Mandatory assignment MAT4215 - Spring 2017

The assignment must be handed in in the special box at the 7. floor in Niels Henrik Abels hus before 14:30, **Thursday May 18th**. Remember to fill in and attach a front page - front pages are found near the box or online.

The problems marked with * are not mandatory. If you have any questions or comments about the problems, feel free to ask me in the lectures or email me at johnco@math.uio.no.

Problem 1. Give an example of a scheme X, a field K, and a morphism of ringed spaces Spec $K \to X$ which is *not* a morphism of schemes.

Problem 2. Describe the scheme-theoretic fibers in all points of the following morphisms.

- (a) Spec $\mathbb{C}[x,y]/(xy-1) \to \operatorname{Spec} \mathbb{C}[x]$
- (b) Spec $\mathbb{C}[x,y]/(xy) \to \operatorname{Spec} \mathbb{C}[x]$
- (c) Spec $\mathbb{C}[x,y]/(x^2-y^2) \to \operatorname{Spec}\mathbb{C}[x]$
- (d) Spec $\mathbb{Z}[x,y]/(xy^2-m) \to \operatorname{Spec} \mathbb{Z}$, where m is a non-zero integer.

Which fibers are irreducible or reduced?

Problem 3. Let $X = \operatorname{Spec} A$ be an affine scheme. Show that the functors $\Gamma : \operatorname{Mod}_X \to \operatorname{Mod}_A$ and $\sim : \operatorname{Mod}_A \to \operatorname{Mod}_X$ are adjoint: That is, for any M, \mathcal{F} , there is a natural isomorphism

$$\operatorname{Hom}_A(M,\Gamma(X,\mathcal{F})) \simeq \operatorname{Hom}_{\mathscr{O}_X}(\widetilde{M},\mathcal{F})$$

Problem 4. Let X be a noetherian scheme and let \mathcal{F} be a coherent sheaf. Prove the following statements:

- (a) If the stalk \mathcal{F}_x is a free $\mathcal{O}_{X,x}$ -module, then there is a neighbourhood U of x such that $\mathcal{F}|_U$ is free.
 - (b) \mathcal{F} is locally free if and only if the stalks \mathcal{F}_x are free $\mathscr{O}_{X,x}$ -modules for every $x \in X$.

Problem 5*. A scheme is *normal* if all of its local rings are integrally closed domains.

- (a) Let X be an integral scheme. For each affine open $U = \operatorname{Spec} A$, let $\widetilde{U} = \operatorname{Spec} \widetilde{A}$, where \widetilde{A} is the integral closure of A in its quotient field. Show that one can glue the schemes \widetilde{U} to obtain a normal integral scheme \widetilde{X} , with a morphism $\widetilde{X} \to X$. This is called the *normalization* of X.
 - (b) Let $X = \operatorname{Spec} A$, where

$$A = \mathbb{C}[x, y]/(x^2 - y^5).$$

Describe \widetilde{X} and the map $\widetilde{X} \to X$.