

Locally free sheaves

$$\mathcal{L}_{V_{i}} \simeq \mathcal{O}_{V_{i}} \qquad v_{i} = \mathcal{V}_{k} \mathcal{L}$$

An \mathcal{O}_X -module \mathscr{E} is called *free* if it is isomorphic to a direct sum of copies of \mathcal{O}_X . It is *locally free* if there exists a *trivializing cover*, that is, an open cover $\{U_i\}_{i\in I}$ such that $\mathscr{E}|_{U_i}$ is free for each i. The *rank* of \mathscr{E} at a point $x\in U_i$ is the number of copies of \mathcal{O}_{U_i} needed (this may be finite or infinite). If X is connected, then the rank of \mathscr{E} is the same everywhere, but in general we allow variation. A locally free sheaf of rank 1 is called an *invertible sheaf*.

Ranshp de vikhte Ox-modilene. **EXAMPLE 11.1** The sheaf $\mathcal{O}_X^r = \bigoplus_{i=1}^r \mathcal{O}_X$ is a locally free sheaf of rank r. As this is globally a free sheaf, it is sometimes called 'trivial'.

If \mathscr{E} is a locally free sheaf, the stalk \mathscr{E}_x is a free $\mathcal{O}_{X,x}$ -module for every $x \in X$. In fact, under some coherence conditions, the converse holds:

Lemma 11.2 Suppose that X is locally noetherian. A coherent sheaf \mathscr{E} having the property that $\mathscr{E}_x \simeq \mathcal{O}^r_{X,x}$ for every $x \in X$ for some fixed r, is locally free.

Locally free sheaves and projective modules

On an affine scheme $X = \operatorname{Spec} A$, any quasi-coherent \mathcal{O}_X -module \mathscr{E} is isomorphic to \widetilde{M} for some A-module M. Thus a natural question is which A-modules give rise to locally free sheaves. The main result of this section is that \mathscr{E} is locally free of finite rank if and only if M is finitely generated and projective.

Recall that an A-module M is called *projective* if there is another module N so that $M \oplus N \simeq A^r$ is free. M being projective can further be characterized as saying that the functor $N \mapsto \operatorname{Hom}_A(M,N)$ is exact. It is clear that free modules satisfy this property, but there are many examples of projective modules which are not free.

LEMMA 11.4 Let (A, \mathfrak{m}) be a local ring and M a finitely generated projective module. Then M is free.

Folger on Nakayama's lemma.

PROPOSITION 11.5 Let $X = \operatorname{Spec} A$ where A is Noetherian, and let $\mathcal{F} = \widetilde{M}$ be a coherent sheaf. The following are equivalent:

- *i)* \mathcal{F} *is locally free;*
- *ii)* \mathcal{F}_x *is a free* $\mathcal{O}_{X,x}$ -module for all $x \in X$;
- *iii) M is* locally free, *i.e.*, $M_{\mathfrak{p}}$ *is free for all* $\mathfrak{p} \in \operatorname{Spec} A$;
- iv) M is projective, i.e. there is a module N such that $M \oplus N \simeq A^I$ is free.

PROOF: This is really a result in commutative algebra, so we only say a few words. We have already seen the equivalence $ii \iff iii$. The equivalence $iii \iff iii$ follows by definition of \widetilde{M} , and finally, $iii) \implies iv$ follows because

being 'projective' is a local property, i.e. M is projective if and only if M_p is for

every $\mathfrak{p} \in \operatorname{Spec} A$. The implication $iv) \Rightarrow iii)$ follows from the lemma above. \Box

EXAMPLE 11.6 Let $X = \operatorname{Spec} A$ where $A = \mathbb{Z}/2 \times \mathbb{Z}/2$ and consider the module $M = \mathbb{Z}/2 \times (0)$ which has the structure of an A-module. Then M is projective,

Spec
$$(\mathbb{Z}/2 \times \mathbb{Z}/2)$$
 \sim M projebliv:
 $M = \mathbb{Z}/2 \times (0)$
 $N = 0 \times \mathbb{Z}/2$ \sim M@N = A
Spec \mathbb{Z} Spec \mathbb{Z}

since if $N = (0) \times \mathbb{Z}/2$, we have $M \otimes N \simeq A$ (as A-modules!). However, M is clearly not free, since any free A module must have at least four elements! The sheaf $\mathscr{E} = \tilde{M}$ is thus locally free, but not free on X. Note that X consists of two copies of Spec $\mathbb{Z}/2$. \mathscr{E} restricts to the structure sheaf on one of these and to the zero sheaf on the other.

EXAMPLE 11.8 Consider the morphism $f: \mathbb{P}^1_k \to \mathbb{P}^1_k$ given by $k[u] \mapsto k[t] \ u \mapsto t^2$ on $U = \operatorname{Spec} k[t]$, and $k[u^{-1}] \to k[t^{-1}] \ u^{-1} \mapsto t^{-2}$ on $V = \operatorname{Spec} k[t^{-1}]$. Then $f_*\mathcal{O}_{\mathbb{P}^1}$ is a locally free sheaf. Indeed, on U, $f_*\mathcal{O}_{\mathbb{P}^1}|_U$ is the \sim of k[t] as a k[u]-module, which equals $k[u] \oplus k[u]t$. We get a similar expression on $V = \operatorname{Spec} k[t^{-1}]$. It follows that $f_*\mathcal{O}_{\mathbb{P}^1}$ is locally free of rank 2. We will se in Chapter 12 just what this sheaf is, and that it is indeed not isomorphic to $\mathcal{O}_{\mathbb{P}^1}^2$.

$$U = Spec \ k[t]$$

$$f \mid U = Spec \ k[t] \longrightarrow Spec \ k[u]$$

$$f \mid U = f_{x} \ b[u]$$

$$= b[u] \ myhh$$

$$f^{2} \longrightarrow U$$

$$= b[u] \ \theta \ b[u] \ t$$

$$= b[u] \ \theta \ b[u] \ t$$

= kluj @ kluj k
= Opi @ F

A word of warning: the pushforward of a locally free sheaf is not locally free in general. For instance, if $i: Y \to X$ is a closed immersion, then $\mathcal{F} = i_* \mathcal{O}_Y$ has $\mathcal{F}_y = \mathcal{O}_{Y,y}$ for $y \in Y$, but zero stalks outside of Y. However, in general, if \mathcal{F} is locally free of positive rank, then $\text{Supp}(\mathcal{F}) = X$.

For pullbacks however, we have the following:

LEMMA 11.9 Let $f: X \to Y$ be a morphism of schemes. If G is a locally free \mathcal{O}_Y -module, then f^*G is a locally free \mathcal{O}_X -module.

PROOF: Let U_i be trivialization of \mathcal{G} on Y, such that $\mathcal{F}|_{U_i} \simeq \bigoplus_I \mathcal{O}_{U_i}$. Then, since $f^*\mathcal{O}_Y = \mathcal{O}_X$, we see that $f^{-1}(U_i)$ is a trivialization of $f^*\mathcal{G}$.

EXAMPLE 11.10 (The tangent bundle of the *n*-sphere) Let $X = \operatorname{Spec} A$ where $A = \mathbb{R}[x_0, \dots, x_n]/(x_0^2 + \dots + x_n^2 - 1)$, and consider the *A*-module homomorphism $f: A^{n+1} \to A$ given by $f(e_i) = x_i$. Then $M = \operatorname{Ker} f$ gives rise to a quasi-coherent sheaf $\mathscr{T} = \widetilde{M}$. Any element in the kernel corresponds to a vector of elements $v = (a_0, \dots, a_n) \in A^{n+1}$ so that

$$a_0x_0+\cdots+a_nx_n=0$$

On $U = D(x_0)$ we may divide by x_0 , and solve for a_0 , so v is uniquely determined by the elements (a_1, \ldots, a_n) . Conversely, given any such an n-tuple of elements in A, we may define an element $v \in M_{x_0}$ using the above relation. In particular, $M_{x_0} \simeq A^n$. A similar argument works for the other x_i , showing that \mathcal{F} is locally free. It is a hard theorem that \mathcal{F} is not free, if $n \notin \{0,1,3,7\}$.

R,C,H,Q

The dual of a locally free sheaf

Given a locally free sheaf \mathcal{E} of finite rank, we define the *dual* as

$$\mathscr{E}^{\vee} = \mathscr{H}om_{\mathcal{O}_{X}}(\mathscr{E}, \mathcal{O}_{X}).$$

We note that \mathscr{E}^{\vee} is again a locally free sheaf on X, of the same rank as \mathscr{E} . Indeed, if U is an open set in a trivializing cover, then we have

$$\mathscr{E}^{\vee}|_{U} = \mathscr{H}om_{\mathcal{O}_{X}}(\mathscr{E}, \mathcal{O}_{X})|_{U} = \mathscr{H}om_{\mathcal{O}_{U}}(\mathscr{E}|_{U}, \mathcal{O}_{U})$$

= $\mathscr{H}om_{\mathcal{O}_{Y}}(\mathcal{O}_{U}^{r}, \mathcal{O}_{U}) \simeq \mathcal{O}_{U}^{r}.$

where the last isomorphism sends $\phi : \mathcal{O}_U^r(W) \to \mathcal{O}_U(W)$ to the tuple $(\phi(e_1), \dots, \phi(e_r))$, where e_i is the i-th basis vector in \mathcal{O}_U^r . The dual operation satisfies $(\mathscr{E}^{\vee})^{\vee} = \mathscr{E}$.

PROPOSITION 11.11 Let $\mathscr E$ be a locally free sheaf of finite rank. Then for any $\mathcal O_X$ -module $\mathcal F$, we have a natural isomorphism

$$\mathscr{E}^{\vee} \otimes \mathcal{F} \to \mathscr{H}om(\mathscr{E}, \mathcal{F})$$
 (11.1)

PROOF: If A is a ring, and M,N are A-modules, we have a morphism $\operatorname{Hom}_A(M,A)\otimes N\to\operatorname{Hom}_A(M,N)$ given by $\phi\otimes n\mapsto \phi(-)n$. When $M=A^r$, any element of $\operatorname{Hom}_A(M,A)\otimes N$ can be written as $\phi_1\otimes n_1+\cdots+\phi_r\otimes n_k$ where $\phi_i:M\to A$ is the i-th coordinate map, and it is easy to see that the previous

map is an isomorphism.

We can similarly define a sheaf map

$$\phi: \mathscr{H}om(\mathscr{E}, \mathcal{O}_X) \otimes \mathcal{F} \to \mathscr{H}om(\mathscr{E}, \mathcal{F})$$

by setting, for each open set $U \subset X$, ϕ_U to be the map

$$\phi_U : \operatorname{Hom}_{\mathcal{O}_U}(\mathscr{E}|_U, \mathcal{F}|_U) \otimes_{\mathcal{O}_X(U)} \mathcal{F}(U) \to \operatorname{Hom}_{\mathcal{O}_U}(\mathscr{E}|_U, \mathcal{F}_U)$$

sending $\phi \otimes t$ to the sheaf map $\mathscr{E}|_U \to \mathcal{F}|_U$ given by sending $s \in \mathscr{E}(V)$ to $\phi_V(s)t|_V$ over an open set $V \subset U$. This defines the sheaf map on presheaves, so sheafifying we get the map (11.1). When \mathscr{E} is locally free, ϕ is an isomorphism, because it is an isomorphism on stalks, by the above.

EXERCISE 11.3 (*The Projection formula*) Let $f: X \to Y$ be a morphism of schemes, \mathcal{F} an \mathcal{O}_X -module, and \mathscr{E} a locally free sheaf of finite rank. Show that there is a natural isomorphism

$$f_*(\mathcal{F} \otimes f^*\mathscr{E}) \simeq f_*(\mathcal{F}) \otimes \mathscr{E}.$$

11.1 Invertible sheaves and the Picard group

Recall that an *invertible sheaf* on a scheme X is a locally free sheaf of rank 1. We usually write L for such sheaves (they correspond to "line bundles", as we will see later). By definition, L is invertible whenever there exists a covering $U = \{U_i\}$ and isomorphisms $\phi_i : \mathcal{O}_{U_i} \to L|_{U_i}$. We say that $g_i = (\phi_i)_{U_i}(1) \in L(U_i)$ is a *local generator* for L. By Lemma 11.2, a coherent \mathcal{O}_X -module L is invertible if and only if L_X is isomorphic to $\mathcal{O}_{X,X}$ for every $X \in X$.

Proposition 11.12 For L, M invertible sheaves, we have

- i) $L \otimes M$ is also an invertible sheaf. If g, h are local generators for L and M respectively, then $g \otimes h$ a local generator for $L \otimes_{\mathcal{O}_X} M$;
- respectively, then $g \otimes h$ a local generator for $L \otimes \mathcal{O}_X$ in,

 ii) $\mathscr{H}om(L, \mathcal{O}_X)$ is invertible and $\mathscr{H}om(L, \mathcal{O}_X) \otimes L \simeq \mathcal{O}_X$. If g is a local generator for L, then ψ_g defined by $\psi_g(ag) = a$ is a local generator for $\mathscr{H}om(L, \mathcal{O}_X)$;
 - iii) $\mathcal{H}om(L, M) \simeq \mathcal{H}om(L, \mathcal{O}_X) \otimes M$.

Γ,

PROOF: (i) We may find a common trivialization of L and M, such that X is covered by open sets U where we have isomorphisms $\phi : \mathcal{O}_U \to L|_U$ and $\psi : \mathcal{O}_U \to M|_U$. Over such a U, we have an isomorphism $\mathcal{O}_U \simeq \mathcal{O}_U \otimes \mathcal{O}_Y \simeq L|_U \otimes M|_U$ given by $1 \mapsto 1 \otimes 1 \mapsto \phi(1) \otimes \psi(1)$ (all tensor products in this section

are over \mathcal{O}_X . This shows (i).

For (ii), as above the fact that $\mathcal{H}om(L, \mathcal{O}_X)$ is invertible can be seen by restricting to an open where $L|_{U} \simeq \mathcal{O}_{U}$. The identity for the tensor product, and (iii) follows from Proposition 11.11.

This proposition explains the term 'invertible'. Indeed, the tensor product acts as a sort of binary operation on the set of invertible sheaves; $L \otimes M$ is invertible if L and M are. Tensoring an invertible sheaf by \mathcal{O}_X does nothing, so \mathcal{O}_X serves as the identity. Moreover, for an invertible sheaf L we will define $L^{-1} = \mathcal{H}om(L, \mathcal{O}_X)$; by the proposition, L^{-1} is again invertible, and serves as a multiplicative inverse of \mathcal{L} under \otimes . We can make the following definition:

L&L-1 ~ Ox

DEFINITION 11.13 Let X be a scheme. The Picard group Pic(X) is the group of isomorphism classes of invertible sheaves on X under the tensor product.

speaking not equal to \mathcal{O}_X .

Note that it is the set of isomorphism classes of invertible sheaves that form a group, not the invertible sheaves themselves: $L \otimes L^{-1}$ is isomorphic but strictly

Note also that Pic(X) is also an abelian group, because $L \otimes M$ is canonically

isomorphic to $M \otimes L$.

Locally free sheaves on the affine line

If \mathcal{F} is a coherent sheaf on \mathbb{A}^1_k , then $\mathcal{F}=\widetilde{M}$ for some finitely generated k[t]-

module. The structure theorem of finitely generated modules over a PID, tells

us that $M \simeq k[t]^r \oplus T$ where $r \geqslant 0$ and T is a torsion module (which is in turn a direct sum of modules of the form $k[t]/(t-a)^n$). From this we find

PROPOSITION 11.14 Any locally free sheaf over \mathbb{A}^1_k is trivial; $\operatorname{Pic}(\mathbb{A}^1_k) = 0$.