Sheaves

Recall!

DEFINITION 1.1 Let X be a topological space. A presheaf of abelian groups \mathcal{F} on X consists of the following two sets of data:

- i) for each open $U \subseteq X$, an abelian group $\mathcal{F}(U)$;
- *ii)* for each pair of nested opens $V \subseteq U$ a group homomorphism (called restriction maps)

$$\rho_{UV} \colon \mathcal{F}(U) \to \mathcal{F}(V).$$

The restriction maps must furthermore satisfy the following two conditions:

- *i)* for any open $U \subseteq X$, one has $\rho_{UU} = id_{\mathcal{F}(U)}$;
- *ii)* for any three nested open subsets $W \subseteq V \subseteq U$, one has $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

We will usually write $s|_V$ for $\rho_{UV}(s)$ when $s \in \mathcal{F}(U)$. The elements of $\mathcal{F}(U)$ are usually called 'sections' (or 'sections over U'). We will often also write $\Gamma(U, \mathcal{F})$ for the group $\mathcal{F}(U)$; here Γ is the 'global sections'-functor

DEFINITION 1.2 A presheaf \mathcal{F} is a sheaf if it satisfies the two conditions:

- i) (Locality axiom) Given an open subset $U \subseteq X$ with an open covering $U = \{U_i\}_{i\in I}$ and a section $s \in \mathcal{F}(U)$. If $s|_{U_i} = 0$ for all i, then $s = 0 \in \mathcal{F}(U)$.
- ii) (Gluing axiom) If U and U are as in (i), and if $s_i \in \mathcal{F}(U_i)$ is a collection of sections matching on the overlaps; that is, they satisfy

$$s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j} \qquad \forall i,j\in I,$$

then there exists a section $s \in \mathcal{F}(U)$ so that $s|_{U_i} = s_i$ for all i.

For each open cover $\mathcal{U} = \{U_i\}$ of an open set $U \subseteq X$ there is a sequence

For each open cover
$$\alpha = \{a_i\}$$
 or an open set $\alpha \subseteq X$ there is a sequence

 $0 \longrightarrow \mathcal{F}(U) \stackrel{\alpha}{\longrightarrow} \prod_{i} \mathcal{F}(U_i) \stackrel{\beta}{\longrightarrow} \prod_{i,j} \mathcal{F}(U_i \cap U_j)$

the maps
$$\alpha$$
, β are defined by $\alpha(s) = (s|_{U_i})_i$, and $\beta(s_i) = (s_i|_{U_i \cap U_j} - s_j|_{U_i \cap U_j})_{i,j}$. Then $\mathcal F$ is a sheaf if and only if these sequences are exact.

SE ker 2 (SIV:); =0 for alle i -> S=0 Es Lokalitet gjelder

Si € ker P => Si luinu; = Si luinuj. ber P = im & => Liming gelear

Example 1.3 (The empty set) There is a subtle point about taking U to be

 $0 \to \mathcal{F}(\emptyset) \to 0.$

the empty set in the definition of a sheaf. If \mathcal{F} is a sheaf, we are forced to define $\mathcal{F}(\emptyset) = 0$. Indeed, note that the empty set is covered by the empty

*

open covering, and the empty product is 0, so the sheaf sequence looks like

1.2 Morphisms between (pre)sheaves

A *morphism* (or simply *map*) $\phi : \mathcal{F} \to \mathcal{G}$ of (*pre*)sheaves on a space X is collection of maps (i.e., group homomorphisms) $\phi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ indexed by the open sets in X and compatible with the restriction maps:

In this way the sheaves of abelian groups on X form a category $AbSh_X$ whose objects are the sheaves and the morphisms the maps between them.

Subsheaves and saturation

If \mathcal{F} is a presheaf on X, a *subpresheaf* \mathcal{G} is a presheaf such that $\mathcal{G}(U) \subseteq \mathcal{F}(U)$ for every open U, and such that the restriction maps of \mathcal{G} are induced by those of \mathcal{F} . If \mathcal{F} and \mathcal{G} are sheaves, of course \mathcal{G} is called a *subsheaf*.

Let \mathcal{F} be a sheaf on X and $\mathcal{G} \subseteq \mathcal{F}$ a subpresheaf. We say that a section $s \in \mathcal{F}(U)$ locally lies in \mathcal{G} if for some open covering $\{U_i\}_{i\in I}$ of U one has $s|_{U_i} \in \mathcal{G}(U_i)$ for each i.

DEFINITION 1.4 We define the sheaf saturation $\overline{\mathcal{G}}$ of \mathcal{G} in \mathcal{F} by letting the sections of $\overline{\mathcal{G}}$ over \mathcal{U} be the sections of \mathcal{F} over \mathcal{U} that locally lie in \mathcal{G} .

The sheaf saturation $\overline{\mathcal{G}}$ is again a subpresheaf of \mathcal{F} (with restriction maps being the ones induced from \mathcal{F}). In fact, $\overline{\mathcal{G}}$ is, almost by definition, a sheaf.

$$\frac{1}{3}(v) = \frac{1}{3} \operatorname{SE}(v) \left\{ \begin{array}{c} 1 \operatorname{SI}(v) \\ 1 \operatorname{SI}(v) \\ 1 \operatorname{SE}(v) \end{array} \right\}$$

$$\frac{1}{3} \operatorname{SE}(v) = \frac{1}{3} \operatorname{SE}(v) \left\{ \begin{array}{c} 1 \operatorname{SE}(v) \\ 1 \operatorname{SE}(v) \\ 1 \operatorname{SE}(v) \end{array} \right\}$$

$$\frac{1}{3} \operatorname{SE}(v) = \frac{1}{3} \operatorname{SE}(v) = \frac{1}{3} \operatorname{SE}(v) = \frac{1}{3} \operatorname{SE}(v)$$

$$\frac{1}{3} \operatorname{SE}(v) = \frac{1}{3} \operatorname{SE}(v) = \frac{1}{3} \operatorname{SE}(v)$$

$$\frac{1}{3} \operatorname{S$$

* 1.5 Take $X = \mathbb{R}^n$ and let $C(X,\mathbb{R})$ be the sheaf whose sections over an open set U is the ring of continuous real valued functions on U, and the restriction maps ρ_{UV} are just the good old restriction of functions. Then $C(X,\mathbb{R})$ is a sheaf of rings (functions can be added and multiplied), and both the sheaf axioms are satisfied. Indeed, any function $f: X \to \mathbb{R}$, which restricts to zero on an open covering of X is the zero function. Also, given continuous functions $f_i: U_i \to \mathbb{R}$ agreeing on the overlaps $U_i \cap U_j$, we can form the continuous function $f: U \to \mathbb{R}$ by setting $f(x) = f_i(x)$ for any i such that $x \in U_i$.

1.6 For a second familiar example, let $X \subseteq \mathbb{C}$ be an open set. On X one has the sheaf \mathcal{O}_X of holomorphic functions. That is, for any open $U \subseteq X$ the sections $\mathcal{O}_X(U)$ is the ring of holomorphic (i.e., complex analytic) functions on U.

1.7 (A presheaf which is not a sheaf) Let us continue the set-up in Example 1.6 to make another example of a presheaf which is not a sheaf. Let $X = \mathbb{C}$, and let \mathcal{O}_X denote the sheaf of holomorphic functions. \mathcal{O}_X contains the subpresheaf given by

$$\mathcal{F}(U) = \{ f \in \mathscr{O}_X(U) \mid f = g^2 \text{ for some } g \in \mathscr{O}_X(U) \}.$$

This is not a sheaf, because the Gluing axiom fails: The function f(z) = z has a holomorphic square root near any point $x \in X$, but it is not possible to glue these together to a global square root function \sqrt{z} on all of X.

1.8 (*Constant presheaf*) For any space X and any abelian group A one has the constant presheaf whose group of sections over any nonempty open set U equals A and equals A if A if A is not a sheaf, since if A is a disjoint union, any choice of elements A, A if A will give sections over A and A if A i

1.10 (*A Riemann surface*) Let $X = \mathbb{C}$ and $Y \subset \mathbb{C} \times \mathbb{C}$ denote the locus

$$Y = \{(x, y) \mid x = y^2 \}$$

We have a map $\pi: Y \to X$ given by the first projection. Consider the presheaf on X given by

$$\mathcal{G}(U) = \{ f : U \to Y \mid f \text{ is holomorphic, and } \pi \circ f = \mathrm{id}_U \}.$$

This is naturally a subpresheaf of the sheaf C(X,Y), and in fact it is a sheaf.

1.12 Let V be an algebraic variety (e.g., an algebraic set in \mathbb{A}^n_k or \mathbb{P}^n_k) with the

Zariski topology. For each open $U \subseteq X$, define $\mathcal{O}_V(U)$ to be the ring of regular functions $U \rightarrow k$. This is certainly a presheaf, and in fact, a sheaf.

*

" stilker"

Suppose we are given a presheaf \mathcal{F} of abelian groups on X. With every point $x \in X$ there is an associated abelian group \mathcal{F}_x called the *stalk* of \mathcal{F} at x. The elements of \mathcal{F}_x are called *germs of sections* near x and are designed to capture the nature of sections near the point.

The definition of \mathcal{F}_x goes as follows: We begin with the *disjoint* union $\coprod_{x\in U} \mathcal{F}(U)$ whose elements we index as pairs (s,U) where U is any open neighbourhood of x and s is a section of \mathcal{F} over U. We want to identify sections that coincide near x; that is, we declare (s,U) and (s',U') to be equivalent, and write $(s,U) \sim (s',U')$, if there is an open $V \subseteq U \cap U'$ with $x \in V$ such that s and s' coincide on V; that is, if one has

$$s|_V = s'|_V$$
.

DEFINITION 1.13 The stalk \mathcal{F}_x at $x \in X$ is by definition the set of equivalence classes

$$\mathcal{F}_x = \coprod_{x \in U} \mathcal{F}(U) / \sim .$$

In case \mathcal{F} is a sheaf of abelian groups, the stalks \mathcal{F}_x are all abelian groups.

The germ of a section

For any neighbourhood U of $x \in X$, there is a natural map $\mathcal{F}(U) \to \mathcal{F}_x$ sending a section s to the equivalence class where the pair (s, U) belongs. This class is called the *germ* of s at x, and a common notation for it is s_x .

$$\mathcal{F}$$
 \longrightarrow \mathcal{F}_{x} abelsk gruppe
 $s \in \mathcal{F}(\mathcal{O})$ \longrightarrow $s_{x} \in \mathcal{F}_{x}$

When working with sheaves and stalks, it is important to remember the three following properties;

- □ The germ s_x of s vanishes if and only s vanishes on some neighbourhood of x, i.e., there is an open neighbourhood U of x with $s|_U = 0$.
- □ All elements of the stalk \mathcal{F}_x are germs, *i.e.*, of the shape s_x for some section s over an open neighbourhood of x.
- □ The abelian sheaf \mathcal{F} is the zero sheaf if and only if all stalks are zero, *i.e.*, $\mathcal{F}_x = 0$ for all $x \in X$.

EXAMPLE 1.14 Let $X = \mathbb{C}$, and let \mathcal{O}_X be the sheaf of holomorphic functions in X. If f and g are two sections of \mathcal{O}_X over a neigbourhood U of the point x having the same germ at x, *i.e.*, $f_x = g_x \in \mathcal{O}_{X,x}$, the fact that f and g admit Taylor series expansions around x implies that f = g in the connected component containing x of the set where they both are defined. In fact, the local ring $\mathcal{O}_{X,x}$ is naturally identified with the ring of power series converging in a neighbourhood of x

Morphisms of (pre)sheaves induce maps of stalks

A map $\phi \colon \mathcal{F} \to \mathcal{G}$ between two presheaves \mathcal{F} and \mathcal{G} induces for every point $x \in X$ a map $\phi_x \colon \mathcal{F}_x \to \mathcal{G}_x$ between the stalks. Indeed, one may send a pair (s, U) to the pair $(\phi_U(s), U)$, and since ϕ behaves well with respect to restrictions, this assignment is compatible with the equivalence relations; if (s, U) and (s', U') are

$$\phi_{II}(s)|_{V} = \phi_{V}(s|_{V}) = \phi_{V}(s'|_{V}) = \phi_{II'}(s')|_{V}.$$

equivalent and s and s' coincide on an open set $V \subseteq U \cap U'$, one has

A primer on limits

Another notation for the stalk of \mathcal{F} at x is

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U).$$

This is the *direct limit* (also called the *colimit* or the *inductive limit*) of all $\mathcal{F}(U)$ when U runs over the partially ordered set of open sets containing x.

A directed set I is a partially ordered set with the property that for each pair of elements $i, j \in I$ there is a third element k such that $i \leq k$ and $j \leq k$. If I is a directed set and C is a category, a directed system of objects in C is a collection $\{G_i\}_{i\in I}$ of objects in C, such that for all $i \leq j$ there is a morphism $f_{ij} \colon G_i \to G_j$, and these morphisms satisfy $f_{ii} = id$ and $f_{jk} \circ f_{ij} = f_{ik}$ when $i \leq j \leq k$.

$$G_i \xrightarrow{f_{ik}} G_j \xrightarrow{f_{jk}} G_k$$

Direct limits

The direct limit of $\{G_i\}$, denoted by $G = \varinjlim_{i \in I} G_i$, if it exists, is an object in C, equipped with morphisms $g_i : G_i \to G$ which satisfy the following universal property: for any object $H \in C$ and collection of maps $h_i : G_i \to H$ indexed by I such that $h_i = h_j \circ f_{ij}$ for each $i \leq j$, there is a unique map $h : G \to H$ making the following diagram commute for each i:

Heuristically, two elements in the direct limit represent the same element in the direct limit if they are 'eventually equal.'

If the G_i are sets (or groups, rings,...), an explicit construction for the direct limit is the quotient $\coprod_{i\in I} G_i/\sim$, where and $g_i\sim g_j$, with $g_i\in G_i$ and $g_j\in G_j$, means that there exists a $k\in I$ with $i\leqslant k$ and $j\leqslant k$ such that $f_{ik}(g)=f_{jk}(h)$.

EXAMPLE 1.16 Let *A* be a ring and let $S \subset A$ be a multiplicative subset. Then

$$S^{-1}A = \varinjlim_{s \in S} A_s$$

EXAMPLE 1.15 In the case I is the set of open neighbourhoods of a point x ordered by inclusion, and $G_U = \mathcal{F}(U)$, we recover the previous definition of the stalk \mathcal{F}_x .

Inverse limits

We can similarly define the *inverse limit* (also called the *projective limit* or just the *limit*) of a directed system G_i . The definition just like above, just with the arrows reversed: that is, the maps $G_i \to G_j$ are defined for $j \le i$, and the inverse limit $\varprojlim_{i \in I} G_i$ is an element of C equipped with universal maps to each of the G_i , commuting with the maps $G_i \to G_j$.

EXAMPLE 1.17 If all the G_i are subobjects of some fixed object G, and the maps $G_i \leftarrow G_j$ are inclusions $G_j \hookrightarrow G_i$, then

$$\varprojlim_{i\in I} G_i = \bigcap_{i\in I} G_i.$$

1.5 Kernels and images

Let $\phi \colon \mathcal{F} \to \mathcal{G}$ be a map between two abelian sheaves on X.

DEFINITION 1.18 The kernel Ker ϕ of ϕ is a subsheaf of \mathcal{F} whose space of sections over U is just Ker ϕ_U , or in other words, the sections in $\mathcal{F}(U)$ that map to zero under $\phi_U \colon \mathcal{F}(U) \to \mathcal{G}(U)$.

The requirement in the definition is compatible with the restriction maps, since $\phi_V(s|_V) = \phi_U(s)|_V$, for any section s over the open set U and any open $V \subseteq U$. Thus we have defined a subpresheaf of \mathcal{F} . This is indeed a subsheaf:

LEMMA 1.19 Let $\phi \colon \mathcal{F} \to \mathcal{G}$ be a map of abelian sheaves. The kernel Ker ϕ is a subsheaf of \mathcal{F} having the following two properties.

- i) Taking the kernel commutes with taking sections: $\Gamma(U, \operatorname{Ker} \phi) = \operatorname{Ker} \phi_U$;
- ii) Forming the kernel commutes with forming stalks: $(\operatorname{Ker} \phi)_x = \operatorname{Ker} \phi_x$.

One says that the map $\phi : \mathcal{F} \to \mathcal{G}$ is *injective* if Ker $\phi = 0$. This is, in light of the previous lemma, equivalent to the condition Ker $\phi_x = 0$ for all x, *i.e.*, that all ϕ_x are injective.

When it comes to images the situation is not as nice as for kernels. One defines the *image presheaf* contained in \mathcal{G} by letting the sections over U be equal to Im ϕ_U . However, this is not necessarily a sheaf.

$$(Im \phi)(U) = Im \phi_U$$

$$\phi_U : F(U) \longrightarrow G(U).$$

To remedy the situation, we simply make the following definition:

DEFINITION 1.20 For a morphism $\phi : \mathcal{F} \to \mathcal{G}$ we define the sheaf $\operatorname{Im} \phi$ to be the saturation of the image presheaf $U \mapsto \operatorname{Im} \phi_U$, i.e., the smallest subsheaf containing the images.

LEMMA 1.21 Let $\phi: \mathcal{F} \to \mathcal{G}$ be a map of abelian sheaves. The image Im ϕ is a subsheaf of \mathcal{G} .

- *i)* For all open subsets U of X one has $\operatorname{Im} \phi_U \subseteq \Gamma(U, \operatorname{Im} \phi)$.
- *ii)* For all $x \in X$ one has $(\operatorname{Im} \phi)_x = \operatorname{Im} \phi_x$.

PROOF: i) An element of $t = \phi_U(s)$ of $\operatorname{Im} \phi_X$ is an element of \mathcal{G} which clearly locally lies in $\operatorname{Im} \phi$, so $t \in \Gamma(U, \operatorname{Im} \phi)$.

For ii), let $t_x \in \text{Im } \phi_x$ and pick an $s_x \in \mathcal{F}_x$ with $\phi_x(s_x) = t_x$. We may extend these elements to sections s, t over some open neighbourhood V, so that $\phi_V(s) = t$, and t is a section of $\text{Im } \phi$ over V. This shows that $\text{Im } \phi_x \subseteq (\text{Im } \phi)_x$. Conversely, if t is a section of \mathcal{G} over an open U containing x locally lying in image presheaf, the restriction $t \subseteq V$ lies in $\text{Im } \phi_V$ for some smaller neighbourhood V of x, hence the germ t_x lies in $\text{Im } \phi_x$.

The map $\phi \colon \mathcal{F} \to \mathcal{G}$ is said to be *surjective* if the *image sheaf* Im $\phi = \mathcal{G}$. This is equivalent to all the stalk-maps ϕ_x being surjective (one says ϕ is surjective on stalks). However, it is important to note that this condition does not imply that the maps ϕ_U are surjective for all U.

Here is a counter example:

X = C - 0

Refined by

 $\begin{array}{ccc}
\mathbb{Q}_{\chi}(\upsilon) & \longrightarrow & \mathbb{Q}_{\chi}(\upsilon) \\
f & \longmapsto & f^{2}
\end{array}$

 $0 \rightarrow k \rightarrow 0 \times \rightarrow 0 \times \rightarrow 0$

N) The image presheaf $|m \phi|$ is exactly the presheaf $G(U) = \frac{2}{3} \int e^{-2} du$

which is not a sheaf.

We saw that ϕ is surjective locally [lefine $\sqrt{2}$ near z=a by a power series: $\sqrt{a+w} = \sqrt{a} \cdot \sqrt{1+\sqrt{a}}$ $= \sqrt{a} \cdot \sum_{k=0}^{\infty} {\binom{y_2}{k}} {\binom{y_2}{a}}$

but $\phi_X: \mathcal{O}(X) \longrightarrow \mathcal{O}(X)$ is not surjective.

1.6 Exact sequences of sheaves.

A *complex of sheaves* is a sequence

$$\ldots \xrightarrow{\phi_{i-2}} \mathcal{F}_{i-1} \xrightarrow{\phi_{i-1}} \mathcal{F}_{i} \xrightarrow{\phi_{i}} \mathcal{F}_{i+1} \xrightarrow{\phi_{i+1}} \ldots$$

of maps of abelian sheaves where the composition of any two consecutive maps equals zero, i.e., $\phi_{j-1} \circ \phi_j = 0$ for all j. We say that the sequence is *exact* at \mathcal{F}_i if $\operatorname{Ker} \phi_i = \operatorname{Im} \phi_{i-1}$. The *short exact sequences* are the ones one most frequently encounters. They are sequences of the form

$$0 \to \mathcal{F}' \xrightarrow{\phi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \to 0 \tag{1.2}$$

that are exact at each stage.

PROPOSITION 1.24 For a short exact sequence $0 \to \mathcal{F}' \xrightarrow{\phi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \to 0$ and an open subset U, we have the following induced exact sequence

$$0 \longrightarrow \mathcal{F}'(U) \xrightarrow{\phi_U} \mathcal{F}(U) \xrightarrow{\psi_U} \mathcal{F}''(U).$$

$$\downarrow V \text{ restre-} \text{ elegable } (1.3)$$

PROOF: The map ϕ is injective as a map of sheaves, hence injective on all open sets U, so the sequence above is exact at $\mathcal{F}'(U)$, by Lemma 1.19. To see that it is also exact in the middle, we show that $\operatorname{Ker}(\psi_U) = \operatorname{Im}(\phi_U)$.

It might be helpful to look at the following diagram, for $x \in U$:

$$egin{aligned} 0 & \longrightarrow \mathcal{F}'(U) & \stackrel{\phi_U}{\longrightarrow} \mathcal{F}(U) & \stackrel{\psi_U}{\longrightarrow} \mathcal{F}''(U) \ & & & \downarrow & & \downarrow \ 0 & \longrightarrow \mathcal{F}'_x & \stackrel{\phi_x}{\longrightarrow} \mathcal{F}_x & \stackrel{\psi_x}{\longrightarrow} \mathcal{F}''_x & \longrightarrow 0 \end{aligned}$$

Note that the bottom row is exact, since the sheaf sequence is exact.

That $\operatorname{Im}(\phi_U) \subseteq \operatorname{Ker}(\psi_U)$ is a consequence of taking sections being functorial: since $\psi \circ \phi = 0$, it follows that $\psi_U \circ \phi_U = (\psi \circ \phi)_U = 0$, so everything in $\operatorname{Im} \phi_U$ lies in the kernel of ϕ_U .

Let then see the opposite inclusion $\operatorname{Ker}(\psi_U) \subseteq \operatorname{Im}(\phi_U)$. Let $t \in \operatorname{Ker}(\psi_U)$, so that $\psi_U(t) = 0$. Then for all $x \in U$ we have that $\psi_x(t_x) = (\psi_U(t))_x = 0$, so the germ t_x is an element in $\operatorname{Ker}(\psi_x) = \operatorname{Im}(\phi_x)$ (where we use exactness at the stalks). That means that for every $x \in U$ there is an element $s_x' \in \mathscr{F}_x'$, say represented by $(s_{(x)}', V_{(x)})$ for some open neighborhood $V_{(x)} \subseteq U$ of x and $s_{(x)}' \in \mathcal{F}'(V_{(x)})$, such that $\phi_x(s_x') = t_x$. Then we have that for $x, y \in U$

$$\phi_{V_{(x)} \cap V_{(y)}}(s'_{(x)}|_{V_{(x)} \cap V_{(y)}}) = t|_{V_{(x)} \cap V_{(y)}} = \phi_{V_{(x)} \cap V_{(y)}}(s'_{(y)}|_{V_{(x)} \cap V_{(y)}}),$$

so that by the injectivity of $\phi_{V_{(x)} \cap V_{(y)}}$ (which we have already proved), we get the required condition

$$s'_{(x)}|_{V_{(x)} \cap V_{(y)}} = s'_{(y)}|_{V_{(x)} \cap V_{(y)}}$$

for the gluing of the $s'_{(x)}$ for $x \in U$. Therefore we have a section $s \in \Gamma(U, \mathscr{F})$ with the property that for all $x \in U$

$$s|_{V_{(x)}}=s'_{(x)}.$$

Now we can conclude that for every $x \in U$

$$(\phi_U(s))_x = \phi_x(s_x) = \phi_x(s_x') = t_x,$$

since $s_x = s'_x$, which gives $\phi_U(s) = t$ as desired.

Let us give a few examples where the surjectivity on the right fails:

1.25 (*Differential operators*) Let $X = \mathbb{C}$ and recall the sheaf \mathcal{O}_X of holomorphic functions and the map $D \colon \mathcal{O}_X \to \mathcal{O}_X$ sending f(z) to the derivative f'(z). There is an exact sequence

e
$$0 \longrightarrow \mathbb{C}_X \longrightarrow \mathscr{O}_X \stackrel{D}{\longrightarrow} \mathscr{O}_X \longrightarrow 0.$$

Per antiderivers

However, taking sections over open sets U we merely obtain the sequence

$$0 \longrightarrow \Gamma(U, \mathbb{C}_X) \longrightarrow \Gamma(U, \mathscr{O}_X) \stackrel{D_U}{\longrightarrow} \Gamma(U, \mathscr{O}_X).$$

If *U* is simply

connected, one deduces from Cauchy's integral theorem that every holomorphic function in U is a derivative, so in that case D_U is surjective. On the other hand, if U not simply connected, D_U is not surjective; e.g., if $U = \mathbb{C} \setminus \{0\}$, the function z^{-1} is not a derivative in U.

1.26 (*The exponential sequence*) Let $X = \mathbb{C} - \{0\}$. The non-vanishing holomorphic functions in an open set $U \subseteq X$ form a *multiplicative* group, and there is a sheaf \mathscr{O}_X^* with these groups as sections. For any f holomorphic in U the exponential $\exp f(z)$ is a section of \mathscr{O}_X^* Hence there is an exact sequence

$$0 \longrightarrow \mathbb{Z}_X \longrightarrow \mathscr{O}_X \xrightarrow{\exp} \mathscr{O}_X^* \longrightarrow 0,$$

where the first map sends 1 to $2\pi i$. The rightmost map exp is surjective as a map of sheaves, because non-vanishing functions locally have logarithms. However, over the open set U = X, the map is not surjective: the non-vanishing function f(z) = z is not the exponential of a global holomorphic function.

Mugen global log Z.

1.7 *B*-sheaves

Recall that a *basis* for a topology on X is a collection of open subsets \mathcal{B} such that any open set of X can be written as a union of elements of \mathcal{B} . In many situations it turns out to be convenient to define a sheaf by saying what it should be on a specific basis for the topology on X.

Let us first make the following definition:

DEFINITION 1.28 A \mathcal{B} -presheaf \mathcal{F} consists of the following data:

- i) For each $U \in \mathcal{B}$, an abelian group $\mathcal{F}(U)$;
- ii) For all $U \subseteq V$, with $U, V \in \mathcal{B}$, a restriction map $\rho_{UV} \colon \mathcal{F}(U) \to \mathcal{F}(V)$.

As before, these are required to satisfy the relations $\rho_{UU} = id_{\mathcal{F}(U)}$ and $\rho_{WU} = \rho_{VU} \circ \rho_{WV}$. A \mathscr{B} -sheaf is a \mathscr{B} -presheaf satisfying the Locality and Gluing axioms for open sets in \mathscr{B} .

The whole point with the notion of \mathcal{B} -sheaved is expressed in the following proposition.

Proposition 1.29 Let X be a topological space and let \mathcal{B} be a basis for the topology on X. Then

- i) Every \mathcal{B} -sheaf \mathcal{F} extends uniquely to a sheaf on X.
- ii) If $\phi: \mathcal{F} \to \mathcal{G}$ is a morphism of \mathscr{B} -sheaves, then ϕ extends uniquely to a morphism between the corresponding sheaves.
- iii) The stalk of the extended sheaf at a point x equals the stalk of \mathcal{F} at x; that is, the inductive limit $\varinjlim_{x\in U,\ U\in\mathscr{B}} \mathcal{F}(U)$.

PROOF: For any open set $U \subseteq X$, we can write U as a union of open sets $U_i \in \mathcal{B}$, and then we can define $\mathcal{F}(U)$ to be the set of elements $s_i \in \prod_i \mathcal{F}(U_i)$ such that $s_i|_{U_i \cap U_i} = s_j|_{U_i \cap U_i}$ for all i, j.

1.8 A family of examples – Godement sheaves

Let X be a topological space. Assume that we are given, for each point $x \in X$, an abelian group A_x .

The choice of these groups gives rise to a *sheaf* $\mathscr A$ on X whose sections over an open set $U\subseteq X$ are given as

$$\Gamma(U,\mathscr{A})=\prod_{x\in U}A_x,$$

and whose restriction maps are defined as the natural projections

$$\rho_{UV}\colon \prod_{x\in U}A_x\to \prod_{x\in V}A_x,$$

where $V \subseteq U$ is any pair of open subsets of X.

DEFINITION 1.31 The sheaf \mathscr{A} is called the Godement sheaf of the collection $\{A_x\}$.

Proposition 1.30 \mathcal{A} is a sheaf.

PROOF: The Locality condition holds since if the family $\{U_i\}_{i\in I}$ of open sets covers U, any point $x_0 \in U$ lies in some U_{i_0} , so if $s = (a_x)_{x \in U} \in \Gamma(U, \mathscr{A})$ is a section, the component a_{x_0} survives in the projection onto $\Gamma(U_i, \mathscr{A}) = \prod_{x \in U_i} A_x$. Hence if $s|_{U_i} = 0$ for all i, it follows that s = 0.

The Gluing condition holds: Assume we are given an open cover $\{U_i\}_{i\in I}$ of U and sections $s_i=(a_x^i)_{x\in U_i}\in \prod_{x\in U_i}A_x$ over U_i matching on the intersections $U_i\cap U_j$. The matching conditions imply that the component of s_i at a point x is the same whatever i is as long as $x\in U_i$. Hence we get a well-defined section s of $\mathscr A$ over U by using this common component as the component of s at x. It is clear that $s|_{U_i}=s_i$.

The Godement sheaf associated with a presheaf

Assume \mathcal{F} is a given abelian presheaf on X. The stalks \mathcal{F}_x of \mathcal{F} of course give a collection of abelian groups indexed by points in X, good as any other, and we may form the corresponding Godement sheaf which we denote by $\Pi(\mathcal{F})$.

$$\Pi(\mathcal{F})(U) = \prod_{x \in U} \mathcal{F}_x,\tag{1.4}$$

and the restriction maps are the projections like for any Godement sheaf.

There is an obvious and canonical map

$$\kappa_{\mathcal{F}} \colon \mathcal{F} \to \Pi(\mathcal{F})$$

$$\varsigma \in \mathcal{F}(\mathcal{O}) \longrightarrow (\varsigma_{\times})_{\times \in \mathcal{O}}$$

$$\varepsilon : \mathcal{F}_{\times}$$

$$\varepsilon : \mathcal{F}_{\times}$$

$$\kappa_{\mathcal{F}} \colon \mathcal{F} \to \Pi(\mathcal{F})$$

sending a section $s \in \mathcal{F}(U)$ to the element $(s_x)_{x \in U}$ of the product in (1.4). This map is functorial in \mathcal{F} , for if $\phi \colon \mathcal{F} \to \mathcal{G}$ is a map of sheaves, one has the stalkwise maps $\phi_x \colon \mathcal{F}_x \to \mathcal{G}_x$, and by taking appropriate products of these, we obtain a map $\Pi(\phi): \Pi(\mathcal{F}) \to \Pi(\mathcal{G})$. Over an open set U, we have

$$\Pi(\phi)\big((s_x)_{x\in\mathcal{U}}\big)=\big(\phi_x(s_x)\big)_{x\in\mathcal{U}'}$$

and there is a commutative diagram

1.9 Sheafification

Given any abelian presheaf \mathcal{F} on X, there is a canonical way of defining an abelian sheaf \mathcal{F}^+ that in some sense is the sheaf that best approximates it. main properties are summarized in the following

PROPOSITION 1.32 Given an abelian presheaf \mathcal{F} on X. Then there is a sheaf \mathcal{F}^+ and a natural map $\kappa_{\mathcal{F}}: \mathcal{F} \to \mathcal{F}^+$ such that:

- Ф: F→9 ~ +: F+ → g+ i) $\kappa_{\mathcal{F}}$ is functorial in \mathcal{F} .
- ii) $\kappa_{\mathcal{F}}$ enjoys the universal property that any map of abelian presheaves $\mathcal{F} \rightarrow$ \mathcal{G} where \mathcal{G} is sheaf, factors through \mathcal{F}^+ in a unique way. This property characterises \mathcal{F}^+ up to unique isomorphism. $F \rightarrow G$
- iii) If G is a sheaf, there is a natural bijection

$$\operatorname{Hom}_{\mathsf{AbPrSh}_{\mathsf{X}}}(\mathcal{F}, i(\mathcal{G})) = \operatorname{Hom}_{\mathsf{AbSh}_{\mathsf{X}}}(\mathcal{F}^{+}, \mathcal{G})$$
 (1.6)

where on the right hand side, i(G) denotes G but considered as a presheaf. iv) κ induces an isomorphism on stalks: $\mathcal{F}_x \simeq \mathcal{F}_x^+$ for every $x \in X$.

Now to the construction:

Recall the canonical map $\kappa \colon \mathcal{F} \to \Pi(\mathcal{F})$ that sends a section s of \mathcal{F} over an open U to the sequence of germs $(s_x)_{x \in U} \in \prod_{x \in U} \mathcal{F}_x = \Gamma(U, \Pi(\mathcal{F}))$. This map certainly kills the 'doomed' sections, *i.e.*, those whose germs all vanish. Now we can get an actual sheaf by taking the image of κ in $\Pi(\mathcal{F})$:

DEFINITION 1.33 For an abelian presheaf \mathcal{F} on X, we define its sheafification \mathcal{F}^+ as the image sheaf $\operatorname{Im} \kappa$ in $\Pi(\mathcal{F})$. In other words, \mathcal{F}^+ is the saturation of the subpresheaf $U \mapsto \operatorname{Im} \kappa_U$ in $\Pi(\mathcal{F})$.

It might help to unravel this definition slightly. Over an open set $U \subseteq X$ the sections of \mathcal{F}^+ are given by

$$\mathcal{F}^+(U) = \{(s_x) \in \prod_{x \in U} \mathcal{F}_x | (s_x) \text{ locally lies in } \mathcal{F}\},$$

where, as before, the sentence in the bracket means the following: For each $x \in U$ there exists an open neighbourhood $V \subseteq U$ containing x and a section $t \in \mathcal{F}(V)$ such that for all $y \in V$ we have $s_y = t_y$ in \mathcal{F}_y .

LEMMA 1.34 The sheafification \mathcal{F}^+ depends functorially on \mathcal{F} . Moreover, if \mathcal{F} is a sheaf, $\kappa : \mathcal{F} \to \mathcal{F}^+$ is an isomorphism, so that \mathcal{F} and \mathcal{F}^+ are canonically isomorphic.

PROOF: Assume that $\phi \colon \mathcal{F} \to \mathcal{G}$ is a map between two presheaves. Let s be section of $\Pi(\mathcal{F})$ over some open set U, so that s locally lies in \mathcal{F} . In other words

there is a covering $\{U_i\}$ of U and sections s_i of \mathcal{F} over U_i with $s|_{U_i} = \kappa_{\mathcal{F}}(s_i)$. Hence by (1.5) one has

$$\Pi(\phi)(s|_{U_i}) = \Pi(\phi)(\kappa_{\mathcal{F}}(s_i)) = \kappa_{\mathcal{G}}(\phi(s_i)).$$

This means that $\Pi(\phi)(s)$ lies locally in \mathcal{G} , and $\Pi(\phi)$ takes \mathcal{F}^+ into \mathcal{G}^+ . Moreover, there is a commutative diagram

$$egin{aligned} \mathcal{F} & \stackrel{\kappa_{\mathcal{F}}}{\longrightarrow} \mathcal{F}^{+} & \longrightarrow \Pi(\mathcal{F}) \ \phi & & & \downarrow^{\Pi(\phi)} \ \mathcal{G} & \stackrel{\kappa_{\mathcal{G}}}{\longrightarrow} \mathcal{G}^{+} & \longrightarrow \Pi(\mathcal{G}) \end{aligned}$$

In case \mathcal{F} is a sheaf, the map $\kappa_{\mathcal{F}}$ maps \mathcal{F} injectively into $\Pi(\mathcal{F})$ and $\mathcal{F} = \operatorname{Im} \kappa_{\mathcal{F}}$ is its own saturation, hence $\kappa_{\mathcal{F}}$ is an isomorphism.

LEMMA 1.35 Given an abelian presheaf \mathcal{F} on X. Then the sheaf \mathcal{F}^+ and the natural map $\kappa : \mathcal{F} \to \mathcal{F}^+$ enjoys the universal property that any map of abelian presheaves $\mathcal{F} \to \mathcal{G}$ where \mathcal{G} is sheaf, factors through \mathcal{F}^+ in a unique way. This property characterises \mathcal{F}^+ up to unique isomorphism.

PROOF: If \mathcal{G} in the diagram above is a sheaf, the map $\kappa_{\mathcal{G}}: \mathcal{G} \to \mathcal{G}^+$ is an isomorphism and $\phi^+ \circ \kappa_G^{-1}$ provides the wanted factorization. The uniqueness statement follows formally: Given two abelian sheaves \mathcal{F}^+ and \mathcal{F}' satisfying the above, we get by the universal properties two maps $\mathcal{F}^+ \to \mathcal{F}'$ and $\mathcal{F}' \to \mathcal{F}^+$, whose compositions are the identity by uniqueness.

Lemma 1.36 Sheafification preserves stalks: $\mathcal{F}_x = (\mathcal{F}^+)_x$ via κ_x .

PROOF: The map $\kappa_x: \mathcal{F}_x \to (\mathcal{F}^+)_x$ is injective, because $\mathcal{F}_x \to (\Pi(\mathcal{F}))_x$ is injective. To show that it is surjective, suppose that $\bar{s} \in (\mathcal{F}^+)_x$. We can find an open neighbourhood U of x such that \bar{s} is the equivalence class of (s, U) with $s \in \mathcal{F}^+(U)$. By definition, this means there exists an open neighbourhood $V \subseteq U$ of x and a section $t \in \mathcal{F}(V)$ such that $s|_V$ is the image of t in $\Pi(\mathcal{F})(V)$. Clearly the class of (t, V) defines an element of \mathcal{F}_x mapping to \bar{s} .

A group
$$\sim$$
 $A'(U) = A \quad \forall U \subseteq X$

Examples

1.37 (*Constant sheaves*) Recall Example 1.8 in which we showed that the constant presheaf given by $A_X'(U) = A$ is usually not a sheaf (where A is an abelian group). In this case, the sheafification is exactly the sheaf A_X defined by

$$\Gamma(U,A_X) = \prod_{\pi_0(U)} A, = \left\{ P: \cup \longrightarrow A \text{ Continuous} \right\}$$

where $\pi_0(U)$ denotes the set of connected components of the open set U.

Define
$$\varphi: A_{\times} \to (A'_{\times})^{+}$$
 by $\varphi_{U}: A_{\times}(U) \longrightarrow TT A$
 $(f: U \to A) \mapsto (f(x))_{x \in U}$
 f locally constant $\Rightarrow \varphi_{U}(f)$ locally lies in A'_{\times}
 $\Rightarrow \varphi$ takes values in $(A'_{\times})^{+}$

On stalles: $(A_X)_x = A$, $(A_X)_x^{\dagger} = A$ and $(P_X: A \longrightarrow A)_x$ is the identity = 2 of isomorphism.

Why we need to sher fify things

Let X be an affine varretry

A(X) = coordinate ning of X

k(X) = field of rational functions

Consider the "vaive sheaf of regular functions"

 $O_{X}(U) = \left\{ f: U \rightarrow k \mid f = \frac{3}{h} \text{ when } g_{i}h \in A(x) \right\}$

This is not a sheaf:

X = Z(xy-zw) C A14

xy-zw=0 $\Rightarrow \frac{z}{x}=\frac{y}{w}$

U = D(x) $\sim \frac{2}{x}$ gives an element of O(U)

V = D(w) \longrightarrow \forall gives an element of O(V)

snice xy-zw=0, there agree on the overlap.

However, there is no $\frac{2}{h} \in \mathcal{O}_{\mathsf{X}}'(\mathsf{U} \mathsf{U} \mathsf{V})$ s, t

 $\frac{g}{h}\Big|_{1} = \frac{z}{x}$ and $\frac{g}{h}\Big|_{v} = \frac{y}{w}$

 $\frac{\mathbb{E}(x,y,z,w)}{(xy-zw)}$ is This is related to the fact that not a UFD.

However, the two sections do glue to a togular function $f: U \circ V \to k$, that is, a section of $O_X(w) = \begin{cases} f: W \to k \end{cases}$ for every $p \in W \ni g, h \in A(X) \end{cases}$ S.t. f = g/h in a nbh of p

=) the structure sheaf = sheafification of the presheaf O_X .

Quotient Sheaves

Sheafification => com create quotient showes.

$$g \subseteq F$$
 subsheaf m presheaf $Q(u) = F(u)/g(u)$

$$F/g := Sheafification of Q$$

Cobernel

If $\phi: F \to S$ is a morphism of sheaves, we define color $\phi:=$ sheafification of the presheaf

 $U \mapsto \operatorname{coker} (\phi_U : \mathcal{F}(U) \to \mathcal{G}(U))$

~ exact seguence

0 -> her \$ -> J -> G -> coher \$ -> 0

(exact because exact at Stalks)

EXAMPLE 1.39 To see why we have to sheafify in these constructions, consider again the exponential map from Example 1.26. The naive presheaf $U \mapsto \operatorname{Coker} \exp(U)$ is not a sheaf: The class of the function f(z) = z restricts to 0 in Coker exp on sufficiently small open sets, but it is itself not zero (since otherwise we would be able to define a global logarithm on $\mathbb{C} - 0$).

 $\begin{array}{ccc} \cdot & \left(& \text{Coher exp} & \right)^{+} & = & 0 \end{array}$

1.11 The pushforward of a sheaf

Let X and Y be two topological spaces with a continuous map $f: X \to Y$ between them. Assume that \mathcal{F} is an abelian sheaf on X. This allows us to define an abelian sheaf $f_*\mathcal{F}$ on Y by specifying the sections of $f_*\mathcal{F}$ over the open set $U \subseteq Y$ to be

$$(f_*\mathcal{F})(U) = \mathcal{F}(f^{-1}U),$$

and letting the restriction maps $\mathcal{F}(f^{-1}U) \to \mathcal{F}(f^{-1}V)$ be the ones from \mathcal{F} .

DEFINITION 1.40 The sheaf $f_*\mathcal{F}$ is called the pushforward sheaf or the direct image of \mathcal{F} .

Lobalitet: SE
$$f_*F(v)$$
 S $|v_i| = 0$
 $F(f^-|v)$ S $|v_i| \in F(f^-|v_i|)$

$$= S = 0 \quad \text{for lin} \quad f^{-1}U_i \quad \text{ovedeling an } f^{-1}U.$$

$$\text{Liming:} \quad S_i \in f_* f(U_i) \quad S_i = S_i \quad \text{pai} \quad U_i \cap U_i$$

$$f(f^{-1}U_i) \quad S_i' = S_i \quad \text{if } f(f^{-1}U_i) \cap f^{-1}U_i$$

$$F(f''\cup i)$$
 $S_i = S_j'$: $F(f'\cup i \cap f''\cup j)$
 \Rightarrow S_i luir til et element i $F(f'\cup i) = f_*F(\cup)$. \Box

EXAMPLE 1.42 Consider an affine variety $X \subseteq \mathbb{A}^n$ and let $i: X \to \mathbb{A}^n$ be the inclusion. For each open $U \subseteq \mathbb{A}^n$ define

$$\mathcal{I}_X(U) = \{ f \in \mathcal{O}_{\mathbb{A}^N}(U) | f(x) = 0 \, \forall \, x \in X \} \cap \mathcal{O}$$

Then \mathcal{I}_X is a sheaf (of ideals) and we have an exact sequence

$$0 \to \mathcal{I}_X \to \mathcal{O}_{\mathbb{A}^n} \to i_* \mathcal{O}_X \to 0$$

Menk:
$$f:X \to * \Rightarrow f_*F = \Gamma(X, F)$$

Lemma 1.43 The functor f_* is left exact. That is, given an exact sequence of sheaves on X

$$0 {\:\longrightarrow\:} {\mathcal F}' {\:\longrightarrow\:} {\mathcal F} {\:\longrightarrow\:} {\mathcal F}'' {\:\longrightarrow\:} 0$$

then the following sequence is exact

$$0 \longrightarrow f_* \mathcal{F}' \longrightarrow f_* \mathcal{F} \longrightarrow f_* \mathcal{F}''.$$

Inverse image sheaf

Given a continuous map $f: X \to Y$ G sheaf on YConstruction:

For $V \subseteq X$ open, let $f^{-1}g(V) = \lim_{V \supseteq f(U)} g(V)$ We up open sets contains it

~, fpg is a presheaf on X.

Defor We define the universe image sheaf f''g as the sheafification of $f_p^{-1}G$.

Note in particular that the stalk of $f^{-1}\mathcal{G}$ at a point $x \in X$ is isomorphic to $\mathcal{G}_{f(x)}$. Indeed, it suffices to verify this on the level of presheaves:

$$(f_p^{-1}\mathcal{G})_x = \varinjlim_{U \ni x} f_p^{-1}\mathcal{G}(U) = \varinjlim_{U \ni x} \varinjlim_{V \supseteq f(U)} \mathcal{G}(V)$$
$$= \varinjlim_{U \ni x} \mathcal{G}(V) = \mathcal{G}_{f(x)}$$

The adjoint property of for and fx

THEOREM 1.48 Let $f: X \to Y$ be a morphism, let \mathcal{F} be an abelian sheaf on X and let \mathcal{G} be an abelian presheaf on Y. Then we have a natural bijection

$$\operatorname{Hom}_{\mathsf{AbPrSh}_{Y}}(\mathcal{G}, f_{*}\mathcal{F}) \simeq \operatorname{Hom}_{\mathsf{AbSh}_{X}}(f^{-1}\mathcal{G}, \mathcal{F})$$

which is functorial in \mathcal{F} and \mathcal{G} .

proof: See the notes!