Mandatory assignment MAT4215 – Spring 2021

The assignment must be submitted electronically by 14:30, Thursday May 13th.

You need at least 50% to pass. If you have any questions or comments about the problems, feel free to email me at johnco@math.uio.no.

Feel free to use whatever results from Commutative Algebra you want.

Problem 1. [10%]

Let k be a field. Show that any morphism of schemes \mathbb{P}^1_k to an affine k-scheme is constant.

Problem 2. [25%]

Describe the scheme theoretic fibers in all points of the following morphisms.

(1) $f: \operatorname{Spec} \mathbb{C}[x, y]/(xy - 1) \to \operatorname{Spec} \mathbb{C}[x]$ (2) $f: \operatorname{Spec} \mathbb{C}[x, y]/(x^2 - y^2) \to \operatorname{Spec} \mathbb{C}[x]$ (3) $f: \operatorname{Spec} \mathbb{C}[x, y]/(xy) \to \operatorname{Spec} \mathbb{C}[x]$ (4) $f: \mathbb{C}[x] = \mathbb{C}[x]$

(4) $f: \operatorname{Spec} \mathbb{Z}[x, y]/(xy^2 - m) \to \operatorname{Spec} \mathbb{Z}$, where m is a non-zero integer.

Which fibers are irreducible? Which are reduced?

Problem 3. [20%]

Show the following:

(i) The skyscraper sheaf of k on \mathbb{A}^1_k at the origin 0 is quasi-coherent.

(ii) The skyscraper sheaf of k(T) on \mathbb{A}^1_k at the origin 0 is *not* quasi-coherent.

(iii) If X is variety over an algebraically closed field k, then the skyscraper sheaf of k at any closed point $x \in X$ is quasi-coherent.

Problem 4. [25%]

Let $f: X \to Y$ be a morphism of schemes, \mathcal{F} an \mathscr{O}_X -module, and \mathscr{E} a locally free sheaf of finite rank. Show that there is a natural isomorphism

$$f_*(\mathcal{F} \otimes f^*\mathscr{E}) \simeq f_*(\mathcal{F}) \otimes \mathscr{E}$$

Problem 5. [30%]

Let $f: X \to Y$ be a morphism of schemes and let $x \in X$ be a point. We say that:

- A quasi-coherent sheaf \mathcal{F} on X is flat over Y at x if \mathcal{F}_x is flat as a $\mathscr{O}_{Y,f(x)}$ -module (where \mathcal{F}_x is considered as a $\mathscr{O}_{Y,f(x)}$ -module via the natural map $f_x^{\#} : \mathscr{O}_{X,x} \to \mathscr{O}_{Y,f(x)}$).
- \mathcal{F} is *flat* if it is flat at every point in X.
- f is flat if \mathscr{O}_X is flat over Y

(i) Show that open embeddings are flat. What about closed immersions?

(ii) Show that a morphism of schemes $\operatorname{Spec} B \to \operatorname{Spec} A$ is flat if and only if the map of rings $A \to B$ is flat. More generally, a quasi-coherent sheaf \widetilde{M} on $\operatorname{Spec} B$ is flat over $\operatorname{Spec} A$ if and only if M is flat as an A-module.

(iii) Which of the morphisms in Problem 2 are flat?

(iv) Prove that the blow-up morphism $\pi: Bl_0\mathbb{A}^2 \to \mathbb{A}^2$ is not flat.