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an Ox-module structure on an abelian sheaf F is defined as
a family of multiplication maps F(U) x Ox(U) — F(U)—one for each open
subset U of X—making the space of sections F(U) into a Ox(U)-module in a
way compatible with all restrictions. That is, for every pair of open subsets V c U,

F(U) x Ox(U) — F(U)

l l

F(V) x Ox(V) —— F(V).



Maps, or homomorphisms, of Ox-modules are simply maps a: F — G be-
tween Ox-modules considered as abelian sheaves, respecting the multiplication
by sections of Ox. That is, for any open U the map ay: F(U) — G(U) is a
Ox(U)-module homomorphism.
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For two Ox-modules F and G we also define the tensor product, denoted by
F®o0,G. As in many other cases, the tensor product 7 ®p, G is defined by
first describing a presheaf that subsequently is sheafified. The sections of the

presheaf, temporarily denoted by 7 ®, ¥, are defined in the natural way by
(F®p, 9)(U) = F(U) Qo) G(U). (10.1)
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There is also a sheaf of Ox-homomorphisms between F and G. Recall the sheaf
Htom(F,G) of homomorphisms between the abelian sheaves F and G whose
sections over an open set U is the group Hom (F|y, G|u) of homomorphisms
between the restrictions F|;; and G|;. Inside this group one has the subgroup of
the maps being Ox-homomorphisms, and these subgroups, for different open
sets U, are respected by the restriction map. So they form the sections of a
presheaf, that turns out to be a sheaf, and that is the sheaf #omp, (F,G) of
Ox-homomorphisms from F to G.
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EXAMPLE 10.1 (Modules on spectra of bvR’s) Modules on the prime spectrum of a
discrete valuation ring R are particularly easy to describe.

Recall that the scheme X = SpecR has only two non-empty open sets, the
whole space X itself and the singleton {#} where 7 denotes the generic point.
The singleton {7} is the underlying set of the open subscheme Spec K, where K
denotes the fraction field of R.

/
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We claim that to give an Ox-module is equivalent to giving an R-module M,

a K-vector space N and a R-module homomorphism p : M — N.
e

Indeed, given an Ox-module F, we get an R-module M = F(X), and a vector
space N = F({n}) over K. The homomorphism p is just the restriction map
F(X) — F({n}). Conversely, given the data M, N, p, we can define F(X) = M
and F({#}) = N. The map p : F(X) — F({n}) makes F into an Ox-module.



Note that the restriction map can be just any R-module homomorphism
M — N. In particular, it can be the zero homomorphism, and in that case M

and N can be completely arbitrary modules. Again, this illustrates the versatility
of general Ox-modules. *



Recall the Godement construction from Chapter 1. Given any collection of
abelian groups {A,}rex indexed by the points x of X. We defined a sheaf A
whose sections over an open subset U was [ [,.;; Ax, and whose restriction maps
to smaller open subsets were just the projections onto the corresponding smaller
products. Requiring that each Ay be a module over the stalk Ox , makes A into
an Ox-module; indeed, the space of sections I'(U, A) = [ [,y Ax is automati-
cally an Ox(U)-module, the multiplication being defined componentwise with
the help of the stalk maps Ox(U) — Oy ,. Clearly this module structures is
compatible with the projections, and thus makes A into an Ox-module. *
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DEFINITION 10.3 Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules. The

support of F, Supp(F), is the set of points x € X such that F, F 0. For s € F(X)
we define the support of s as the set of points x € X such that the image sy € Fx of s is

not zero. We denote this by Supp(s).
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Note that if s € F(X) is a section, and x is a point such that s, = 0 in F, then
there is an open neighbourhood V < X containing x such that s, = 0 for all
y € V. It follows that the support of s is a closed subset of X.



In contrast, the support of a sheaf of modules is in general not closed. Indeed,
as before, we can get strange sheaves by taking any non-closed subset Z of your
favourite ringed space, and define a Godement sheaf ./ with the property that
2 # 0if and only if x € Z.



10.2  Pushforward and Pullback of Ox-modules

In Chapter ?? we introduced two functors between the categories AbShx and
AbShy associated with a continuous map f: X — Y between topological spaces;
the pushforward functor f, and the inverse image functor f~1. In this section we
parallel these two constructions when f is a morphism of schemes to obtain
functors f, and f* between Modx and Mody. They form an adjoint pair of
functors.
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Pushforward

Let f : (X,Ox) — (Y, Oy) be a morphism of schemes. If F is an abelian sheaf
on X recall that the pushforward f.F may be considered the restriction of F to
the subcategory of openy consisting of inverse images of opens in Y. When F is
an Ox-module, it is then clear that f,F is an f.Ox-modules in a natural way,
and hence, via the map f# : Oy — f+Oy, it has a natural Oy-module structure.

DEFINITION 10.4 The above Oy-module f.F is called the direct image of F under f.



This construction is clearly functorial in F, and so we obtain a functor f :
Modx — Mody. The pushforward f, is a left exact functor, which follows
easily from Lemma ?? in Chapter ??. It is also functorial in f in the sense that
(fog)x = fx 04« when f and g are composable morphism of schemes; indeed,
this follows easily from (fog) ! = ¢ lofland (fog)* = g" o f.
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The pullback of a sheaf of Oy-modules is a little bit more difficult to define.
Recall that we in Chapter ?? defined (Definition ??) the inverse image f~'G of a
sheaf G by sheafifying the presheaf given by assigning to an open subset U < X
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the direct limit of all G(V) where V contains f(U). When G is a Oy-module,
this sheaf is naturally a f~!Oy-module. We can make it into an Ox-module
using the map f~10y — Ox (which makes Ox an f~1Oy-algebra), and taking

the tensor product:

f*G = Ox ®f-10, f_lg
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_ O, © ©
Gz O\{ < . £ v

]



The association G — f*@ is functorial, so we get a functor f* : Modp, — Modp,.
The above Ox-module is called the pullback of G under f. Note in particular that
f*OY = Oy, as f_loy = Ox.



PROPOSITION 10.5 For a point x € X we have the following expression for the stalk

(f*G)x = Gr(x) @0y 4y Oxx-

Proor: This follows from the facts that taking stalks commutes with sheafifica-
tion and tensor products, and (f~1G), =G F(x)- Qa



Adjoint properties of f., f*

At first sight, the definition of the pullback might seem a bit out of the blue.
It is defined from f~!G, tensoring with Ox over f~1Oy to rig it into being a
Ox-module. However, as like in the case of the inverse image functor f ~1 the
important point is what the sheaf does, rather than how it is explicitly defined.

In the present case, the pullback is the adjoint of a functor which is easy to
understand, namely f,:



PrOPOSITION 10.6 The functors f., f* between Modp,, Modp, are adjoint. In other
words, if F € Modp,, G € Modp,, thére is a functorial isomorphism

Homy, (f*G, F) ~ Homp, (G, f+F).

—_—
ProOF: See Exercise ??. H



In particular, we the maps ids+g and idy, r provide us with the canonical
maps

n:G - fuf'G,  v:ifHRF-F

We already saw previously that f, is a left-exact functor. This implies that f*
is right-exact, by general properties of adjoint functors.
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We can also pull back sections of G. If G is an Oy-module, and s € G(V), then
we get a section f*(s) = 5(s) e T(f1(V), f*G) by themap 7 : G — f.f*G.
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10.3 Quasi-coherent sheaves
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Quasi-coherent sheaves on affine schemes

In this section we work over an affine scheme X = Spec A. For each A-module
M we shall define an Ox-module M, the construction of which completely
parallels what we did when constructing the structure sheaf Ox on X = Spec A.
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Letting % again be the base of the topology consisting of distinguished open
subsets on X, we define a #-presheaf M by letting sections be given by

(M)(D(f)) = M.

and the restriction maps are the canonical localization maps: when D(g) < D(f),
there is a canonical localization map My — Mg; it sends mf " to a"mg™"" where
g" = af. The same proof as for Ox (Proposition ??) shows that this is actually a
J#B-sheaf, and hence gives rise to a unique sheaf M on X.



We will say that a sheaf 7 on X = Spec A is quasi-coherent if is isomorphic to
a sheaf of the form M for some A-module M
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The tilde-construction is functorial in M. For any A-module homomorphism
«: M — N there is an obvious way of obtaining an Ox-module homomorphism

&: M — N; indeed, the maps ay : My — N¢ are Ox(D(f))-linear homomor-
phisms compatible with localization maps, and thus induce a map between M

and N. Clearly one has m = ¢ o1, and the “tilde-operation” is therefore a
functor Mod4 — Modp, .



PROPOSITION 10.8 Let A be a ring and M and A-module. The sheaf M on Spec A has
the following three properties.

i) Stalks: let x € Spec A be a point whose corresponding prime ideal is p, the
stalk Mx of Matxe X is Mx =M, = M®a Ay,
ii) Sections over distinguished open sets: if f € A, one has T'(D(f ),M) =
My = M®a Ay; in particular it holds true that T'(X, ]Vf) = M; ’é =)
iii) Sections over arbitrary open sets: for any open subset U of Spec A covered
by the distinguished sets {D(f;) }ic1, there is an exact sequence



The tildes enjoy a certain universal property among the Ox-modules on
X = Spec A. Assume that an Ox-module F is given on X, and let M = F(X)
denote the global sections of F. There is a natural map B : M — F of Ox-
modules.
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As usual, it suffices to tell what the map does to sections over the

distinguished opens. The sheaf F being an Ox-module, multiplication by
f~! in the space of sections I'(D(f), F) makes sense since I'(D(f), Ox) = Ay.
Hence we may send the section mf~" € My of M to the section of F over D(f)
obtained by multiplying the restriction of m to D(f) by f~"; i.e. we send mf~"
to f~" - m|p(y). For later reference we state this observation as a lemma:



LEmMMA 10.9 Given an Ox-module F on the affine scheme X = Spec A. Then there is
a unique Ox-module homomorphism

—_———~——

B: F(X) > F

inducing the identity on the spaces of global sections. Moreover, it is natural in the
sense that if x: F — G is a map of Ox-module inducing the map a: F(X) — G(X)
on global sections, one has Bgod = wo B r.



LEMMA 10.10 In the canonical zdentzﬁcatzon of the distinguished open subset D(f)
with Spec Ay, the Ox-module M restricts to M; £

Proor: As I'(D(f),M) = My, there is a map By : Mf — M|D(f) that on
distinguished open subsets D(g) = D(f) induces an isomorphism between the
two spaces of sections, both being equal to the localization M. a
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PROPOSITION 10.12 Assume that A is a ring and let X = Spec A. The functor from
the category Mod 4 of A-modules to the category Modp, of Ox-modules given by
M- M enjoys the following three properties

i) It is a fully faithful additive and exact functor.

ii) There is a canonical isomorphism M/®\A/N ~ M R0y N.

iii) If M is of finite presentation, then there is a canonical isomorphism of sheaves
Homy (M, N)™~~ s#omp, (M, N).

“ou U
[T m n
" N AN—N — M—0
N BNMCUS ?ﬂzsm\ae]m\a
[‘\D"V\ QM ’\) ] N ’\)5 " \Q"M()/@WM’? ot
9
v \a[*[‘@% - b&\:“ﬁ — M —o
g — Xt
2 — Xy



LEMMA 10.11 For any two A-modules M and N, the association ¢ — ¢ gives a
bijection Hom 4 (M, N) ~ Homo, (M, N) whose inverse is & — a(X),

Proor: That ¢ = & when ¢ = a(X) may be checked on distinguished open sets
where it boils down to the definition of ¢ and the fact that # commutes with the
localisation maps. That I'(X,$) = ¢ follows directly from the definition of ¢. 0
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§ iven an exact sequence of A-
modules:
0 y M’ y M y M" s 0.

That the induced sequence of Ox-modules

0 >A7f’ >M >W >0

is exact is a direct consequence of the three following facts. The stalk of a tilde-
module M at the point x with corresponding prime ideal p is My, localization is
an exact functor, and finally, a sequence of abelian sheaves is exact if and only if
the sequence of stalks at every point is exact.
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For the tensor product, let T denote the presheaf U — M(U) R0y (U) N(U).

We have the map of presheaves T — M®, N (on U = D(f) it is the isomor-
phism Mf®a, Ny ~ (M ®a N)y; it sends m/ f* n/f’ to (m@n)/f+t). After

sheafifying, we get a the desired map of sheaves
M R0y ﬁ _f—» Mf@TA;lN .
This is an isomorphism, since it is an isomorphism over every distinguished

open set.
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Suppose we are given a morphism f: X — Y between the two affine schemes

X = SpecB and Y = Spec A. We let ¢ = f*(X): A — B be the ring map
corresponding to f. If M is an B-module, can one describe the sheaf f,M on Y?

M
A

Pushforward
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PROPOSITION 10.14 f«M = Mjy.

Proor: Let a € A. The crucial observation is that f~1(D(a)) = D(¢(a)).
(Indeed, a prime ideal p — A satisfies a € ¢~1(p) if and only if ¢(a) € p.) Then
note that N N

[(D(a), f«(M)) = T(D(¢(a)), M) = My(a)
Note that a acts on M 4 as multiplication by ¢(a): This means that the module on

the right is isomorphic to (M), =T(D(a), My). Thus there is an isomorphism
of #-sheaves f*M ~ M A, and we are done. |



Pullback

Recall the notion of pullback of a sheaf via a morphism f : X — Y. This is a
relatively complicated operation, since it involves taking a direct limit, a tensor
product, and finally a sheafification. The next result tells us that for G a sheaf
of the form M on Y, we have a much simpler description of the pullback f*G,
which will allow us to do local computations more easily.



THEOREM 10.15 Let f : Spec B — Spec A be a morphism induced by a ring map
¢ : A — B, and let M be an A-module. Then

f*(M) = M®4 B (10.4)



g 5.
M= A =Gy
o

Proor: First, note that the theorem holds in the special case when M = Al
is a free module (here the index set I is allowed to be infinite) — this is simply
because f*Oy = Ox and f* commutes with taking direct sums. To prove it in
general, we pick a presentation of M of the form
AL AT > M0 Ad /ZX Ly
— — — — N —)D
Applying ~ and then f* (which is right-exact) we get a sequence

FRAT Y AL o F*M -0



which is exact on the right, since f* is right-exact. From this we get that

f*M = Cokerv = Coker (Y ®4 B)
= ((Cokery)®4B))” = (M®xB)"~.



Adjoint property for quasi-coherent sheaves

Recall that we defined, for a morphism f : X — Y, natural maps
v:f*fuF > Fandn:G — fof*G

where F € Modx and G € Mody.



In the case of affine schemes, we can understand these maps as follows. Let
X =SpecB,Y =SpecA, F =M, G = N. We have f,M = M, and so

F*f«M = M, ®, B.
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The point is that since the tensor product is over the ring A, we cannot move
B over to the left hand side, but we do have a natural map of B-modules

M4 ®4 B — M given by m ® b — bm. Doing the same over each D(f) we get
the maps that induce v.
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Also, we have f*N = N®, B, and so

fsf*N = (N®4 B) 4.
Then 7 is induced by the map
N — (N XA B)A

given by n — n@®a 1.



Quasi-coherent sheaves on general schemes

Having established the sheaves that serve as local models for the quasi-coherent
sheaves on affine schemes, we are now ready for the general definition.



DEFINITION 10.16 If X is a scheme and F an Ox-module, one says that F is a quasi-
coherent (kvasikoherent) Ox-module, or quasi-coherent sheaf for short, if there is
an open affine covering {U;}icr of X, say U; = Spec A;, and modules M; over A; such
that Fu, ~ M;.



Phrased in slightly different manner, Ox-module F is quasi-coherent if the
restriction J|y;, of F to each U is of type tilde of an A;-module. In particular,
the modules M on affine schemes Spec A are all quasi-coherent.



The restriction of a quasi-coherent sheaf F to any open set U c X is quasi-
coherent. Indeed, it will suffice to verify this for X an affine scheme, and by
Lemma ?? the restriction of a sheaf of tilde-type to a distinguished open set is
of tilde-type. As any open U in an affine scheme is the union of distinguished
open subsets, it follows that F|i; is quasi-coherent.



For F to be quasi-coherent, we require that F be locally of tilde-type for just
one open affine cover. However, it turns out that this will hold for any open
affine cover, or equivalently, that F|; is of tilde-type for any open affine subset
U c X. This is a much stronger than the requirement in the definition, and it
is somewhat difficult to prove. As a first corollary we arrive at the a priori not
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obvious conclusion that the modules of the form M are the only quasi-coherent
Ox-modules on an affine scheme. We shall also see that quasi-coherent modules
enjoy the coherence property (??) on page ?? that was the point of departure for
our discussion.



The story begins with a lemma that establishes the coherence property (??)
in a very particular case; i.e. for sections over distinguished open sets of a quasi-
coherent Ox-module on an affine scheme X = Spec A. For any distinguished
open set D(f) < X it holds that I'(D(f), Ox) = Ay, and consequently there
is for any Ox-module a canonical map I'(X, F)®4 Af — I'(D(f), F) sending
s@af~" to af ™" -s|p(s). It turns out to be an isomorphism whenever F is
quasi-coherent:
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LEMMA 10.17 Suppose that X = Spec A is an affine scheme and that F is a quasi-
coherent Ox-module. Let D(f) < X be a distinguished open set. Then the following
hold:

a0 I(D(f), F) ~T(X, F)y.

O Let s € F(X) be a global section of F and assume that s|p sy = 0, then sufficiently
large powers of f kill s, that is, for sufficiently large integers n one has f"s = 0.

Q Let s e I'(D(f),F) be a section. Then for a sufficiently large n, the section f"s
extends to a global section of F. That is, there exists an n and a global section
t e T(X, F) such that t|ps) = f"s



Proor: The first statement is by the definition of localization equivalent to the
two others.



The sheaf F is quasi-coherent by hypothesis, and the affine scheme X =
Spec A is quasi-compact, so there is a finite open affine covering of X by dis-
tinguished sets D(g;) such that F[p,, =~ M; for some Ag-modules M;. The
section s of F restricts to sections s; of F|p,,) over D(g;), that is, to elements s;
of M;.



Further restricting F to the intersections D(f) n D(g;) = D(fg;) yields the
equality Fp(fe,) = (M) 7, and by hypothesis, the section s restricts to zero in
I'(D(fgi), F) = (M;). This means that the localization map sends s; to zero in
(M;)s. Hence s; is killed by some power of f, and since there is only finitely
many g;’s, there is an n with f"s; = 0 for all ; that is, (f"s)|p(,,) = 0 for all i. By
the locality axiom for sheaves, it follows that f"s = 0.



Assume now a section s € I'(D(f), F) is given. We must show that that
f"s extends to a global section of F for some n. Each restriction s|ps,,) €
I'(D(fgi), F) = (M;)y is of the form f~"s; with s; € M; = T'(D(g;), F), and by
the usual finiteness argument, n can be chosen uniformly for all i. This means
thats; = f"s and s; = f"s mach on the intersection D(f) n D(g;) n D(g;), and
by the first part of the lemma applied to Spec Ag;, one has fN(s; —s;) = 0
on D(g;) n D(g;) for a sufficiently large integers N. Hence the different fNs;’s
patch together to give the desired global section t of F. -



THEOREM 10.18 Let X be a scheme and F an Ox-module. Then F is quasi-coherent if
and only if for all open affine subsets U — X = Spec A, the restriction F |y is isomorphic
to an Olg-module of the form M for an A-module M.

U:%]’PC A
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PrROOF: As quasi-coherence is conserved when restricting Ox-modules to
open sets, we may surely assume that X itself is affine; say X = Spec A. Let
M = F(X). We saw in Lemma ?? on page ?? that there is a natural map
B: M — F that on distinguished open sets sends mf " to f~"m|p(s). But by
Q the fundamental lemma ?? above, this is an map is both injective and surjective
over the distinguished open sets. Hence the two sheaves are isomorphic. =~



Applying this to an affine scheme, yields the important fact that any quasi-
coherent sheaf (in the sense of Definition ??) F on an affine scheme X = Spec A
is of the form M for an A-module M.
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PROPOSITION 10.19 Assume that X = Spec A. The tilde-functor M — M is an
equivalence of categories Mod 4 and QCohx with the global section functor as an
inverse.




THEOREM 10.20 Let X be a scheme and let F be an Ox-module on X. Then F is
quasi-coherent if and only if for any pair V. U open affine subsets, the natural map

F(U) ®oxu) Ox(V) = F(V) (10.5)

is an isomorphism.
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ProOF: We may clearly assume that X is affine, say X = Spec A.

Assume first that the maps (??) are isomorphisms. We may take V = D(f)
and U = X and M = F(X). Then from (??) it follows that I'(D(f), ) = My
which shows that the canonical map B : M — Fis an isomorphism over
all distinguished open subsets, and therefore an isomorphism. Hence F is
quasi-coherent.



To argue for the reverse implication, we may again assume X = Spec A,
U = X and V = Spec B. So suppose that F is quasi-coherent; that is, 7 = M for
some A-module M after theorem ??. Leti : V — X denote the inclusion map.
We have i*M = M|y ~ M ®y B. Taking global sections, we get exactly the map
in ??) which is then an isomorphism. .
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ExaMrLE 10.21 The example of an discrete valuation ring is always useful to
consider, and we continue exploring Example ?? above. Consider the Ox-
module F given by the data M, N, p. We claim that F is quasi-coherent if and
only if p is an isomorphism.

E: N\@p‘K — N
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If F is quasi-coherent, then every point has a neighbourhood on which F
is the™ of some module. The only neighbourhood of the unique closed point
is X itself, and so F = M. Therefore, N = F(U) = My = M®g K and p is
an isomorphism. Conversely, of p : M Qg K — ﬁd is an isomorphism, then F is
given by F(X) = M and F({n}) = M®g N, and so F ~ M is quasi-coherent.
*

wp — N



10.4 Coherent sheaves

Let A be a ring and let M be an A-module. The module M is of finite presentation
if for some integers n and m there is an exact sequence

A — A™ s M >0 .




One says that M is coherent if the following two requirements are fulfilled

0 M is finitely generated.

0 The kernel of every surjection A" — M is finitely presented.



0 The kernel of every surjection A" — M is finitely presented.



When A is noetherian, then the three conditions of coherence, finitely generation
and being of finite presentation on an A-module M coincide. The key point is that
for a finitely generated module M over a noetherian ring A, every submodule
N < M is also finitely generated. Indeed, the set V of finitely generated
submodules N’ ¢ N has a maximal element N°, which has to equal N: If not,
there is an n € N — N°, and a finitely generated submodule N” = N’ + An
which is strictly bigger than N°.



So to show that M is finitely presented, we can take a presentation A" —
M — 0 and let L be the kernel, regarded as a submodule of A". Then L is
finitely generated, so there is a surjection A” — L, and we get a presentation
A" - A" - M — 0. Applying this argument to any finitely generated
submodule N ¢ M shows that M is coherent.



DEFINITION 10.22 On a scheme X a quasi-coherent Ox-module is coherent if there is
a covering of X by open affine sets U; = Spec A; such that F |y, = M; with the M;’s
being coherent A;-modules. F is finitely presented if each M; are finitely presented as
A;-modules.



So if X is noetherian (or locally noetherian), the condition that M is coherent is
equivalent to the weaker condition that M is finitely generated.
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10.5 Functoriality ¢

PROPOSITION 10.24 Suppose that a: F — G is a map of quasi-coherent sheaves on the
scheme X.

Q The kernel, cokernel and the image of w are all quasi-coherent.

0 The category QCohx is closed under extensions; that is, if

00— M > M »y M" —— 0 (10.6)

is a short exact sequence of O x-modules with the two extreme sheaves M’ and M"
being quasi-coherent, the middle sheaf M is quasi-coherent as well.
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Proor: If a: F — G is a map of quasi-coherent Ox-modules, on any open
affine subsets U = Spec A of X it may be described as «|; = @ where a: M — N
is a A-module homomorphism and M and N are A-modules with F|; = M
and G|y = N. Since the tilde-functor is exact, one has Kera|y = (Kera)~
Moreover, by the same reasoning, it holds true that Coker «|y; = (Cokera)~and
Ima|y = (Ima)~



Suppose now that an extension like (10.6) is given. The leftmost sheaf M’
being quasi-coherent, Lemma B.4 shows that the induced sequence of global
sections is exact; that is, the upper horizontal sequence in the diagram below.
The three vertical maps in the diagram are the natural maps from Lemma 10.9
on page 170. Since M’ and M” both are quasi-coherent sheaves, the two flanking
vertical maps are isomorphisms, and the snake lemma implies that the middle
vertical map is an isomorphism as well. Hence M is quasi-coherent.

0—T(X, M'\——T(X, M ——T(X, M")"——0

| | |

0 s M/ sy M y M” s 0




Thus also for a general scheme X, the category QCohy is a category with
very nice properties: it is an abelian category with tensor products and internal
Hom’s.



Quasi-coherence of pullbacks
Recall that for a morphism f : Spec B — Spec A of affine schemes, the pullback
of the quasi-coherent sheaf M was again quasi-coherent: This followed from the

formula in Theorem 10.15
f*(M)=M®aB



In this section, we prove that the same conclusion holds more generally.

PROPOSITION 10.25 Let f : X — Y be a morphism of schemes.

i) If G is a quasi-coherent sheaf on Y, then f*G is quasi-coherent on X.

ii) If moreover X and Y are noetherian, then f*G is coherent if G is.

Proor: These statements follows from the affine case and the formula above,
since quasi-coherence is a local property, and since M ®4 B is a finitely generated
B-module if M is a finitely generated A-module. » -
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Quasi-coherence of pushforwards

Likewise, we showed that for a map ¢ : SpecA — SpecN the pushforward
¢+ F is quasi coherent, if F is quasi-coherent (since 4>*M Mjp). The following
result applies to more general morphisms:

THEOREM 10.26 Let ¢: X — Y be a morphism of schemes and that F is a quasi-
coherent sheaf on X. If X is noetherian, then the direct image ¢.JF is quasi-coherent on
Y. T




Proor: We may assume that Y = Spec A. Then since X is quasi-compact, we
may cover it by open affines U;. The intersection U; n U; is again quasi-compact,
so we can cover it with open affines Ujj.

For any open V c Y, one has the exact sequence

0——T(¢7'V,F) —= L T(Uin¢7'V,F) —[1;jx T(Uix n ¢~'V, F).
(10.7)



\*=~*77
The sequence is compatible with the restriction maps induced from an inclusion

V' < V, hence gives rise to the following exact sequence of sheaves on X:
0 ——¢uF —— [ [ pinFlu, —— [ i jie Pijie, F lue (10.8)

where ¢; = ¢|u, and ¢k = ¢|u,,. Now, each of the sheaves ¢;, F|u, and ¢;;, Flu;
are quasi-coherent by the affine case of the theorem (proposition 10.14 on page
173). They are finite in number as the covering U; is finite. Hence [ [; ¢;, F|u, and
[;j ¢ij, F lu, are finite products of quasi-coherent Ox-modules and therefore
they are quasi-coherent. Now the ¢, F is the kernel of a homomorphism between
two quasi-coherent sheaves, and so the theorem the follows from Proposition
10.24 on page 179. .



The following example shows that some of the hypotheses are neccessary for
this statement to hold:

ExaMPpLE 10.27 Let X = [ [,.; Spec Z be the disjoint union of countably infinitely
many copies of SpecZ and let f: X — Spec Z be the morphism that equals the
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identity on each of the copies of SpecZ that constitute X. Then f,Ox is not
quasi-coherent. Indeed, the global sections of f,.Ox satisfy

I'(SpecZ, f.Ox) =T(X,0x) = HZ

iel
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On the other hand if p is any prime, one has

L(D(p), f+Ox) =T(f'D(p), Ox) =




Coherence of the direct image

For morphisms of schemes f : X — Y, it cannot be expected that the push-
forward of a coherent sheaf is again coherent, even for ‘nice’ morphisms f. A
simple example is the following;:

ExaMPLE 10.28 Let X = Speck|[t] and consider the structure morphism f : X —
Speck (induced by k c k[t]). The sheaf Ox is of course coherent, but f,Ox is
not. Indeed, this is k[t], and k[¢t] is clearly not finitely generated as a k-module.
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However, for finite morphisms, we have a positive result:

LEMMA 10.29 Let f : X — Y be a finite morphism of schemes. If F be a quasi-coherent
sheaf on X, then f.JF is quasi-coherent on Y. If X and Y are noetherian, f.F is even
coherent if F is.



Proor: Since f is finite, we can cover Y by open affines Spec A such that
each f~!Spec A = SpecB is also affine, where B is a finite A-module. We
then have f,F(Spec A) = F(Spec B). Now, since F is quasicoherent, we have
FlspecB = M for some B-module, which we can view as an A-module via f.
Hence f.F is quasi-coherent. If X and Y are noetherian, and F is coherent, the
module M is finitely generated as an B-module, and hence as an A-module,
since B is a finite A-module. a



X
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10.7 Closed immersions and subschemé?/ Un = S A/I

Recall that for a scheme X, a closed subscheme was given by a closed subset Z < X
equipped with a sheaf of rings Oz making (Z, Oz) into a scheme, and so that
1,0z ~ Ox /I for some sheaf of ideals Z — Ox. In Chapter 2, we considered
the prototype example namely when X = Spec A and Z = V/(I) for some ideal
I c A; then the closed subscheme Z is isomorphic to Spec(A/I). However, it
was not clear which ideal sheaves gave rise to closed subschemes, even in the
case for affine schemes. In this section, we will show that the right condition is
that the ideal sheaf should be quasi-coherent. IS chf)
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LEMMA 10.32 Let X be a scheme and let T < Ox be kaf of ideals.

Then the ringed space Z = (Supp(Ox/I),Ox/T) is a scheme with a canonical
morphismi: Z — X.




Proor: To prove this, we may assume that X = Spec A is affine. In this case
7 is the ~ of some ideal I c A, and the support of this is exactly the primes p
such that (A/I), # 0, or equivalently p € V(I). Hence Z is the closed subset
V(I), which is homeomorphic to Spec(A/I). The sheaf of rings on Spec(A/I)
is the same as Ox/Z on Z and hence Z is the scheme Spec A/I. The map i is
just induced by the inclusion Z c X and the natural map Ox — ix(Ox/Z) is
just ~ of the quotient map A — A/I. -



PROPOSITION 10.33 Let Z < X is a closed subscheme of X, given by an ideal sheaf Z,
then Z is quasi-coherent.



g = Oxe
Proor: On the open set X — Z, we have =%, so it is quasi-coherent there.
Let x € Z. We first find an affine open set U = Spec A of x such that U n Z
is an open affine in Z. To find U, pick any affine open set U; < X and let
V1 < Uy n Z be an affine open set containing x. Then pick a section s € Ox(U)
so that s = 0 on Uy n Z — V4, while s(x) # 0. Then let U = D(s) < U;. Note



that Un Z = D(s|y,) < V3, s0 Un Z is an affine subset in Z as well. Write
U = Spec A and U n Z = Spec B, so that the inclusion U n Z — U corresponds
to¢: A — B. Let I = Ker¢. We claim that

o\ \
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so that Z is indeed quasi-coherent. Indeed, for any distinguished open set D(f)



in U we have
I(D(f)) = I
= Ker(Ou(D(f)) = Oz(Y n D(f)))
= ZI(D(f))

This completes the proof.



Notice that the closed subset Z can be recovered from the ideal sheaf Z
by Z = Supp(Ox/Z). In particular, this gives the most economic way of
defining what a closed subscheme of X is: It is a subscheme of the form
(Supp(Ox/I),Ox/T) for some quasi-coherent sheaf of ideals Z.



Now we can finally prove Proposition 3.19 from Chapter 2.

COROLLARY 10.34 Let Z < X is a closed subscheme given by an ideal sheaf T, then
for all open affines U < X, U n Z is affine in Z. Moreover, if U = Spec A, then
Z n U ~ Spec(A/I) for some ideal I — A.



Proor: Since Z is quasi-coherent, we have 7 = I for some ideal I ¢ A. Then
we get

Ozlu = COker(I|u—>Ox|u)

= Coker(I —» A)
= A/l

It follows that (Y, Oy) = (V(I), A/I) = Spec(A/I). 0
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COROLLARY 10.35 Let X = Spec A be an affine scheme. Then the map I — V(I)
induces a 1-1 correspondence between the set of ideals of A and closed subschemes of X.
In particular, any closed subscheme of an affine scheme is also affine.



Morphisms to a closed subscheme

If f:Y — X is a morphism of schémes, it is natural to ask when it factors

through a closed immersion of ere we need only work up to isomorphism,

so we can assume that the closed immersion is given by (Supp Ox/Z,Ox/T) —
(X, Ox).



PROPOSITION 10.36 Let Z be a closed subschemme of X given by sheaf of ideals 1.
Suppose f : Y — X is a morphism of schemes/ Then f factors throughamap g:Y — Z
if and only if

i) f(Y) cZ

i) I c Ker((’)X - f*(Oy))



Proor: The condition (i) is clearly necessary. If theresis a sequence Y — Z — X,
then there is a sequence of sheaves Ox — Ox/Z~ f.(Oy), which means that
the map Ox — f«(Oy) factors through Ox/Z; and so also (ii) holds.
Conversely, we define the map g on topological spaces by the inclusion (i).
To define it on sheaves, we use the map/Ox — f.(Oy). This annihilates Z, so we
thus get a map Ox/Z — f«(Oy) =8+«(Oy). This gives us themap g: Y — Z
factoring f. EI



For a morphism of schemes f : Y — X, Ae can define the scheme-theoretic
image of f as a subscheme Z c X satisfying the universal property that if f
factors through a subscheme Z' c Z then Z c Z'. To define Z it is is tempting
to use the ideal sheaf Z = Ker(Qg — f«(Oy)) — but this may fail to be quasi-
coherent for a general morphism f. However, one can show that there is a
largest quasi-coherent sheafof ideals J contained in Z, and we then define Z to
be associated to J.



