Fheaves

DEFINITION 1.1 Let X be a topological space. A presheaf of abelian groups JF on X
consists of the following two sets of data:

i) for each open U < X, an abelian group F (U);

ii) for each pair of nested opens V < U a group homomorphism (called restric-
tion maps)

puv: F(U) - .F(V)
The restriction maps must furthermore satisfy the following two conditions:

i) for any open U < X, one has puyu = idr ),

ii) for any three nested open subsets W < V < U, one has puw = pvw © puv-.



We will usually write s|y for pyy(s) when s € F(U). The elements of F(U) are
usually called ‘sections’ (or ‘sections over U’). We will often also write I'(U, F)
for the group F(U); here T is the ‘global sections’-functor



DEFINITION 1.2 A presheaf F is a sheaf if it satisfies the two conditions:
i) (Locality axiom) Given an open subset U < X with an open covering U =
{U;}ic1 and a section s € F(U). If s|y, = 0 for all i, then s = 0 € F(U).
ii) (Gluing axiom) If U and U are as in (i), and if s; € F (U;) is a collection of
sections matching on the overlaps; that is, they satisfy

Si|UimU]~ = 5j|U,»mLI]~ Vil] € Il

then there exists a section s € F (U) so that s|y, = s; for all i.



For each open cover U = {U;} of an open set U < X there is a sequence
0—— F(U) —= L FU) —E T, F(Us n Uj)

the maps «, B are defined by a(s) = (s[u;);, and B(s;) = (silunu; — Sjlunu,)ij-
~— Then F is a sheaf if and only if these sequences are exact.
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ExampLE 1.3 (The empty set) There is a subtle point about taking U to be
the empty set in the definition of a sheaf. If F is a sheaf, we are forced to
define F() = 0. Indeed, note that the empty set is covered by the empty
open covering, and the empty product is 0, so the sheaf sequence looks like
0—- F(g)—0. *



1.2 Morphisms between (pre)sheaves

ax
A morphism (or simply map) ¢ : F — G of (pre)sheaves on a space X is collection
of maps (i.e., group homomorphisms) ¢y; : F(U) — G(U) indexed by the open
sets in X and compatible with the restriction maps:

Fu) - g

Jpur o &

Fv) 2 gv).

In this way the sheaves of abelian groups on X form a category AbShxwhose
objects are the sheaves and the morphisms the maps between them.



Subsheaves and saturation

If F is a presheaf on X, a subpresheaf G is a presheaf such that G(U) < F(U) for
every open U, and such that the restriction maps of G are induced by those of

F. If F and G are sheaves, of course G is called a subsheaf.



Let F be a sheaf on X and G < F a subpresheaf. We say that a section s €
F(U) locally lies in G if for some open covering {U;}ic; of U one has s|y, € G(U;)
for each i.

DEFINITION 1.4 We define the sheaf saturation G of G in F by letting the sections of
G over U be the sections of F over U that locally lie in G.

The sheaf saturation G is again a subpresheaf of F (with restriction maps being
the ones induced from F). In fact, G is, almost by definition, a sheaf.
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1.5 Take X = R" and let C(X,R) be the sheaf whose sections over an open
set U is the ring of continuous real valued functions on U, and the restriction
maps pyv are just the good old restriction of functions. Then C(X,R) is a
sheaf of rings (functions can be added and multiplied), and both the sheaf
axioms are satisfied. Indeed, any function f : X — IR, which restricts to zero on
an open covering of X is the zero function. Also, given continuous functions
fi + Ui — R agreeing on the overlaps U; n U;, we can form the continuous
function f : U — R by setting f(x) = fi(x) for any i such that x € U;.



1.6 For a second familiar example, let X < C be an open set. On X one
has the sheaf 0x of holomorphic functions. That is, for any open U < X the

sections Ox(U) is the ring of holomorphic (i.e., complex analytic) functions on
u.



1.7 (A presheaf which is not a sheaf) Let us continue the set-up in Example 1.6 to
make another example of a presheaf which is not a sheaf. Let X = C; and let Ox
denote the sheaf of holomorphic functions. &x contains the subpresheaf given
by
F(U) = {feox(U) | f =g*for some ge Ox(U)}.

This is not a sheaf, because the Gluing axiom fails: The function f(z) = z has
a holomorphic square root near any point x € X, but it is not possible to glue
these together to a global square root function +/z on all of X.
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1.8 (Constant presheaf) For any space X and any abelian group A one has the
constant presheaf whose group of sections over any nonempty open set U equals
A and equals 0 if U = . This is not a sheaf, since if U u U’ is a disjoint union,
any choice of elements 4,4’ € A will give sections over U and U’ respectively,
and they match on the intersection, which is empty. But if a # @/, they cannot be
glued. N |



1.10 (A Riemann surface) Let X = C and Y C C x C denote the locus

Y= {(x,%\ | x=yg" %

We have a map 7 : Y — X given by the first projection. Consider the presheaf
on X given by

G(U) ={f : U — Y| f is holomorphic, and 7 o f = idy}.
This is naturally a subpresheaf of the sheaf C(X,Y), and in fact it is a sheaf.



1.12 Let V be an algebraic variety (e.g., an algebraic set in A} or IP}) with the
Zariski topology. For each open U < X, define Oy (U) to be the ring of regular
functions U — k. This is certainly a presheaf, and in fact, a sheaf. *



[ u
1.4 Stalks s bl

Suppose we are given a presheaf F of abelian groups on X. With every point
x € X there is an associated abelian group F, called the stalk of F at x. The
elements of F, are called germs of sections near x and are designed to capture
the nature of sections near the point.

The definition of F, goes as follows: We begin with the disjoint union
[1iey F(U) whose elements we index as pairs (s, U) where U is any open
neighbourhood of x and s is a section of F over U. We want to identify sections
that coincide near x; that is, we declare (s,U) and (s’, U’) to be equivalent, and
write (s,U) ~ (s’,U’), if there is an open V < U n U’ with x € V such that s and
s’ coincide on V; that is, if one has

S|V = S/|V.

DEFINITION 1.13 The stalk F, at x € X is by definition the set of equivalence classes

fx:Hf(U)/"’.

xel

In case F is a sheaf of abelian groups, the stalks F, are all abelian groups.



The germ of a section

For any neighbourhood U of x € X, there is a natural map F(U) — F; sending
a section s to the equivalence class where the pair (s, U) belongs. This class
is called the germ of s at x, and a common notation for it is sy.

FU) —— Fy

U v
x Pqu’ /

F(V).
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When working with sheaves and stalks, it is important to remember the three
following properties;

0O The germ s, of s vanishes if and only s vanishes on some neighbourhood
of x, i.e., there is an open neighbourhood U of x with s|y; = 0.

0O All elements of the stalk F, are germs, i.e., of the shape sy for some section
s over an open neighbourhood of x.

0O The abelian sheaf F is the zero sheaf if and only if all stalks are zero, i.e.,
= 0forall x e X.



ExamrLE 1.14 Let X = C, and let Ox be the sheaf of holomorphic functions in X.
If f and g are two sections of Ox over a neigbourhood U of the point x having
the same germ at x, i.e., fx = gx € Oxx, the fact that f and g admit Taylor series
expansions around x implies that f = ¢ in the connected component containing
x of the set where they both are defined. In fact, the local ring Ox , is naturally
identified with the ring of power series converging in a neighbourhood of x



Morphisms of (pre)sheaves induce maps of stalks

A map ¢: F — G between two presheaves F and G induces for every point
x € X amap ¢y: Fx — Gy between the stalks. Indeed, one may send a pair (s, U)
to the pair (¢ (s), U), and since ¢ behaves well with respect to restrictions, this
assignment is compatible with the equivalence relations; if (s, U) and (s’,U’) are
equivalent and s and s’ coincide on an open set V < U n U/, one has

pu(s)lv = ¢v(slv) = ¢v(s'lv) = du (s)Iv-



A primer on limits

Another notation for the stalk of F at x is

Fr = lim F(U).
Usx

This is the direct limit (also called the colimit or the inductive limit) of all F(U)
when U runs over the partially ordered set of open sets containing x.

A directed set 1 is a partially ordered set with the property that for each pair
of elements i, j € I there is a third element k such thati < kand j < k. If [is a
directed set and C is a category, a directed system of objects in C is a collection
{Gi}ic of objects in C, such that for all i < j there is a morphism f;;: G; — G;,
and these morphisms satisfy f; =id and fjx o f;; = fye wheni < j<k.



Direct limits

The direct limit of {G;}, denoted by G = li_r)nl.E I G;, if it exists, is an object in C,
equipped with morphisms g; : G; — G which satisfy the following universal
property: for any object H € C and collection of maps h; : G; — H indexed by I
such that h; = hj o f;; for each i < j, there is a unique map s : G — H making
the following diagram commute for each i:

GiL)H.

| A

G.

Heuristically, two elements in the direct limit represent the same element in the
direct limit if they are ‘eventually equal.’

If the G; are sets (or groups, rings,...), an explicit construction for the direct
limit is the quotient | [;.; G;/ ~, where and g; ~ gj, with g; € G; and g; € G;,
means that there exists a k € I with i < k and j < k such that fi(g) = fix(h).



ExaMPLE 1.16 Let A be a ring and let S — A be a multiplicative subset. Then

STTA = lim A,

seS

ExaMrLE 1.15 In the case I is the set of open neighbourhoods of a point x

ordered by inclusion, and Gy = F(U), we recover the previous definition of the
stalk F,.



Inverse limits

We can similarly define the inverse limit (also called the projective limit or just
the limit) of a directed system G;. The definition just like above, just with the
arrows reversed: that is, the maps G; — G; are defined for j < i, and the inverse
limit lim._, G; is an element of C equipped with universal maps fo each of the
G;, commuting with the maps G; — G;.

ExamrLE 1.17 If all the G; are subobjects of some fixed object G, and the maps
G; < G;j are inclusions G; — G;, then

limG; = )G:.
—
i€l i€l



1.5 Kernels and images

Let ¢: F — G be a map between two abelian sheaves on X.

DEFINITION 1.18 The kernel Ker ¢ of ¢ is a subsheaf of F whose space of sections
over U is just Ker ¢y, or in other words, the sections in F(U) that map to zero under

¢u: F(U) — G(U).

The requirement in the definition is compatible with the restriction maps, since
¢v(s|lv) = ¢u(s)|v, for any section s over the open set U and any open V < U.
Thus we have defined a subpresheaf of /. This is indeed a subsheaf:

LEMMA 1.19 Let ¢: F — G be a map of abelian sheaves. The kernel Ker ¢ is a subsheaf
of F having the following two properties.

i) Taking the kernel commutes with taking sections: T'(U, Ker ¢) = Ker ¢y,

ii) Forming the kernel commutes with forming stalks: (Ker ¢)x = Ker ¢.



One says that the map ¢ : F — G is injective if Ker ¢ = 0. This is, in light of the
previous lemma, equivalent to the condition Ker ¢, = 0 for all x, i.e., that all ¢,
are injective. |



When it comes to images the situation is not as nice as for kernels. One
defines the image presheaf contained in G by letting the sections over U be equal
to Im ¢;. However, this is not necessarily a sheaf.

Qm cﬂ(@) = Im ¢,
QPU: F(0) — 5(0)



To remedy the situation, we simply make the following definition:

DEFINITION 1.20 For a morphism ¢ : F — G we define the sheaf Im ¢ to be the
saturation of the image presheaf U — Im ¢y, i.e., the smallest subsheaf containing the
images.



LEMMA 1.21 Let ¢: F — G be a map of abelian sheaves. The image Im ¢ is a subsheaf
of G.

i) For all open subsets U of X one has Im ¢y S T'(U, Im ¢).

ii) For all x € X one has (Im ¢), = Im ¢,.

PROOF: i) An element of t = ¢y;(s) of Im ¢x is an element of G which clearly
locally lies in Im ¢, so t € I'(U, Im ¢).

For ii), let ty € Im ¢, and pick an sy € Fy with ¢x(sx) = tx. We may extend
these elements to sections s, t over some open neighbourhood V, so that ¢y (s) =
t, and t is a section of Im ¢ over V. This shows that Im ¢x < (Im ¢),. Conversely,
if t is a section of G over an open U containing x locally lying in image presheaf,
the restriction ¢t € V lies in Im ¢y for some smaller neighbourhood V of x, hence
the germ t, lies in Im ¢,. -



The map ¢: F — G is said to be surjective if the image sheaf Im ¢ = G. This is
equivalent to all the stalk-maps ¢, being surjective (one says ¢ is surjective on
stalks). However, it is important to note that this condition does not imply that
the maps ¢y are surjective for all U.
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1.6 Exact sequences of sheaves.
A complex of sheaves is a sequence

di—2

LGN -Fi—l di—1

o Pit1
F s Fa

of maps of abelian sheaves where the composition of any two consecutive maps
equals zero, i.e., ¢;_1 0 ¢; = 0 for all j. We say that the sequence is exact at F;
if Ker ¢; = Im¢;_1. The short exact sequences are the ones one most frequently
encounters. They are sequences of the form

0-FLFrLh Lo (1.2)

that are exact at each stage.



PROPOSITION 1.24 For a short exact sequence 0 — F' LFLF S 0andan open
subset U, we have the following induced exact sequence /

(

Pousfre -

0— FW S FW L FW@). L, @)

Proor: The map ¢ is injective as a map of sheaves, hence injective on all open
sets U, so the sequence above is exact at F'(U), by Lemma 1.19. To see that it is
also exact in the middle, we show that Ker (1) = Im (¢u).

It might be helpful to look at the following diagram, for x € U:

0 —— Fu) M Fu) M P

| ! !

O%F;L).Fx%f;’%o

Note that the bottom row is exact, since the sheaf sequence is exact.

That Im (¢y;) < Ker(yy) is a consequence of taking sections being functorial:
since P o ¢ = 0, it follows that ¢y 0 py = (Y 0o p)y = 0, so everything in Im ¢y
lies in the kernel of ¢y;.



Let then see the opposite inclusion Ker(¢y;) SIm (¢y). Let t € Ker(yu),
so that ¢;(t) = 0. Then for all x € U we have that ¢, (t,) = (pyu(t))r = 0,
so the germ ¢, is an element in Ker(¢,) = Im (¢,) (where we use exactness
at the stalks). That means that for every x € U there is an element s/, € %),
say represented by (s’( x)7 V(x)) for some open neighborhood V(,y < U of x and
s’(x) € F'(V(y)), such that ¢x(s}) = ty. Then we have that for x,y € U

/ . . /
PV Vi (S Vi Vi) = HVig oy = Vi Vi (S Vg i)
so that by the injectivity of ¢y, ~v,,, (Which we have already proved), we get the
required condition
/ 0
5V = ) Vi
for the gluing of the s’(x) for x € U. Therefore we have a section s € I'(U, .#)
with the property that for all x e U
SV = 5(a)

Now we can conclude that for every x e U

(Pu(s))x = Px(sx) = Px(sy) = tx,

since s, = s, which gives ¢y;(s) = t as desired. Q



Let us give a few examples where the surjectivity on the right fails:

1.25 (Differential operators) Let X = C and recall the sheaf &x of holomorphic
functions and the map D: 0x — Ox sending f(z) to the derivative f’(z). There
is an exact sequence

0 )CX >ﬁx D)ﬁx > 0.
R oboll b ollfy ¢
o antidionk

However, taking sections over open sets U we merely obtain the
sequence

0— T(U,Cx) —— (U, 6x) —24 s T(U, 6x).

If U is simply
connected, one deduces from Cauchy’s integral theorem that every holomorphic
function in U is a derivative, so in that case Dy is surjective. On the other hand,
if U not simply connected, Dy; is not surjective; e.g., if U = C\{0}, the function

z~1 is not a derivative in U. — \/l/fi/\l M/%A/\ W l Dﬂ 1.



5 X

1.26 (The exponential sequence) Let X = C — {0}. The non-vanishing holomorphic
functions in an open set U < X form a multiplicative group, and there is a sheaf
Oy with these groups as sections. For any f holomorphic in U the exponential
exp f(z) is a section of ﬁj{(/)-lence there is an exact sequence

exp

0 >ZX )ﬁx

» O% >0,
— ot
where the first map sends 1 to 27ti. The rightmost map exp is surjective as a map

of sheaves, because non-vanishing functions locally have logarithms. However,
over the open set U = X, the map is not surjective: the non-vanishing function
f(z) = z is not the exponential of a global holomorphic function.

R‘ than 0@%4 [Oaa 7



1.7 9B-sheaves

Recall that a basis for a topology on X is a collection of open subsets % such that
any open set of X can be written as a union of elements of %. In many situations
it turns out to be convenient to define a sheaf by saying what it should be on a
specific basis for the topology on X.



Let us first make the following definition:

DEFINITION 1.28 A Z%-presheaf F consists of the following data:
i) For each U € %, an abelian group F(U);
ii) Forall U < V, with U,V € 4, a restriction map pyy: F(U) — F(V).
As before, these are required to satisfy the relations pyy = id F 1) and pwu = pvu ©

pwy. A B-sheaf is a B-presheaf satisfying the Locality and Gluing axioms for open
sets in A.



The whole point with the notion of #-sheaved is expressed in the following
proposition.

PROPOSITION 1.29 Let X be a topological space and let 98 be a basis for the topology
on X. Then

i) Every 98-sheaf F extends uniquely to a sheaf on X.
i) If ¢ + F — G is a morphism of 98-sheaves, then ¢ extends uniquely to a
morphism between the corresponding sheaves.

ii1) The stalk of the extended sheaf at a point x equals the stalk of F at x; that is,

the inductive limit limy__ . F u).



ProoF: For any open set U < X, we can write U as a union of open sets U; € %,
and then we can define F(U) to be the set of elements s; € [ [; F(U;) such that
Sz‘|llmll,- = Sj|llimllj for all i,j.



1.8 A family of examples — Godement sheaves

Let X be a topological space. Assume that we are given, for each point x € X,

an abelian group A,.
The choice of these groups gives rise to a sheaf 2/ on
X whose sections over an open set U < X are given as

T(U,«)=]]Ax
xel
and whose restriction maps are defined as the natural projections
puv: HAx — HAx/
xel xeV

where V C U is any pair of open subsets of X.

DEFINITION 1.31 The sheaf </ is called the Godement sheaf of the collection {Ax}.



PROPOSITION 1.30 & is a sheaf.

Proor: The Locality condition holds since if the family {U;};c; of open sets
covers U, any point xg € U lies in some Uj,, so if s = (ax)yey € I'(U, &) is a
section, the component ay, survives in the projection onto I'(U;, &) = [ [,y Ax-
Hence if 5|, = 0 for all i, it follows that s = 0.

The Gluing condition holds: Assume we are given an open cover {U;}c; of
U and sections s; = (aﬁc) xell; € erui Ay over U; matching on the intersections
U; n U;. The matching conditions imply that the component of s; at a point x is
the same whatever i is as long as x € U;. Hence we get a well-defined section s
of &7 over U by using this common component as the component of s at x. It is
clear that s|y, = s;. Q



The Godement sheaf associated with a presheaf

Assume F is a given abelian presheaf on X. The stalks F, of F of course give a
collection of abelian groups indexed by points in X, good as any other, and we
may form the corresponding Godement sheaf which we denote by I'T(F).

(F)(U) =[] F (1.4)
xel

and the restriction maps are the projections like for any Godement sheaf.



There is an obvious and canonical map _
Se‘}(O) — (@X) Xeu

K]::.F—>H(.F) 6773:)(_
O

sending a section s € F(U) to the element (sx)cy of the product in (1.4). This
map is functorial in F, for if ¢: F — G is a map of sheaves, one has the stalkwise
maps ¢x: Fx — Gy, and by taking appropriate products of these, we obtain a
map I1(¢): IT(F) — II(G). Over an open set U, we have

H((P)((Sx)er) - ((Px(sx))xell’

and there is a commutative diagram

F LT F)

«pl ln«p)



1.9 Sheafification

Given any abelian presheaf F on X, there is a canonical way of defining an
abelian sheaf F that in some sense is the sheaf that best approximates it.
main properties are summarized in the following



PROPOSITION 1.32 Given an abelian presheaf F on X. Then there is a sheaf F© and a
natural map kr : F — F such that:

i) kr is functorial in F. CP?— - 6 e P f}"‘f-_—a 91-
i) xr enjoys the universal property that any map of abelian presheaves F —
G where G is sheaf, factors through F* in a unique way. This property

characterises F up to unique isomorphism. s 6
iii) If G is a sheaf, there is a natural bijection K \)
Homapprshy (F,1(G)) = Homapshy (F T, G) (1.6)

where on the right hand side, i(G) denotes G but considered as a presheaf.

iv) « induces an isomorphism on stalks: F, ~ F for every x € X.



Now to the construction:

Recall the canonical map x: F — II(F) that sends
a section s of F over an open U to the sequence of germs (sx)xet € [ [ey Fx =
I'(U,I1(F)). This map certainly kills the ‘doomed” sections, i.e., those whose
germs all vanish. Now we can get an actual sheaf by taking the image of x in
I1(F):

DEFINITION 1.33 For an abelian presheaf F on X, we define its sheafification F ™ as
the image sheaf Im x in I1(F). In other words, F* is the saturation of the subpresheaf
U — Imxy in II(F).

It might help to unravel this definition slightly. Over an open set U < X the
sections of F 1 are given by

FH(U) = {(sx) € H Fx|(sx) locally lies in F},
xel

where, as before, the sentence in the bracket means the following: For each
x € U there exists an open neighbourhood V < U containing x and a section
t € 7 (V) such that for all y € V we have s, = t, in F,,.



LEMMA 1.34 The sheafification F+ depends functorially on F. Moreover, if F is a
sheaf, x : F — F* is an isomorphism, so that F and F ™ are canonically isomorphic.

PrROOF: Assume that ¢: F — G is a map between two presheaves. Let s be
section of II(F) over some open set U, so that s locally lies in F. In other words



there is a covering {U;} of U and sections s; of F over U; with s|y, = xz(s;).
Hence by (1.5) one has

[1(¢) (slu;) = T1(@) (7 (s:)) = Kg(P(s:))-

This means that IT(¢)(s) lies locally in G, and I1(¢) takes F* into G*. Moreover,
there is a commutative diagram

F I Ft— S TI(F)
4{ ¢+J JH(@
GG ——TI(G)

In case F is a sheaf, the map xr maps F injectively into IT(F) and F = Imxr
is its own saturation, hence x r is an isomorphism. |




LEMMA 1.35 Given an abelian presheaf F on X. Then the sheaf F* and the natural
map k : F — F T enjoys the universal property that any map of abelian presheaves F —
G where G is sheaf, factors through F* in a unique way. This property characterises
F T up to unique isomorphism.

Proor: If G in the diagram above is a sheaf, the map xg : G — G is an
isomorphism and ¢ o Kal provides the wanted factorization. The uniqueness
statement follows formally: Given two abelian sheaves 7' and F’ satisfying the
above, we get by the universal properties two maps ¥ © — F' and F' — FT,
whose compositions are the identity by uniqueness. .

5



LEMMA 1.36 Shedfification preserves stalks: F, = (F )y via k.

ProoF: The map «y : Fx — (F 1)y is injective, because Fr — (II(F))y is
injective. To show that it is surjective, suppose that s € (F1),. We can find
an open neighbourhood U of x such that 5 is the equivalence class of (s, U)
with s € 71 (U). By definition, this means there exists an open neighbourhood
V < U of x and a section ¢ € F(V) such that s|y is the image of ¢ in IT(F) (V).
Clearly the class of (¢, V) defines an element of F, mapping to s. a



Aogeb o~ A(D) = A YUEX

Examples

1.37 (Constant sheaves) Recall Example 1.8 in which we showed that the constant
presheaf given by Ax(U) = A is usually not a sheaf (where A is an abelian
group). In this case, the sheafification is exactly the sheaf Ax defined by

I'(U,Ax) = RQI)A ?f:U—7A QW\X\VWJU)W);

where 715(U) denotes the set of connected components of the open set U.
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ExaMrLE 1.39 To see why we have to sheafify in these constructions, con-
sider again the exponential map from Example 1.26. The naive presheaf
U — Cokerexp(U) is not a sheaf: The class of the function f(z) = z restricts
to o in Coker exp on sufficiently small open sets, but it is itself not zero (since
otherwise we would be able to define a global logarithm on C — 0). *

v (C,th Q‘@E}ﬂ— = 0



1.11 The pushforward of a sheaf 5 £

|4
v Y

Let X and Y be two topological spaces with a continuous map f: X — Y
between them. Assume that F is an abelian sheaf on X. This allows us to define

an abelian sheaf f.F on Y by specifying the sections of f.F over the open set
U< Y tobe

(feF)U) = F(f7U),
and letting the restriction maps F(f~'U) — F(f~1V) be the ones from F.

DEFINITION 1.40 The sheaf f.F is called the pushforward sheaf or the direct image
of F.
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ExaMmPLE 1.42 Consider an affine variety X < A" and leti : X — A" be the
inclusion. For each open U < A" define

Tx(U) = {f € Opn(U)|f(x) =0V x e X} U
Then Zx is a sheaf (of ideals) and we have an exact sequence

0—>Ix—>OAn—>i*Ox—>0



habs $X o x5 £F - T(xF)

—_—

LEMMA 1.43 The functor f, is left exact. That is, given an exact sequence of sheaves
on X

0 > F' » F » F >0

then the following sequence is exact

00— fuF' —— fuF —— fuF".
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Note in particular that the stalk of f~1G at a point x € X is isomorphic to
G¢(x)- Indeed, it suffices to verify this on the level of presheaves:

(f,'6)x = limf,'G(U) =1lim lim G(V)
U>sx stvgf(u)
= lim G(V) =G
Vaf(x)



The adiowt prredy b €7 ot £

THEOREM 1.48 Let f : X — Y be a morphism, let F be an abelian sheaf on X and let
G be an abelian presheaf on Y. Then we have a natural bijection

Homapprshy, (G, f«F) ~ Homapsh, (f G, F )

which is functorial in F and G. N 4_,6 ol Mo nabil e

ety -
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