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Chapter 11
Locally free sheaves



An Ox-module & is called free if it is isomorphic to a direct sum of copies of
Ox. It is locally free if there exists a trivializing cover, that is, an open cover {U;}ic;
such that &y, is free for each i. The rank of & at a point x € U; is the number of
copies of Oy, needed (this may be finite or infinite). If X is connected, then the
rank of & is the same everywhere, but in general we allow variation. A locally
free sheaf of rank 1 is called an invertible sheaf.
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ExampLE 11.1 The sheaf O% = @);_, O is a locally free sheaf of rank r. As this
is globally a free sheaf, it is sometimes called ‘trivial’. *



If & is a locally free sheaf, the stalk & is a free Ox ,-module for every x € X.
In fact, under some coherence conditions, the converse holds:

LEMMA 11.2 Suppose that X is locally noetherian. A coherent sheaf & having the
property that & ~ OY . for every x € X for some fixed r, is locally free.



Locally free sheaves and projective modules

On an affine scheme X = Spec A, any quasi-coherent Ox-module & is isomor-
phic to M for some A-module M. Thus a natural question is which A-modules
give rise to locally free sheaves. The main result of this section is that & is locally
free of finite rank if and only if M is finitely generated and projective.



Recall that an A-module M is called projective if there is another module N
so that M@ N ~ A’ is free. M being projective can further be characterized as
saying that the functor N — Hom 4 (M, N) is exact. It is clear that free modules
satisfy this property, but there are many examples of projective modules which

are not free.
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LEMMA 11.4 Let (A, m) be a local ring and M a finitely generated projective module.
Then M is free.
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PrOPOSITION 11.5 Let X = Spec A where A is Noetherian, and let F = M bea
coherent sheaf. The following are equivalent:

i) F is locally free;
ii) Fxisa free Ox x-module for all x € X;
iii) M is locally free, i.e., My is free for all p € Spec A;
iv) M is projective, i.e. there is a module N such that M@ N ~ Al is free.



Proor: This is really a result in commutative algebra, so we only say a few
words. We have already seen the equivalence i) <= ii). The equivalence
ii) <= iii) follows by definition of M, and finally, iii)) = iv) follows because
being ‘projective’ is a local property, i.e. M is projective if and only if M, is for
every p € Spec A. The implication iv) = iii) follows from the lemma above. [



ExAMPLE 11.6 Let X = Spec A where A = Z /2 x Z /2 and consider the module
M = Z /2 x (0) which has the structure of an A-module. Then M is projective,
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since if N = (0) x Z/2, we have M % N ~ A (as A-modules!). However, M is
clearly not free, since any free A module must have at least four elements! The
sheaf & = M is thus locally free, but not free on X. Note that X consists of two
copies of SpecZ /2. & restricts to the structure sheaf on one of these and to the
zero sheaf on the other. ¥
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ExampLE 11.8 Consider the morphism f : P; — P} given by k[u] — k[t] u — #
on U = Speck[t], and k[u=1] — k[t7!] u=! — t72 on V = Speck[t~!]. Then
f+Op1 is a locally free sheaf. Indeed, on U, f.Op|y is the ~ of k[t] as a
k[u]-module, which equals k[u| ® k[u|t. We get a similar expression on V =
Speck[t~!]. It follows that f,Op: is locally free of rank 2. We will se in Chapter
12 just what this sheaf is, and that it is indeed not isomorphic to O%,. *
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A word of warning: the pushforward of a locally free sheaf is not locally free
in general. For instance, if i : Y — X is a closed immersion, then F = i, Oy has

Fy = Oy, for y € Y, but zero stalks outside of Y. However, in general, if F is
locally free of positive rank, then Supp(F) = X.
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For pullbaci(s however, we have the following:

LEMMA 11.9 Let f: X — Y be a morphism of schemes. If G is a locally free Oy-module,
then f*G is a locally free Ox-module.

Proor: Let Uj; be trivialization of G on Y, such that F|y, ~ @; Oy.. Then, since
f*Oy = Ox, we see that f~1(U;) is a trivialization of f*G. Q
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ExaMrLE 11.10 (The tangent bundle of the n-sphere) Let X = Spec A where A =
R(xo,..., %,/ (x5 + -+ x2 — 1), and consider the A-module homomorphism
f: A1 — Agivenby f(e;) = x;. Then M = Ker f gives rise to a quasi-coherent
sheaf 7 = M. Any element in the kernel corresponds to a vector of elements
v = (ag,...,a,) € A" so that

apxo+ -+ aux, =0

On U = D(x) we may divide by xo, and solve for ay, so v is uniquely determined
by the elements (a3, ...,a,). Conversely, given any such an n-tuple of elements
in A, we may define an element v € M,, using the above relation. In particular,
My, ~ A". A similar argument works for the other x;, showing that F is locally
free. It is a hard theorem that 7 is not free, if n ¢ {0,1,3,7}. *
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The dual of a locally free sheaf

Given a locally free sheaf & of finite rank, we define the dual as

&Y = Homp, (€,0x).



We note that £V is again a locally free sheaf on X, of the same rank as &. Indeed,
if U is an open set in a trivializing cover, then we have

égvlu = %omox(é”,ox)mz,%”omou(<5”|u,(9u)
= Homo, (O, Ou) ~ O

where the last isomorphism sends ¢ : O[;(W) — Oy (W) to the tuple (¢(e1),...,¢(er)),
where e; is the i-th basis vector in Of;. The dual operation satisfies (V)" = &.



PROPOSITION 11.11 Let & be a locally free sheaf of finite rank. Then for any Ox-module
F, we have a natural isomorphism

&Y QF — Hom(&,F) (11.1)



Proor: If A is a ring, and M, N are A-modules, we have a morphism
Hom (M, A) ® N - Homy4 (M, N) given by ¢ ®n — ¢(—)n. When M = A7,
any element of Hom 4 (M, A) ® N can be written as ¢1 ® 11 + - - - + ¢, @ 1 where
¢$i : M — A is the i-th coordinate map, and it is easy to see that the previous
map is an isomorphism.



We can similarly define a sheaf map
¢ : Hom(&,O0x) @ F — H#om(&,F)
by setting, for each open set U c X, ¢; to be the map
¢u : Homo,, (€|u, Flu) ®oy ) F (U) — Homo, (&'|u, Fu)

sending ¢ ® t to the sheaf map &|y — Fluy given by sending s € &(V) to
¢y (s)t|y over an open set V — U. This defines the sheaf map on presheaves, so
sheafifying we get the map (11.1). When & is locally free, ¢ is an isomorphism,
because it is an isomorphism on stalks, by the above. .



ExERCISE 11.3 (The Projection formula) Let f : X — Y be a morphism of schemes,
F an Ox-module, and & a locally free sheaf of finite rank. Show that there is a
natural isomorphism

[+(FOf'E) ~ fu(F)®&.



11.1 Invertible sheaves and the Picard group

Recall that an invertible sheaf on a scheme X is a locally free sheaf of rank 1.
We usually write L for such sheaves (they correspond to "line bundles", as we
will see later). By definition, L is invertible whenever there exists a covering
U = {U;} and isomorphisms ¢; : Oy, — L|y,. We say that g; = (¢;)u,(1) € L(U;)
is a local generator for L. By Lemma 11.2, a coherent Ox-module L is invertible if
and only if Ly is isomorphic to Ox . for every x € X.



ProrosiTioN 11.12 For L, M invertible sheaves, we have

i) L® M is also an invertible sheaf. If g, h are local generators for L and M
v respectively, then g @ h a local generator for L ®p,, M;

L —ai=stom(L, Ox) is invertible and s#om(L, Ox) ® L ~ Ox. If g is a local
generator for L, then . defined by {g(ag) = a is a local generator for
Hom(L, Ox);

iii) stom(L, M) ~ s#om(L, Ox) ® M.
\(
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Proor: (i) We may find a common trivialization of L and M, such that X
is covered by open sets U where we have isomorphisms ¢ : Oy — L|y and
P : Oy — M|y. Over such a U, we have an isomorphism Oy ~ Oy ® Oy ~
Liu® M|y givenby 1 — 1®1 — ¢(1) ® (1) (all tensor products in this section
are over Ox. This shows (i).

For (ii), as above the fact that #om(L, Ox) is invertible can be seen by
restricting to an open where L|y; ~ Oy. The identity for the tensor product, and
(iii) follows from Proposition 11.11. a
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This proposition explains the term ‘invertible’. Indeed, the tensor product
acts as a sort of binary operation on the set of invertible sheaves; L ® M is
invertible if L and M are. Tensoring an invertible sheaf by Ox does nothing,
so Ox serves as the identity. Moreover, for an invertible sheaf L we will define
L1 = s#om(L, Ox); by the proposition, L~! is again invertible, and serves as a
multiplicative inverse of £ under ®. We can make the following definition:



Lol ~ 0O

DEFINITION 11.13 Let X be a scheme. The Picard group Pic(X) is the group of
isomorphism classes of invertible sheaves on X under the tensor product.



Note that it is the set of isomorphism classes of invertible sheaves that form a
group, not the invertible sheaves themselves: L ® L~! is isomorphic but strictly
speaking not equal to Ox.

Note also that Pic(X) is also an abelian group, because L ® M is canonically
isomorphic to M® L.



Locally free sheaves on the affine line

If F is a coherent sheaf on A}, then F = M for some finitely generated k[t]-
module. The structure theorem of finitely generated modules over a PID, tells



us that M ~ k[t]" @ T where r > 0 and T is a torsion module (which is in turn a
direct sum of modules of the form k[t]/(t — a)"). From this we find



PROPOSITION 11.14 Any locally free sheaf over Al is trivial; Pic(A}) = 0.



