotes the field k(a) = k[t]/(t� a)
(which of course is just a copy of k).

k[x, y]/(x� y

2)⌦ kk(a) = k[y]/(y2 � a).

Several cases can occur, apart from the characteristic two case being special.

⇤ If a does not have a square root in k, the fiber is Spec k(
p
a) where k(

p
a) is a

quadratic field extension of k.
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⇤ In case a has a square root in K, way b

2 = a, the polynomial y2 � a factors as
(y � b)(y + b), and the fiber becomes Spec k[y]/(y � b)⇥ Spec k[y]/(y + b), the
disjoint union of two copies of Spec k

⇤ Finally, the case appears when a = 0. The the fiber is not reduced, but equals
Spec k[y]/y2.

We also notice that the generic fiber is the quadratic extension k(x)(
p
x) of the

function field k(x).
Over perfect fields k of characteristic two, the picture is completely different. Then

a is a square, say a = b

2 and as (y2 � b

2) = (y � b)2 non of the fibers are reduced,
they equal Spec k[y]/(y � b)2, except the generic one which is k(x)(

p
x). One observes

interestingly enough, that all the non-reduced fibers deform into a field!

Problem �.��. Discuss what happens if the field k i not perfect. X

e

The diagonal

Let X/S be a scheme over S. There is a canonical map �X/S : X ! X ⇥S X of
schemes over S called the diagonal map or the diagonal morphism (diagonalavbildnin-
gen eller diagonalmorfismen). The two components maps of � are both equal to the
identity idX ; that is, the defining properties of �X/S are ⇡i ��X/S = idX for i = 1, 2
where the ⇡i’s denote the two projections. On the level of functors the diagonal map
is simply what we understand with the diagonal. It is the map

hX/S(T/S) ! hX/S(T/S)⇥ hX/S(T/S)

that sends a T -point ⇠ to the pair (⇠, ⇠). If T/S is a scheme, a T -point in X⇥S X takes
values in the diagonal—that is, factors via �X/S—if and only if the two component-
maps coincide.

In the case X and S are affine schemes, the diagonal has a simple and natural inter-
pretation in terms of algebras; it corresponds to most natural map, the multiplication
map:

µ : A⌦B A ! A.

It sends a⌦ a

0 to the product aa

0 and then extends to A⌦B A by linearity. The pro-
jections correspond to the two maps ◆i : A ! A⌦B A sending a to a⌦ 1 respectively
to 1⌦ a. Clearly it holds that µ � ◆i = idA, and on the level of schemes this translates
into the defining relations for diagonal map. We have established the following:

Proposition �.� If X an affine scheme over the affine scheme S, then the diagonal

�X/S : X ! X ⇥S X is a closed imbedding.
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This is not generally true for schemes and shortly we shall give examples, however
from the lemma �.� we justed proved, it follows readily that the image �X/S(X) is
locally closed—i.e., the diagonal is locally a closed embedding:

Proposition �.� The diagonal �X/S is locally a closed embedding.

Proof: Begin with covering S by open affine subset and subsequently cover each of
their inverse images in X by open affines as well. In this way one obtains a covering
of X by affine open subsets Ui whose images in S are contained in affine open subsets
Si. The products Ui ⇥Si Ui = Ui ⇥S Ui are open and affine, and their union is an open
subset containing the image of the diagonal. By proposition �.� above the diagonal
restricts to a closed embedding of Ui in Ui ⇥Si Ui. o

Problem �.��. In the setting of the previous proof, show that �X/S|Ui = �Ui/S. X

On says that the scheme X/S is separated (separert) over S, or that the structure
map X ! S is separated if the diagonal map is a closed imbedding. If X is separated
over SpecZ one says for short that it is separated.

Assume we are given two maps �i : Z ! X, with i = 1, 2, of schemes over S. Let
� : Z ! X⇥SX be the map whose components are �1 and �2, ; that is, the map whose
defining relations are ⇡i � � = �i. One defines the equalizer of the two maps E(�1,�2)
as the inverse image of the diagonal map; that is, there is cartesian square

Z

�
//
X ⇥S X

E(�1,�2) //

E

OO

X.

�X/S

OO

The scheme E(�1,�2) has the following universal property.

Lemma �.� Given two maps �i : Z ! X and let E(�1,�2) be the equaliser. A map

 : T ! Z satisfies �1 �  = �2 �  if and only if  factors through E(�1,�2).

The equalizer E(�1,�2) is therefore, in some sense, the largest subschemes of Z

over which the two maps �1 and �2 coincide. Some authors call is the kernel of the two
maps �1 and �2, and is also known as the scheme of coincidence of the two maps.

The notion of equalizers has a meaning in any category, but of course its unrestricted
existence is a feature of the category of schemes (however, sheared with a lot of other
categories. If fiber products unconditionally exist, equalizers do as well).

Assume that C is the category and that �1,�2 : Z ! X are two maps from C. An
equalizer E = E(�1,�2) is an object of C together with a map ◆ : E ! Z from C
having the following universal property: For every map  : T ! Z it holds true that
�1 � = �2 � if and only if there is a unique map ⌘ : T ! E in C such that  = ◆ � ⌘;
that is, if and only if  factors through E. In this context the content of lemma �.�
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is that the pull back of the diagonal along � is the equalizer in the category Sch/S of
schemes over S.
Proof of Lemma �.�: The lemma is obvious for Z = X ⇥S X and �i = ⇡i; that is,
the equaliser E(⇡1, ⇡2) of the two projections is the diagonal �X/S. Indeed, if  : Z !
X ⇥S X is a map of S-schemes with component maps  i that factors through the
diagonal, clearly the two maps ⇡i �  =  i are equal since both projections satisfy
⇡i � �X/S = idX . It is equally obvious that if  1 =  2 the map  factors through
the diagonal, i.e., one has, say,  i = �X/S �  1, and maps into the product being
determined by the components, it holds that  = �X/S �  1.

In the general setting, if  is a T -point of Z one has ⇡i �� � = �i � . Hence after
what we just did, the composistion � �  factors through the diagonal—meaning that
 factors through the inverse image of the diagonal—if and only if �1 �  = �2 �  . o

Proposition �.� The scheme X/S is separated if and only the equalizers of any pair

of maps of S-schemes �1,�2 : Z ! X is closed.

Proof: If all equalizers are closed, the diagonal is closed being the equalizer of the
two projections. If the diagonal is closed any equalizer is, being the inverse image of
the diagonal. o

Example �.�. The simplest schemes that are not separated are obtained by glueing
the prime spectrum of a discrete valuation ring to itself along the generic point.

To be precise, let R be the DVR with fraction field K. Then SpecR = {x, ⌘} where
x is the closed point corresponding to the maximal ideal, and ⌘ is the generic point
corresponding to the zero ideal. The generic point ⌘ is an open point (the complement
of {⌘} is the closed point x) and the support of the open subscheme {⌘} = SpecK.
By by the glueing lemma, we may glue one copy of SpecR to another copy of SpecR
by identifying the generic points—that is, the open subschemes SpecK—in the two
copies.

In this manner we contruct a sceheme ZR togethre with two open embeddings
◆i : SpecR ! ZR. They send the generic point ⌘ to the same point, which is an open
point in ZR, but they differ on the closed point x. Thus, the equalizer of the two
embeddings is the open subscheme {⌘} = SpecK. This is not a closed subscheme, and
ZR is not separated. e

Problem �.��. Show that ZR ⇥ ZR is obtained by glueing four copies of SpecR
together along their generic points. Show that the diagonal is open and not closed. X

In some sense, these tiny schemes ZR together with some of their bigger cousins are
always at the root of a non separated scheme. For any valuation ring R with maximal
ideal mR one can glue two copies of SpecR together along some open set U ✓R\{mR}
to get schemes ZR, using these schemes one has the following proposition whose proof
we shall not give, it has to surmount a few technical difficulties making it not very
transparent (If you are interested, try reading the proof in Hartshorn’s book).
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Proposition �.� Assume that X is a quasi-compact scheme. If X/S is non-separated

if and only if it contains a subschemes XR for some valuation ring R.

A more usual way of phrasing this is as follows in that guise the result is called the
valuation criterion for separateness:

Proposition �.� A quasi compact scheme X is separated if and only if the following

condition is satisfied: For any valuation ring R with fraction field K, a map SpecK !
X over S has at most one extension to SpecR ! X

A tiny non-separated scheme

It is not true that maps SpecK ! X like in the criterion always can be extended—
schemes with that property are called proper schemes—so the criterion says there
can never be two different extensions in case X is separated. One does frequently
encounter non-separated scheme in practice, but some very nice properties are only
true for separated schemes, and this legitimates the notion. Of course, one needs good
criteria to be sure we have a large class of separated schemes. We have already seen that
all affine schemes are separated, and when we come to that point projective schemes
will turn out to be separated as well.

One of the nice properties affine schemes enjoy, is the following:

Proposition �.� Assume that X is separated and that U and V are to open affine

subscheme. Then the intersection U \V is affine and the map �(U,OU)⌦ �(V,OV ) !
�(U \ V,OU⇥V ) is surjective

Proof: The product U ⇥ V is an open and affine subset of X ⇥ V , and U \ V =
�X(X)\ (U ⇥V ). So if the diagonal is closed, U \V is a closed subset of the affine set
U ⇥ V hence affine. It is a general fact about products of affine schemes that one has

�(U ⇥ V,OU⇥V ) = �(U,OU)⌦ �(V,OV ),

and as U \ V is a closed subscheme of U ⇥ V , the restriction map

�(U ⇥ V,OU⇥V ) ! �(U \ V,OU\V )

is surjective. o
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