MAT4215 - SYLLABUS 2018

The following is a list of the most important definitions and results in the course, in the order they appear in the Lecture notes. The points marked with * are especially important.

Chapter 1

Presheaves, Sheaves, sheaf saturation, *Stalks and germs, When a map of sheaves is injective/surjective ker, im and coker sheaves, quotient sheaves Examples where im/coker fails to be a sheaf *Left exactness of Γ , and failure of its right exactness. $*\mathcal{B}$ -sheaves. *Sheafification and its universal property. Pushforward and inverse image of a sheaf. Adjoint properties.

Chapter 2

The Zariski topology on SpecAV(I) and D(f)*Maps between rings vs morphisms of Spectra. Spec of a DVR *Definition of the structure sheaf on SpecA. Definition of a scheme and morphisms of schemes *The category of affine schemes vs the category of commutative rings

Chapter 3

Gluing of sheaves Gluing of schemes Gluing morphisms of schemes *Maps from schemes into an affine scheme (Theorem 3.6)

Chapter 4

 \mathbf{P}^n

A non-affine scheme Affine line with doubled origin Blow-up

Chapter 5

Connectedness, Irreducible, Reduced, Integral, Noetherian, quasi-compact, Finite type, Finite morphisms The dimension of a scheme.

CHAPTER 6

*Definition of Proj(R) as a scheme. *Maps between Proj's The Veronese embedding is an isomorphism

Chapter 7

*Definition of fiber product for schemes *Existence of fiber product for affine schemes. Superficial knowledge about the construction of the fiber product in general. Scheme theoretic fiber

Chapter 8

The various constructions for \mathscr{O}_X -modules: sum, tensor product, Hom, ker, .. Modules over Spec DVR. Direct and inverse images of \mathscr{O}_X -modules *The ~ functor and its properties *Quasi-coherent sheaves Coherent sheaves *Quasi-coherent sheaves on affine schemes Proposition 8.17 (about the categories QCoh and Mod) and the sketch of its proof. Functorial properties of Quasi-coherence (f^* and f_* , ..) *Closed immersions vs quasi coherent sheaves of ideals (only a sketch of the proof)

Chapter 9

Locally free sheaves. *Invertible sheaves and Pic(X).

Chapter 10

The graded \sim functor and its properties

* $\mathscr{O}(1)$. Sections of $\mathscr{O}(m)$ correspond to elements of R_m .

The associated graded module of a sheaf.

*The relation between graded modules on R and quasi-coherent sheaves on Proj(R). The correspondence between closed subschemes of Proj(R) and saturated ideals of R.

Chapter 12

*Cech cohomology

*Cohomology of quasi-coherent sheaves on $\operatorname{Spec} A$ for A noetherian

*Cohomology of $\mathscr{O}(m)$ on \mathbb{P}^n .

Euler characteristic, arithmetic genus

*Basic examples of using cohomology to get geometric information (e.g., plane curves, hyperelliptic curves..)