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12.1 The graded ~-functor

Let R be a graded ring and let GrModg denote the category of graded R-modules.
Just like in the case of Spec A we will define a tilde-construction to construct
sheaves on ProjR from graded R-modules, giving a functor GrModg to Modo, .
However, as we will see, this is not an equivalence of categories.
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Recall that for f,¢ € R4, such that D, (g) < D4(f), there is a canonical
localization homomorphism p¢ ¢ : M5y — M(,) where as before M) denotes
the degree O-part of the localization {1, f, f,...} M. It follows that we can
define a #-presheaf M by defining for each D (f),

(Rels

M(D.(f)) = My
N ~ (M
M (D.(0) < €>0 e
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Note that M|, £ = (R/I\(J;)/) via the isomorphism of D (f) with SpecR . It

follows that M is in fact a #-sheaf, and hence gives rise to a unique sheaf on
X = ProjR. The same identity shows that M is an quasi-coherent Ox-module.



As in the Spec case, the assignment M — M is functorial. The following
proposition summarizes the properties of this functor.



X & F

PROPOSITION 12.1 The contravariant functor M — M has the following properties:
QO ~ is exact, commutes with direct sums and limits.

Q The stalks satisfy Mp (p) for each p € Proj R. Q\/O B G\K {j

0 If R is noetherian, and M is finitely generated, then M is coherent.



Proving these properties is straightforward, since most of them can be checked
locally on stalks. Using the isomorphisms between D (f) and SpecR s we
reduce immediately to the affine case.
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However, it is important to note that, unlike the affine case, the functor is not

faithful, as several modules can correspond to the same sheaf. For instance, take
any graded R-module M such that M; = 0 for all large d. Then M) = 0 for all

feR4,and so M= 0, even though M is not the 0-module. We will however see
shortly that it is only the modules of this form that cause the lack of faithfulness.
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The following is useful for working with the localization of M. It says
essentially that we are allowed to ‘substitute in 1" when restricting a module to
an affine chart D (f) < ProjR,

LEMMA 12.2 Suppose that M is a graded R-module and f € R homogeneous of degree
1. Then there are natural isomorphisms

My ~M/(f —~1)M ~ M®r R/(f — 1)



Let us use this to compare M@®g N with M R0y N. Let f € R be a ho-
mogeneous element. We have a map My x N5y — (M ®r N) () sending
m/f* xn/f" to (m@mn)/f**". As this is R s -bilinear, we get an induced map
M(f) ®R( f N( f — (M®g N) (f)- Since a map of #-sheaves induces a map of
sheaves, we geta natural map

M®Ox N > M®gN. (12.1)

PROPOSITION 12.3 Suppose R is generated in degree 1. Then the natural map (12.1) is
an isomorphism.



Proor: By assumption, X = ProjR is covered by open affines of the form
D, (f) where f has degree 1. For such an f, the functor M — M) is the same
as tensoring with R/(f — 1) ~ Ry by the previous lemma. Furthermore,

(M®r R(f)) @Ry, (N®R R(f)) =~ (M®r N) ®r R ).

This isomorphism provides the inverse to the natural map M) ®g,, N(y) —
(M ®g N) ) defined above. Then, since the map (12.1) restricts to an isomor-
phism on all D (f) for f € Ry, it is an isomorphism. Q



12.2  Serre’s twisting sheaf O(1)

Arguably the most interesting sheaf on X = Proj R is the so-called twisting sheaf,
denoted by Ox(1). This is a generalization of the tautological sheaf on P?, and
constitutes a geometric manifestation of the fact that R is a graded ring.
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For an integer n, we will define an R-module R(n) as follows: As an under-
lying module R(n) is just R, but with the grading shifted by n:

R(n)d = Rd+n

This is naturally a graded R-module and hence gives rise to a quasi-coherent
Ox-module on X.
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DEFINITION 12.4 For an integer n, we define
Ox(n) = R(n).
For a sheaf of Ox-modules F on X, we define the twist by n by F ®¢, Ox(n).
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For an element r € R, there is a corresponding section in I'(X, Ox(d)). This
is because we can think of an element of I'( X, Ox(d)) as a collection of elements
(rf,D+(f)) with rf € (Rf); matching on the overlaps D (f) n D, (g). Hence
we can define an Rp-module homomorphism

Ry — T(X,0x(d))

i) = T COoup, o) — T
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by 7 — (r/1,D1(f)). (On the overlaps D (fg) it is clear that the two elements

(r/1,D4(f)) and (r/1,D(g)) become equal, so this defines an actual global
section of O(d)). Abusing notation, we will also denote the section by 7.
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Note that 1t f € Ry, then R(n) ) = f"R(5). Thus, on the affine D+(f), we
have Ox(n)|p, (r) = f"Oxl|p, (). In particular, Ox(n)|p, (r) =~ Op, (s)- In other,
words Ox(n) is a locally free sheaf of rank 1, that is, an invertible sheaf. By the
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PROPOSITION 12.5 If R is generated in degree 1, then Ox(n) is an invertible sheaf for
every n. Moreover, there is a canonical isomorphism

Ox(m+n) ~ Ox(m) ®o, Ox(n)

Indeed, if R is generated in degree 1, Proposition 12.3 shows that Ox(m) ® Ox(n)
is the sheaf associated to R(m) ®g R(n) ~ R(n + m), i.e,, Ox(n + m).



ExampPLE 12.6 Consider again the example of projective space P} = ProjR
where R = k[xy,...,x,]. We use the covering {U;} of the distinguished open

sets U; = D+(xz-) ~ Spec (k[xo,...,xn](xi)) = Spec (k[xox,-‘l,...,xnxi‘l]). Then

R (l)(xi) = (k[xo, .. "x"](xi))l = xlk[xox; 7, ..., xnx;71], and so

T (U;,O (1)) = xk[xoxi 7L, ..., 20271
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On the overlaps, (R (l)xi) x =R (l)x,-x]- = (R (l)xi) ., We find that two regular
sections | ]

and



restrict to the same section of O (I) |y;~u; if and only if

X0 Xn Xi : X0 Xn
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12.3 Extending sections of invertible sheaves

Let F be an Ox-module and let x € X be a point. We define the fiber of F at x to
be the k(x)-vector space



If U is an open set containing x and s € I'(U, F), we denote by s(x) the image
of the germ s, € Fy in F(x).

DEFINITION 12.7 Let L be an invertible sheaf and f € T' (X, L). We define the open set
Xy as

Xs = {x e X|f(x) # 0}.

Equivalently, X is the set of points where f ¢ myL,.
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Xy is indeed an open set of X: L is locally free, so through every point there
is a neighbourhood U such that L|;; ~ Ox|y. To show that it is open, we can
therefore assume that L = Ox. If x € X there exists a f; € Ox, such that
fxtx = 1. Choose an open neighbourhood V of x such t, is represented by a
section t € I'(V,Ox). By shrinking V we can assume that (f|y)t =1 on V, and
so V < X is open.
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LEMMA 12.8 Suppose X is a noetherian scheme. Let F be a quasi-coherent sheaf on X,
and L an invertible sheaf. Suppose f € I'(X, L). Then:

i) If a section t € T'(X, F) restricts to zero on Xy, then there is an integer N
such that t ® fN e T(X, F ® LN) is zero (on all of X).

ii) Suppose t € T (Xy, F). Then there is an integer N such that t ® fN extends
to a global section of F @ LN.

L, e T(0w,0)

< 1
) X & %2 I'L'{\U\“CQ’L"/‘,



) ~J

—~ PN - M
d, O}C ) Ng lek‘rwf g« \M«xﬁml ()

12.4 The associated graded module

We have associated to a graded R-module M a sheaf MonX = Proj R. To classify
quasi-coherent sheaves on X we would, like in the case of affine schemes, give
some sort of inverse to this assignment. However, unlike the case for X = Spec A,
we can not simply take the global sections functor. Indeed, even for 7 = Ox on
X = IP}(, I'(X, Ox) = k, from which we certainly cannot recover F. The remedy
is to look at the various Serre twists F(m) — in fact all of them at once:
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DEFINITION 12.10 Let R be a graded ring and let F be an Ox-module on X = Proj R.
We define the graded R-module associated to F, I',(F) as

&V\,,) [W(F) = @rxr n)).
N R el

Ry A ot T € T(X, OW))
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This has the structure of an R-module: If r € R;, we have a corresponding
section r € I'(X, Ox(d)) (abusing notation, as before). So if o € I'(X, F(n)) then
we define -0 € T'(X,F(n +d)) by the tensor product r ® ¢, and using the
isomorphism F(n)® O(d) ~ F(n+d). In particular, I',(Ox) is a graded ring.



EXERCISE 12.1 Let k be a field and let R = k|[xo,...,x,|. Let 7 : A" -0 —
P} = Proj R denote the ‘quotient morphism” from Exercise 9.9. Show that for a
graded R-module M, we have

(Ml ppr_o) = @ M(d)
nezZ



Sections of the structure sheaf

PROPOSITION 12.11 Let R be a graded integral domain, finitely generated in degree 1
by elements x, ..., xu, and let X = Proj R. Then

i) Tu(Ox) = Nito Rz < K(R)
ii) If each x; is a prime element, then R = I'x(Ox).



Proor: Cover X by the opens U; = D, (x;). We have, since I'(D(x;), O(m)) ~
(Rx,)m, that the sheaf axiom sequence takes the following form

) “%ﬁgmxﬂm*?(&fw

Taking directs sums over all m, we get

n

0 —»TI«(0x)— (—D(in) - @(sz'xj)

i=0 L]



So a section of I',(Ox) corresponds to an (n + 1)-tuple (to,...,ts) € @i_o(Rx,)
such that ¢; and ¢; coincide in inx]. for each i # j. Now, the x; are not zero-
divisors in R, so the localization maps R — R, are injective. It follows that



we can view all the localizations Ry, as subrings of Ry, ,, and then I',(Ox)
coincides with the intersection

n

+1 +1
ﬂin c Alxy, -, x;].
i=0

In the case each x; is prime, this intersection is just R. 3
P, e
\
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( /,] + 0&) <X, I'«(Ox) ~ Alxo, ..., %]

In particular we can identify T (P, O(d)) with the A-module generated by homoge-
neous degree d polynomials.
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When R is not a polynomial ring, it can easily happen that I',.(Oy) is different
than R. Here is a concrete example:

ExAMPLE 12.13 (A quartic rational curve) Let k be a field and let R be the k-algebra
R = k[s*s%,st3,t4] < k[s,t]. Note that the monomial s?#* is missing from the
generators of R. Define the grading such that Ry = k- {s*, 5%, st3, t%}.
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We can also think of R as the graded ring

2 3 2 .3
R = k[xo, x1, X2, x3]/ (x§5X2 — X3, X1X5 — X5, X0X3 — X1X2).

We have a covering Proj R = Uy u U;, where
Up = Spec(Ry,)) and Uy = Spec(R,,))-

£

Here R(,) = k[%, 5, 5] = k[%] and R,y = k[3]. So ProjR is in fact isomorphic
to IPL. We have shown that X embeds as a rational (degree 4) curve in IP3.

\QEXo, %)
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What is I'(X, Ox(1))? On the opens we find Ox(1)(Up) = k [t] - s* and
Ox(1)(U1) = k [¢] - t*. So using the sheaf sequence, we get

0 - I(X, 0x(1)) — k E] stk H # ok E 2] u



Note that the monomial s?#? belongs to both k [$] t* and k [£] s*, and so defines
an element in I'(X, Ox(1)). In fact,

I['(X,0%x(1)) = k{s4, s3t, s%t2, st3, t4}

even though Ry = k{s*, s%¢, st3, #4}.
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In this example, the graded ring I'«(Ox) = k[s%,s%t,st3,t4] is the integral
closure of R. We will see later that this is not a coincidence. *



The homomorphism «.

Let X = ProjR, where R be a graded ring and let M be a graded R-module.
It is a natural question how to recover M from the sheaf M. We will define a
homomorphism of graded R-modules called the saturation map
«: M — T, (M)
As before, it is useful to think of elements in I'(X, M(n)) as a collection
of elements (mg, D (f)) for m € (M(s))» and f € R matching on the various
overlaps.



PROPOSITION 12.14 When R is generated in degree 1, there is a graded R-module
homomorphism

~—.

& : M — T,(M)

Indeed, we can define « by sending an element m € M, to the collection given
by (m/1,D.(f)), where f ranges over R;. On the overlaps D (f) n D1 (g) =
D, (fg) itis clear that the two elements (m/1, D+ (f)) and (m/1, D+ (g)) become
equal so this defines an actual global section of M(n). We see that this is a
graded homomorphism. Moreover, it is functorial in M.



LEmMMA 12.15 If R is a graded Noetherian integral domain generated in degree one.
Then R’ =T, (Ox) is an integral extension of R.



Proor: Let x1,...,x, be degree one generators of R. Leta : R —» R’ = I',(Ox),
be the map above. It is clear that the map is injective: If r € R is an element so
that /1 = 0 over every Ry, then r = 0.
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To show integrality, let s € R’ be a homogeneous element of non-negative
degree. By quasi-compactness, we can find an n > 0, so that a(x)s € a(R) for
every i. R,, is generated by monomials in x; of degree m, so a(R,,)s < a(R)
for m large (e.g., m > kn). Let R®*" be the ideal of R generated by elements of
degree > kn. We have that a(R>*")s ¢ a(R>*"). Moreover, since R is noetherian,
R>"™ is finitely generated, so applying the Cayley—Hamilton theorem, we get
that s satisfies an integral equation over R. Hence R’ is integral over R. D



The map B

Let F be an Ox-module. We get a natural R-module I',(F), and in turn a sheaf
of Ox-modules I'y(F). We will define a map of Ox-modules

B:T(F)—>F (12.2)



T, )=
M= T(F) £ % T(D9),0, (4)

as follows. Let f € R;. We will define B over D, (f). A section of I'y(F) is
represented on D (f) by a fraction m/ f? where m € T'(X, F(d)). If we think
of f~% as a section in O(—d)(D-(f)), then we can consider the tensor product
m® f~ which is a section of F via the isomorphism F(d) ® O(—d) ~ F. This



is compatible with the module structures, so we obtain a homomorphism of
Ox-modules

B:Tu(F)—>F
by associating m/ f* to m® f .



PROPOSITION 12.16 Suppose R is a graded ring, finitely generated in degree 1 over Ry.
Suppose F is a quasi-coherent sheaf on Proj R. Then the map

B:Tu(F)—>F (12.3)

is an isomorphism.



Proor: Since R is generated by R; over R, the open sets D (f) with f € Ry
cover X. To show that (12.3) is an isomorphism of sheaves, it is sufficient to
prove it on such an open.
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Let f € Ry, and consider it as a section of I'(X, O(1)). Then taking L = O(1)
in Lemma 12.8, point (i) there says that if an element s of I'(D(f), F) is given,
we can find some element ¢ of I',(F)n (for N sufficiently large) such that
t® f~N e ['(D4(f), F) equals s. This implies that the map B is surjective.

Q: 'E€~N
— ¢ o let au %
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For injectivity, suppose s € I'(X, F(n)) is such that s® f~" = 0 on D (f),
ie. s/f" € Ix(F)(s is in the kernel of (12.3) on the D, (f)-sections. Then the
lemma implies that there is a power fN with s® fN e T(X, F(n+ N)) = 0. This
states that s/ f" = 0 in I'«(F) 5 by the definition of localization and so the map
is injective. 0



We have now defined two functors
~: GrModg — QCohy dhe a0
W — /)I & l\njeufu’
and
I'y : QCohxy — GrMody

J & Tk (F)

Mj\QL*O/XJ/(x;,K?3 A Q = 0
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Since B : I'x(F) — F is an isomorphism, it follows that ~ is essentially surjective.
However, unlike the affine case, the functors do not give mutual inverses. This
is because, as we have seen, that ~ is not faithful; the ~ of any module M which
is finite over Ry is the zero sheaf.



We can define an equivalence relation on graded modules by setting M ~ N
if ®;5;, Mi ~ @;5;, Ni for some iy € Z. For two finitely generated graded
R-modules M, N we have M ~ N if and only if M ~ N, so we have identified
precisely the ‘kernel’ of the functor ~.



Putting everything together, we find

THEOREM 12.17 Let R be a graded ring, finitely generated in degree 1 over Rg and let
X = ProjR. Then the functors

~: GrModr — QCohx



and
T : QCohx — GrMod3¥!

———

satisfy T«(F) = F for all F € QCohx, and give an equivalence between the categories
of quasi cohoherent sheaves on X and graded R-modules modulo the equivalence relation
M~ N.
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12.5 Closed subschemes of Proj R

Having discussed what quasi-coherent sheaves are on projective spectra, we will
now use this to study closed subschemes. We saw earlier that given a graded
ideal I — R we could associate a closed subscheme V(I) < ProjR and a closed
immersion Proj(R/I) — ProjR. On the other hand, we also saw above that



immersion Proj(R/I) — ProjR. On the other hand, we also saw above that
many graded modules M could give rise to the same quasi-coherent sheaf M.
This is also the case for graded ideals , as we shall see, but luckily we are again
able to completely identify which ideals give rise to the same closed subscheme.
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In the discussion it will be convenient to introduce the saturation of an ideal.

The upshot will be that this will serve as the ‘largest” ideal corresponding to a
given subscheme. We fix an ideal B < R (which will typically be the irrelevant

ideal R;). Then for a graded ideal I — R, we define the saturation of I with
respect to an ideal B is defined as the ideal

I:B®:=|JI:B' ={reR|B"rel for somen > 0}.

i=0

Mee - I ¢ I'g



We say that I is B-saturated if I = I : B® and more concisely, saturated if it
is R -saturated. We will here denote I : (R;)® by I. Note that the ideal I is
homogeneous if I is.
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ExaMPLE 12.18 In R = k[xo, x1], the (xo, x1)-saturation of (x3, xox1) is the ideal
(x0). Note that both (x9) and (x2, xox1) define the same subscheme of P}, but in
some sense the latter ideal is inferior, since it has a component in the irrelevant
ideal (xg, x1). This example is typical; the saturation is a process which throws
away components of I supported in the irrelevant ideal. ¥
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PROPOSITION 12.19 Let A be a ring and let R = Alxy, ..., xy].

i) To each closed subscheme Y of P, there is a corresponding homogeneous sat-
urated ideal I — R, such that Y corresponds to the subscheme Proj(R/I) —
Proj R.
ii) Two ideals I, | deﬁned the same subscheme if and only if they have the same
saturation. I = 'J T - B = J> 'B B = (%.. %, )
iii) If Y c IP", is a closed subscheme with ideal sheaf I, then T (Z) is a saturated

ideal of R. In fact, the ideal T.(Z) is the largest ideal that defines the
subscheme Y.



In particular, there is a 1-1 correspondence between closed subschemes i : Y — P", and
saturated homogeneous ideals I — R.



Proor: (i) Leti:Y — P’ be a subscheme of P’} = ProjR and let Z < Op»
denote the ideal sheaf of Y. Using the fact that global sections is left-exact, we
have I'«(Z)  T«(Opz) = R. I = I'x(Z) is naturally an R-module, so in fact I is
a (homogeneous) ideal of R.



w

Any such ideal I gives rise to a closed subscheme i’ : Proj(R/I) — P’ and
hence an ideal sheaf J satisfying I = J. By Proposition 12.16, we also have
I= Z, so the two quasi-coherent ideal sheaves coincide and i is indeed the same
as i'. By construction I = I',(I), so I is saturated.

~



(ii) If I,] define the same subscheme, they have the same ideal sheaf [ =
Z=J =]onP4. Letre I, then on U; = D, (x;), the fraction rx;? defines
an element of T'(U;,I) = I'(U;]). Since also Z corresponds to J, we have
rxi_d = tix; 4 for some t; € J; of degree d. Hence there is a power n; such that

x;(r —t;) = 0 in R. This shows that r is in the saturation of J. By symmetry, we
have I = J.



(iii) Let 7 € R be such that x'r € T',(Z) (that is 7 € ['+(Z)). Let m = maxn,;.
We want to show that r € T'w(Z); = I'(X,Z(d)). On U; = D (x;), we see that
x; " @ x"'r defines a section of Z(d + m) ® O(—n). The latter is isomorphic

to Z(d) and x; " ® x}'r = r via this isomorphism. So r € I'(U;, Z(d)). Hence
rel(X,Z(d)) cT«(Z), and I'y(Z) is saturated. Q
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ExaMPLE 12.20 Let k be a field and let R # k[u,v]. Moreover introduce the
graded ring S = R = k[u",u" v,...,v"]. We have a graded surjection
(P . k[xg,...,xn] — S

given by x; — u'v" " for i = 0,...,n. The ideal I = Ker ¢ is generalted by the
2 x 2-minors of the matrix



X0 X1 ... Xp—1
X1 X2 ... Xn

Thus we have an embedding of P; = Proj S into IP” with image V(I). The
image is called a rational normal curve of degree n. Note that for n = 2, the image

of P} — P2 is the conic x7 = xqx;. *



12.6 The Segre embedding

Recall that for affine schemes X = Spec B, Y = Spec C over S = Spec A, the fiber

product X xs Y was defined as Spec(B®y4 C). There is a similar statement for
Proj:
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THEOREM 12.21 Let R, R’ be graded rings with Ry = Ry = A. Let S = @,50(Rn ®
R})). Then

Proj S ~ ProjR x 4 Proj R’



COROLLARY 12.22 Let A be a ring and let m,n > 1 be integers. Then there is a closed
immersion

Jm,n . ]P% XA ]Pz —> ]Pmn+m—+—7’l



Proor:  Consider the A-algebra S = @,-((R:, ® R}) above, where R =
Alxo,...,xm] and R’ = Alyo,...,ys| are the polynomial rings. Consider the
following morphism of graded A-algebras.

A[Zij]osigm,osjgn — Alxo, ..., Xm) @ AlYo, - - -, Yn]
Zij = Xi ® Y.

It is clear that S is generated as an R ® Rj-algebra by the products x; ® y;, so
the map is surjective and thus we get the desired closed immersion. D



ExamrLE 12.23 Let R = k[xo,x1], R = k[yo,y1]. Then u;; = xizj defines an
isomorphism

S = P (Ru®R},) — kluoo, uo1, w10, u11]/ (HooU11 — Uo110)

n=0

This recovers the usual embedding of P} x; IP; as a quadric surface in IP3.

A smooth quadric surface



12.7 Two important exact sequences

Hypersurfaces

Let R = k[xo,...,xn] and P} = ProjR. Let F € R denote a homogeneous
polynomial of degree d > 0. F determines a projective hypersurface X = V(F),

X = W(R/(FD G P,



which has dimension n — 1. Note that I(X) = (F) We
then have an isomorphism N &

R(—d) — I(X) | — F

given by multiplication with F. Note the shift here: The constant ‘1" gets sent to
F should have degree d on both sides! This gives the sequence of R-modules

0— R(—d) >R—>R/(F) >0
1

T(x)



gj@% LolHe Vc% Jove,
Dule).

We have R(—d) = Opr(—d) and (R/F) = ixOx, where i : X — P} is the
inclusion, so we get the exact sequence of sheaves

0 — Opy(—d) — Opy — ixOx — 0

/\

(\omﬂw) vwéfq WA res e -
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Complete intersections 0&%"/'” dQW >( = Nn- 2

Let F, G be two homogeneous polynomials without common factors of degrees
d, e respectively, Tet I = (F,G) and X = V(I) c P}. X is called a ‘complete
intersection’ ~it is the intersection of the two hypersurfaces V(F) and V(G). To
study X we have exact sequences

0 R(—d—e) % R(-d)®R(—e) B 10

€5 < €2
A
€O (— r' Q‘Z —_ Q __e(

€ ) =
&

&% —



The maps here are defined by a(h) = (—hG,hF) and B(h1,hy) = hiF + hyG.
These maps preserve the grading.



To prove exactness, we start by noting that « is injective (since R is an integral
domain) and B is surjective (by the defintion of I). Then if (h1,hy) € Kerp,
we have i1 F = —hyG, which by the coprimality of F, G means that there is an
element h so that hy = —hG, h, = hF.



: 0~ IX,—DOW ﬂikox\)o

Applying ~, we obtain the following exact sequence 7

0— Olpz(—d — 6) — O]pg(—d) (—BO][);:(—B) — IX — 0

These sequences are fundamental in computing the geometric invariants
from X. We will see several examples of this later.



12.8 Two examples of locally free sheaves

Projective space

Let k be a field and write P" = Proj R where R = k|[xy,...,x,]. Consider the
map of graded modules ¢ : R(—1) — R"*! sending 1 € R to the element
(xo,---,%n) € R, This map is clearly injective, so we get an exact sequence

0> R(-1) LR M0
9

| — (XOI K- ‘/XXL')



where M = Coker ¢. Applying ~, we get an exact sequence of sheaves

0 — Opr(-1) — (9;;,%1 —-&—0 (12.4)

where & = M. We claim that & is locally free of rank n. Indeed, on the



& (D+(xo))

12



N
Hence &|p +(x0)~ Ou,- By a symmetric argument, & is free also on the other
D (x;), so it is locally free of rank n. We will show in Section 15.6 that & is not
free, and in fact not even isomorphic to a direct sum of invertible sheaves.



The four-dimensional quadric hypersurface
Let k be a field and let R = k[po1, P02, P03, P12, P13, P23)- Consider the matrix
p2 pi3 ps O
M= | P2 —Ps O P2

po1 0 —po3 —pi3
0 po1  Po2 P12

Rt R



Let us consider the loci in IP° = Proj R where this matrix has a given rank. Note
that M has rank < 3 precisely when the determinant vanishes. In fact, this
matrix M has the special property that the determinant is a square: det M = 42
where

q = po1p23 — Po2P13 + Po3p12



The locus of points where M has rank 2 is given by the ideal generated by the
2 x 2-minors, which by direct calculation has radical equal to the irrelevant ideal
R, . Consider the exact sequence

0 — R(-1)* 2 R* - Coker M — 0
Applying ~ we obtain an exact sequence of sheaves

0 — Ops(—1)* » Ops = F — 0 (12.5)

/
SWW(F \ = \/(?B

where F = Coker M.



Consider the quadric hypersurface X = V(g) and let i : X — IP° denote the
inclusion. Applying, i* we arrive at an exact sequence of sheaves on X



0-Ox(-1)* - 0% —>&—0

where & = i*F. (Recall that i* is right-exact; the sequence here exact on the left
because it is exact on stalks). Now the discussion above shows that & is locally

free of rank 2 (as it has rank 2 at all closed points). The sheaf & is known as the
universal quotient bundle on the Grassmannian Gr(2,4).



12.9 The Hilbert syzygy theorem

Let k be a field and let R = k[xo, . .., x,|. Then if M is a finitely generated graded
R-module, then Hilbert Syzygy theorem says that there is a finite free resolution
(that is, an exact sequence)

0>F —>-—>F>Fh—>M-0

where Fo% = (—Df’i 1 R(—d;) is a free graded R-module. F; is called the i-th syzygy
module of the resolution. The minimal integer n that appears in such a resolution
is called the projective dimension of M.



If we apply the ~-functor here we obtain an exact sequence of sheaves on IP}
0o & - —>E—>E—>M—0

where & = @?L 1 Opy (—d;) is a direct sum of sheaves of the form O(d).



Thus any coherent sheaf can be resolved by locally free sheaves — in fact
direct sums of invertible sheaves. This shows why the invertible sheaves O(d)
are so important: They are the building blocks of all coherent sheaves on IP”.
We already saw some examples such a presentation was convenient. Let us give
one more:



EXAMPLE 12.24 (The twisted cubic curve) Let k be a field and consider IP? = Proj R
where R = k[xg, x1,x2, x3]. We will consider the twisted cubic curve C = V(1)
where I c R is the ideal generated by the 2 x 2-minors of the matrix

X0 X1 X
M= 0 X1 X2
X1 X2 X3

. _ — (2 2
ie, I = (670, q1, 6]2) = (x1 — X0X2, X0X3 — X1X2, —X5 + x1x3).



Consider the map of R-modules R®> — [ sending e; — g;. This is clearly
surjective, since the g; generate I. Let us consider the kernel of this map, that
is, the module of relations of the form apqo + a191 + 4292 = 0 for a; € R. There
are two obvious relations of this form, i.e., the ones we get from expanding the

determinants of the two matrices

X0 X1 X2 X0 X1 X2
Xo X1 X2 X1 X2 X3
X1 X2 X3 X1 X2 X3



(So first matrix gives xoq2 — x141 + x242 = 0 for instance). These give a map
R? M, R3, where M is the matrix above. This map is injective, and it turns out
that there is an exact sequence of R-modules

0->REMRI 150



Again, if we want to be completely precise, we should consider these as graded
modules, so we must shift the degrees according to the degrees of the maps
above

0> R(=32 K R(-2° 5150



This gives the resolution of the ideal I of C. Then applying ~, and using the fact
that Z = I, we get a resolution of the ideal sheaf of C:

0 — Opa(—3)* = Opa(—2)° > Z -0

We will see later in Chapter 15 how to use sequences like this to extract geometric
information about C. *



