Spec A $O_X = A$ $O_X(D_4(P)) = R_{(P)}$ $O_X(D_4(P)) = R_{(P)}$

F = M H A- moder

Sheaves on projective schemes

Chapter 12

12.1 The graded ∼-functor

Let R be a graded ring and let $GrMod_R$ denote the category of graded R-modules. Just like in the case of Spec A we will define a tilde-construction to construct sheaves on Proj R from graded R-modules, giving a functor $GrMod_R$ to $Mod_{\mathcal{O}_X}$. However, as we will see, this is not an equivalence of categories.

$$D_{+}(f) \supset D_{+}(g) \qquad M_{(x)} \Longrightarrow (M_{x})$$

$$M_{f} \longrightarrow M_{g} \qquad M_{g} \longrightarrow M_{g}$$

Recall that for $f,g \in R_+$, such that $D_+(g) \subset D_+(f)$, there is a canonical localization homomorphism $\rho_{f,g}: M_{(f)} \to M_{(g)}$ where as before $M_{(f)}$ denotes the degree 0-part of the localization $\{1,f,f^2,\ldots\}^{-1}M$. It follows that we can define a \mathscr{B} -presheaf \widetilde{M} by defining for each $D_+(f)$,

$$\widetilde{M}(D_{+}(f)) = M_{(f)}.$$

$$(R_{f})_{o}$$

$$(N_{+}(f)) = (M_{f})_{o}$$

$$(R_{f})_{o}$$

K Spec (R.f.)

Note that $\widetilde{M}|_{D(f)} \simeq (\widetilde{M}_{(f)})$ via the isomorphism of $D_+(f)$ with $\operatorname{Spec} R_{(f)}$. It follows that \widetilde{M} is in fact a \mathscr{B} -sheaf, and hence gives rise to a unique sheaf on $X = \operatorname{Proj} R$. The same identity shows that \widetilde{M} is an quasi-coherent \mathcal{O}_X -module.

As in the Spec case, the assignment $M \mapsto \widetilde{M}$ is functorial. The following proposition summarizes the properties of this functor.

X CT

PROPOSITION 12.1 The contravariant functor $M \mapsto \widetilde{M}$ has the following properties:

- \square ~ *is exact, commutes with direct sums and limits.*
- lacksquare The stalks satisfy $\widetilde{M}_{\mathfrak{p}}=M_{(\mathfrak{p})}$ for each $\mathfrak{p}\in\operatorname{Proj} R.$
- $\left(\widetilde{\mathcal{M}} \right)_{x} = \left(\mathcal{M}_{\beta} \right)_{c}$
- \Box *If* R *is noetherian, and* M *is finitely generated, then* \widetilde{M} *is coherent.*

$$\mathcal{D}_{+}(x_{0}) \qquad \mathcal{M}_{+}(x_{0}) \qquad \frac{\mathcal{M}_{+}(x_{0})}{\mathcal{N}_{0}} \qquad \frac{\mathcal{M}_{+}(x_{0})}{\mathcal{N}_{0}} \qquad \mathcal{M}_{+}(x_{0}) \qquad \mathcal{$$

However, it is important to note that, unlike the affine case, the functor is not faithful, as several modules can correspond to the same sheaf. For instance, take any graded R-module M such that $M_d = 0$ for all large d. Then $M_{(f)} = 0$ for all $f \in R_+$, and so $\widetilde{M} = 0$, even though M is not the 0-module. We will however see shortly that it is only the modules of this form that cause the lack of faithfulness.

$$R = b[x_0, x_1]$$

$$M = \frac{R}{(x_0^2, x_1^2)} \sim M = 0$$
when $M \neq 0$.

$$\mathbb{P}^{2} \quad x_{0} \quad x_{1} \quad x_{2}$$

$$x_{2} = 1 \qquad 1 \qquad 1 \qquad 1 \qquad 2 = \frac{x_{0}}{x_{2}} \qquad 1 \qquad 2 = \frac{x_{1}}{x_{2}}$$

The following is useful for working with the localization of M. It says essentially that we are allowed to 'substitute in 1' when restricting a module to an affine chart $D_+(f) \subset \operatorname{Proj} R$,

LEMMA 12.2 Suppose that M is a graded R-module and $f \in R$ homogeneous of degree 1. Then there are natural isomorphisms

$$M_{(f)} \simeq M/(f-1)M \simeq M \otimes_R R/(f-1)$$

$$(M_f)_0 \simeq \frac{M}{(f-1)M} \simeq M \otimes P_{f-1}$$

Let us use this to compare $M \otimes_R N$ with $M \otimes_{\mathcal{O}_X} N$. Let $f \in R$ be a homogeneous element. We have a map $M_{(f)} \times N_{(f)} \to (M \otimes_R N)_{(f)}$ sending $m/f^a \times n/f^b$ to $(m \otimes n)/f^{a+b}$. As this is $R_{(f)}$ -bilinear, we get an induced map $M_{(f)} \otimes_{R_{(f)}} N_{(f)} \to (M \otimes_R N)_{(f)}$. Since a map of \mathscr{B} -sheaves induces a map of sheaves, we get a natural map

$$\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N} \to \widetilde{M \otimes_R N}.$$
 (12.1)

Proposition 12.3 Suppose R is generated in degree 1. Then the natural map (12.1) is an isomorphism.

PROOF: By assumption, $X = \operatorname{Proj} R$ is covered by open affines of the form $D_+(f)$ where f has degree 1. For such an f, the functor $M \to M_{(f)}$ is the same as tensoring with $R/(f-1) \simeq R_{(f)}$ by the previous lemma. Furthermore,

This isomorphism provides the inverse to the natural map $M_{(f)} \otimes_{R_{(f)}} N_{(f)} \rightarrow (M \otimes_R N)_{(f)}$ defined above. Then, since the map (12.1) restricts to an isomorphism on all $D_+(f)$ for $f \in R_1$, it is an isomorphism.

 $(M \otimes_R R_{(f)}) \otimes_{R_{(f)}} (N \otimes_R R_{(f)}) \simeq (M \otimes_R N) \otimes_R R_{(f)}.$

12.2 Serre's twisting sheaf O(1)

Arguably the most interesting sheaf on X = Proj R is the so-called *twisting sheaf*, denoted by $\mathcal{O}_X(1)$. This is a generalization of the tautological sheaf on \mathbb{P}^n_k , and constitutes a geometric manifestation of the fact that R is a *graded ring*.

$$R(n) = R \quad (som modul)$$

gradenig: $(R(n))_{d} = R_{d+n}$

For an integer n, we will define an R-module R(n) as follows: As an underlying module R(n) is just R, but with the grading shifted by n:

$$R(n)_d = R_{d+n}$$

This is naturally a graded R-module and hence gives rise to a quasi-coherent \mathcal{O}_X -module on X.

$$R = k[x_0, x_1]$$
 $\longrightarrow (R(1))_0 = kx_0 \oplus kx_1$
 $R(1)$ bliv en wodel over R .

Finvedihel: Floralt fri rang 1.

$$f(n) := f \otimes_{Q} G_{X}(n)$$

DEFINITION 12.4 For an integer n, we define

$$\mathcal{O}_X(n) = \widetilde{R(n)}.$$

For a sheaf of \mathcal{O}_X modules \mathcal{F} on X, we define the twist by n by $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$.

$$R = k[X_0, X_1]$$
 X_0
 $X_$

For an element $r \in R_d$, there is a corresponding section in $\Gamma(X, \mathcal{O}_X(d))$. This is because we can think of an element of $\Gamma(X, \mathcal{O}_X(d))$ as a collection of elements $(r_f, D_+(f))$ with $r_f \in (R_f)_d$ matching on the overlaps $D_+(f) \cap D_+(g)$. Hence we can define an R_0 -module homomorphism

$$R_d \to \Gamma(X, \mathcal{O}_X(d))$$

$$0 \longrightarrow \Gamma(\chi_1 O(d)) \longrightarrow \Gamma\Gamma(D_{+}(f), O(d)) \longrightarrow \Gamma\Gamma$$

$$f \in R, \qquad f \in R$$

X = Spec k(x) x m) global sehrjon i O

by $r \mapsto (r/1, D_+(f))$. (On the overlaps $D_+(fg)$ it is clear that the two elements $(r/1, D_+(f))$ and $(r/1, D_+(g))$ become equal, so this defines an actual global section of $\mathcal{O}(d)$). Abusing notation, we will also denote the section by r.

$$(R(n)f)_{o} = f^{n} \cdot (Rf)_{o}$$

$$(Rf)_{o}$$

$$f^{n} = f^{n}$$

$$= f^{n} \cdot (Rf)_{o}$$

$$deg r - N = n$$

Her brilos at

 $P_{rij}R$ deliber ove A(f) A(f)

Note that if $f \in R_1$, then $R(n)_{(f)} = f^n R_{(f)}$. Thus, on the affine $D_+(f)$, we have $\mathcal{O}_X(n)|_{D_+(f)} = f^n \mathcal{O}_X|_{D_+(f)}$. In particular, $\mathcal{O}_X(n)|_{D_+(f)} \simeq \mathcal{O}_{D_+(f)}$. In other, words $\mathcal{O}_X(n)$ is a locally free sheaf of rank 1, that is, an invertible sheaf. By the

$$SO_X(n)$$
 is a locally free sheaf of rank 1, that is, an invertible sheaf.

$$\frac{\Gamma}{R}N = \frac{R}{R}N \cdot \Gamma'$$

$$= 0$$

$$\Gamma' \in \mathbb{R} \cdot \mathbb{R} \cdot$$

PROPOSITION 12.5 If R is generated in degree 1, then $\mathcal{O}_X(n)$ is an invertible sheaf for every n. Moreover, there is a canonical isomorphism

$$\mathcal{O}_X(m+n) \simeq \mathcal{O}_X(m) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$$

Indeed, if R is generated in degree 1, Proposition 12.3 shows that $\mathcal{O}_X(m) \otimes \mathcal{O}_X(n)$ is the sheaf associated to $R(m) \otimes_R R(n) \simeq R(n+m)$, i.e., $\mathcal{O}_X(n+m)$.

EXAMPLE 12.6 Consider again the example of projective space $\mathbb{P}_k^n = \operatorname{Proj} R$ where $R = k[x_0, ..., x_n]$. We use the covering $\{U_i\}$ of the distinguished open sets $U_i = D(x_i) \simeq \text{Spec}\left(k[x_0, \dots, x_n]_{(x_i)}\right) = \text{Spec}\left(k[x_0x_i^{-1}, \dots, x_nx_i^{-1}]\right)$. Then $R(l)_{(x_i)} = \left(k[x_0, \dots, x_n]_{(x_i)}\right)_l = x_i^l k[x_0x_i^{-1}, \dots, x_nx_i^{-1}]$, and so

$$(k(l)_{(x_i)} = (k[x_0, \dots, x_n]_{(x_i)})_l = x_i^l k[x_0 x_i^{-1}, \dots, x_n x_i^{-1}], \text{ and so } l$$

$$\Gamma\left(U_{i},\mathcal{O}\left(l\right)\right)=x_{i}^{l}k[x_{0}x_{i}^{-1},\ldots,x_{n}x_{i}^{-1}]$$

 $\nabla_{\mathcal{L}}(x_i)$

On the overlaps, $\left(R\left(l\right)_{x_i}\right)_{\frac{x_j}{x_i}} = R\left(l\right)_{x_i x_j} = \left(R\left(l\right)_{x_i}\right)_{\frac{x_i}{x_j}}$ we find that two regular sections

sections

$$x_i^l s_i \left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i} \right)$$

and

$$x_j^l s_j \left(\frac{x_0}{x_j}, \dots, \frac{x_n}{x_j}\right)$$

restrict to the same section of $\mathcal{O}\left(l\right)|_{U_{i}\cap U_{j}}$ if and only if

$$s_j\left(\frac{x_0}{x_i},\ldots,\frac{x_n}{x_i}\right) = \left(\frac{x_i}{x_i}\right)^l s_i\left(\frac{x_0}{x_i},\ldots,\frac{x_n}{x_i}\right)$$

Mål: $f \neq c \neq i \quad X = Proj R$ Sor en gradert R-modul M.

12.3 Extending sections of invertible sheaves

Let \mathcal{F} be an \mathcal{O}_X -module and let $x \in X$ be a point. We define the *fiber of* \mathcal{F} at x to be the k(x)-vector space

$$F(x):F_{x}/m_{x}F_{x} \cong F_{x} \otimes_{O_{x,x}} k(x)$$

If *U* is an open set containing *x* and $s \in \Gamma(U, \mathcal{F})$, we denote by s(x) the image of the germ $s_x \in \mathcal{F}_x$ in $\mathcal{F}(x)$.

DEFINITION 12.7 Let L be an invertible sheaf and $f \in \Gamma(X,L)$. We define the open set X_f as

$$X_f = \{x \in X | f(x) \neq 0\}.$$

Equivalently, X_f is the set of points where $f \notin \mathfrak{m}_x L_x$.

$$V(f) = \{x \in X\} \quad f(x) = 0 \} \quad \text{ev lubbet}.$$

 X_f is indeed an open set of X: L is locally free, so through every point there is a neighbourhood U such that $L|_U \simeq \mathcal{O}_X|_U$. To show that it is open, we can therefore assume that $L = \mathcal{O}_X$. If $x \in X_f$ there exists a $t_x \in \mathcal{O}_{X,x}$ such that $f_x t_x = 1$. Choose an open neighbourhood V of x such t_x is represented by a section $t \in \Gamma(V, \mathcal{O}_X)$. By shrinking V we can assume that $(f|_V)t = 1$ on V, and

so $V \subset X_f$ is open.

$$S \mid p(f) = 1 \quad f^n \cdot S = 0 \quad n \rightarrow 10$$

LEMMA 12.8 Suppose X is a noetherian scheme. Let \mathcal{F} be a quasi-coherent sheaf on X, and \mathcal{L} an invertible sheaf. Suppose $f \in \Gamma(X, \mathcal{L})$. Then:

- i) If a section $t \in \Gamma(X, \mathcal{F})$ restricts to zero on X_f , then there is an integer N such that $t \otimes f^N \in \Gamma(X, \mathcal{F} \otimes \mathcal{L}^N)$ is zero (on all of X).
- ii) Suppose $t \in \Gamma(X_f, \mathcal{F})$. Then there is an integer N such that $t \otimes f^N$ extends to a global section of $\mathcal{F} \otimes \mathcal{L}^N$.

$$\frac{1}{\chi^2} \in \Gamma(\mathcal{D}_{+}(\kappa), \mathcal{O})$$
 $\chi^2 \otimes \frac{1}{\chi^2}$ utvider.

F of ? F = M Horiban R-modul?

12.4 The associated graded module

We have associated to a graded R-module M a sheaf \widetilde{M} on $X = \operatorname{Proj} R$. To classify quasi-coherent sheaves on X we would, like in the case of affine schemes, give some sort of inverse to this assignment. However, unlike the case for $X = \operatorname{Spec} A$, we can not simply take the global sections functor. Indeed, even for $\mathcal{F} = \mathcal{O}_X$ on $X = \mathbb{P}^1_k$, $\Gamma(X, \mathcal{O}_X) = k$, from which we certainly cannot recover \mathcal{F} . The remedy is to look at the various Serre twists $\mathcal{F}(m)$ – in fact all of them at once:

$$\Gamma_{*}(O_{X}) = \bigoplus \Gamma(X,O(n))$$

NET

$$f(n) = f \otimes O(n)$$

DEFINITION 12.10 Let R be a graded ring and let \mathcal{F} be an \mathcal{O}_X -module on $X = \operatorname{Proj} R$. We define the graded R-module associated to \mathcal{F} , $\Gamma_*(\mathcal{F})$ as

$$\Gamma_*(\mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, \mathcal{F}(n)).$$

reRd
$$\sim$$
 solveyon $r \in T(X, O(d))$
 $\mp (n) \otimes O(d) \rightarrow \mp (n+d)$

This has the structure of an R-module: If $r \in R_d$, we have a corresponding section $r \in \Gamma(X, \mathcal{O}_X(d))$ (abusing notation, as before). So if $\sigma \in \Gamma(X, \mathcal{F}(n))$ then we define $r \cdot \sigma \in \Gamma(X, \mathcal{F}(n+d))$ by the tensor product $r \otimes \sigma$, and using the

isomorphism $\mathcal{F}(n) \otimes \mathcal{O}(d) \simeq \mathcal{F}(n+d)$. In particular, $\Gamma_*(\mathcal{O}_X)$ is a graded *ring*.

EXERCISE 12.1 Let k be a field and let $R = k[x_0, ..., x_n]$. Let $\pi : \mathbb{A}^{n+1} - 0 \to \mathbb{P}^n_k = \operatorname{Proj} R$ denote the 'quotient morphism' from Exercise 9.9. Show that for a

graded *R*-module *M*, we have

$$\pi_*(\widetilde{M}|_{\mathbb{A}^{n+1}_k-0})=igoplus_{n\in\mathbb{Z}}\widetilde{M}(d)$$

Sections of the structure sheaf

PROPOSITION 12.11 Let R be a graded integral domain, finitely generated in degree 1 by elements x_0, \ldots, x_n , and let X = Proj R. Then

i)
$$\Gamma_*(\mathcal{O}_X) = \bigcap_{i=0}^n R_{(x_i)} \subset K(R)$$

ii) If each x_i is a prime element, then $R = \Gamma_*(\mathcal{O}_X)$.

PROOF: Cover X by the opens $U_i = D_+(x_i)$. We have, since $\Gamma(D_+(x_i), \mathcal{O}(m)) \simeq (R_{x_i})_m$, that the sheaf axiom sequence takes the following form

$$(X, O(m)) \rightarrow O(m) \rightarrow \bigoplus_{i=0}^{n} (R_{x_i})_m \rightarrow \bigoplus_{i,j} (R_{x_i x_j})_m$$

Taking directs sums over all m, we get

$$0 \to \Gamma_*(\mathcal{O}_X) \to \bigoplus_{i=0}^n (R_{x_i}) \to \bigoplus_{i,j} (R_{x_i x_j})$$

So a section of $\Gamma_*(\mathcal{O}_X)$ corresponds to an (n+1)-tuple $(t_0, \ldots, t_n) \in \bigoplus_{i=0}^n (R_{x_i})$ such that t_i and t_j coincide in $R_{x_ix_j}$ for each $i \neq j$. Now, the x_i are not zero-divisors in R, so the localization maps $R \to R_{x_i}$ are injective. It follows that

we can view all the localizations R_{x_i} as subrings of $R_{x_0...x_n}$, and then $\Gamma_*(\mathcal{O}_X)$ coincides with the intersection

$$\bigcap_{i=0}^n R_{x_i} \subset A[x_0^{\pm 1}, \cdots, x_n^{\pm 1}].$$

In the case each x_i is prime, this intersection is just R.

$$P', O(1)$$

$$\Gamma(P', O(1)) \rightarrow P\left[\frac{x_1}{x_0}\right] \cdot x_0$$

$$P\left[\frac{x_1}{x_0}\right] \cdot x_0$$

S have expend
$$\leq 1$$
 $\Rightarrow S(X_1) = a \times b + b$
 $\Rightarrow S(X_1$

In particular we can identify $\Gamma(\mathbb{P}^n_A, \mathcal{O}(d))$ with the A-module generated by homogeneous degree d polynomials.

n,
$$\Gamma(P_A, O(d)) = R_d$$

= honoque polyar
av grad d.

When R is not a polynomial ring, it can easily happen that $\Gamma_*(\mathcal{O}_X)$ is different than R. Here is a concrete example:

EXAMPLE 12.13 (*A quartic rational curve*) Let k be a field and let R be the k-algebra $R = k[s^4, s^3t, st^3, t^4] \subset k[s, t]$. Note that the monomial s^2t^2 is missing from the generators of R. Define the grading such that $R_1 = k \cdot \{s^4, s^3t, st^3, t^4\}$.

$$x_0 = S^{4}$$
 $x_1 = S^{3}t$
 $x_2 = S^{4}s$
 $x_2 = S^{4}s$
 $x_3 = t^{4}s$

We can also think of R as the graded ring

$$R = k[x_0, x_1, x_2, x_3] / (x_0^2 x_2 - x_1^3, x_1 x_3^2 - x_2^3, x_0 x_3 - x_1 x_2).$$

We have a covering Proj $R = U_0 \cup U_1$, where

$$U_0 = \operatorname{Spec}(R_{(x_0)})$$
 and $U_1 = \operatorname{Spec}(R_{(x_3)})$.

Here $R_{(x_0)} = k[\frac{t}{s}, \frac{t^3}{s^3}, \frac{t^4}{s^4}] = k[\frac{t}{s}]$ and $R_{(x_3)} = k[\frac{s}{t}]$. So Proj R is in fact isomorphic to \mathbb{P}^1 . We have shown that X embeds as a rational (degree 4) curve in \mathbb{P}^3 .

$$X = \mathbb{P}^1$$
 $T(X_iO(i)) = kx_0 \oplus kx_1$

What is $\Gamma(X, \mathcal{O}_X(1))$? On the opens we find $\mathcal{O}_X(1)(U_0) = k \left[\frac{t}{s}\right] \cdot s^4$ and $\mathcal{O}_X(1)(U_1) = k \left[\frac{s}{t}\right] \cdot t^4$. So using the sheaf sequence, we get

$$0 \to \Gamma(X, \mathcal{O}_X(1)) \to k \left[\frac{s}{t} \right] s^4 \oplus k \left[\frac{t}{s} \right] t^4 \to k \left[\frac{s}{t}, \frac{t}{s} \right] u^4$$

Note that the monomial s^2t^2 belongs to both $k\begin{bmatrix} \frac{s}{t} \end{bmatrix}t^4$ and $k\begin{bmatrix} \frac{t}{s} \end{bmatrix}s^4$, and so defines an element in $\Gamma(X, \mathcal{O}_X(1))$. In fact,

$$\Gamma(X, \mathcal{O}_X(1)) = k\{s^4, s^3t, s^2t^2, st^3, t^4\}$$

even though $R_1 = k\{s^4, s^3t, st^3, t^4\}$.

The
$$R = T_*(O_X)$$
.

In this example, the graded ring $\Gamma_*(\mathcal{O}_X) = k[s^4, s^3t, st^3, t^4]$ is the integral closure of R. We will see later that this is not a coincidence.

The homomorphism α .

Let $X = \operatorname{Proj} R$, where R be a graded ring and let M be a graded R-module. It is a natural question how to recover M from the sheaf \widetilde{M} . We will define a homomorphism of graded R-modules called *the saturation map*

$$\alpha: M \to \Gamma_*(\widetilde{M})$$

As before, it is useful to think of elements in $\Gamma(X, \widetilde{M}(n))$ as a collection of elements $(m_f, D_+(f))$ for $m \in (M_{(f)})_n$ and $f \in R$ matching on the various overlaps.

PROPOSITION 12.14 When R is generated in degree 1, there is a graded R-module homomorphism

$$\alpha: M \to \Gamma_*(\widetilde{M})$$

Indeed, we can define α by sending an element $m \in M_d$ to the collection given by $(m/1, D_+(f))$, where f ranges over R_1 . On the overlaps $D_+(f) \cap D_+(g) = D_+(fg)$ it is clear that the two elements $(m/1, D_+(f))$ and $(m/1, D_+(g))$ become equal so this defines an actual global section of $\widetilde{M}(n)$. We see that this is a graded homomorphism. Moreover, it is functorial in M.

Lemma 12.15 If R is a graded Noetherian integral domain generated in degree one.

LEMMA 12.15 If R is a graded Noetherian integral domain generated in degree Then $R' = \Gamma_*(\mathcal{O}_X)$ is an integral extension of R.

PROOF: Let $x_1, ..., x_r$ be degree one generators of R. Let $\alpha : R \to R' = \Gamma_*(\mathcal{O}_X)$, be the map above. It is clear that the map is injective: If $r \in R$ is an element so that r/1 = 0 over every $R_{(f)}$, then r = 0.

To show integrality, let $s \in R'$ be a homogeneous element of non-negative degree. By quasi-compactness, we can find an n > 0, so that $\alpha(x_i^n)s \in \alpha(R)$ for every i. R_m is generated by monomials in x_i of degree m, so $\alpha(R_m)s \subset \alpha(R)$ for m large (e.g., $m \ge kn$). Let $R^{\ge kn}$ be the ideal of R generated by elements of

degree $\geqslant kn$. We have that $\alpha(R^{\geqslant kn})s \subset \alpha(R^{\geqslant kn})$. Moreover, since R is noetherian,

 $R^{\geqslant rn}$ is finitely generated, so applying the Cayley–Hamilton theorem, we get

that s satisfies an integral equation over R. Hence R' is integral over R.

Mal:
$$f$$
 gc p^{-1} $P_{roj}R$
 $=)$ $f = \mathcal{H}$ $M = T_{-1}(x, f)$.

The map β

Let \mathcal{F} be an \mathcal{O}_X -module. We get a natural R-module $\Gamma_*(\mathcal{F})$, and in turn a sheaf of \mathcal{O}_X -modules $\widetilde{\Gamma_*(\mathcal{F})}$. We will define a map of \mathcal{O}_X -modules

$$\beta: \widetilde{\Gamma_*(\mathcal{F})} \to \mathcal{F}$$
 (12.2)

$$T(D_{4}(f), \widetilde{M}) \ni \frac{M}{f} d$$

$$M = T_{4}(F) \qquad f^{-d} \in T(D_{4}(f), O_{\chi}(-d))$$

as follows. Let $f \in R_1$. We will define β over $D_+(f)$. A section of $\Gamma_*(\overline{\mathcal{F}})$ is represented on $D_+(f)$ by a fraction m/f^d where $m \in \Gamma(X, \mathcal{F}(d))$. If we think of f^{-d} as a section in $\mathcal{O}(-d)(D_+(f))$, then we can consider the tensor product $m \otimes f^{-d}$ which is a section of \mathcal{F} via the isomorphism $\mathcal{F}(d) \otimes \mathcal{O}(-d) \simeq \mathcal{F}$. This

is compatible with the module structures, so we obtain a homomorphism of \mathcal{O}_X -modules

$$\beta:\widetilde{\Gamma_*(\mathcal{F})}\to\mathcal{F}$$

by associating m/f^d to $m \otimes f^{-d}$.

PROPOSITION 12.16 Suppose R is a graded ring, finitely generated in degree 1 over R_0 . Suppose \mathcal{F} is a quasi-coherent sheaf on Proj R. Then the map

$$\beta: \widetilde{\Gamma_*(\mathcal{F})} \to \mathcal{F}$$
 (12.3)

is an isomorphism.

PROOF: Since R is generated by R_1 over R_0 , the open sets $D_+(f)$ with $f \in R_1$ cover X. To show that (12.3) is an isomorphism of sheaves, it is sufficient to prove it on such an open.

SET(D+(P), F)

$$L = S \otimes P^N$$
 which for N > 70

Let $f \in R_1$, and consider it as a section of $\Gamma(X, \mathcal{O}(1))$. Then taking $L = \mathcal{O}(1)$ in Lemma 12.8, point (i) there says that if an element s of $\Gamma(D_+(f), \mathcal{F})$ is given, we can find some element t of $\Gamma_*(\mathcal{F})_N$ (for N sufficiently large) such that $t \otimes f^{-N} \in \Gamma(D_+(f), \mathcal{F})$ equals s. This implies that the map β is surjective.

$$S = t \cdot f^{-N}$$

$$= \int_{-\infty}^{\infty} S + v \cdot |h| |def = v \cdot f|.$$

For injectivity, suppose $s \in \Gamma(X, \mathcal{F}(n))$ is such that $s \otimes f^{-n} = 0$ on $D_+(f)$, i.e. $s/f^n \in \Gamma_*(\mathcal{F})_{(f)}$ is in the kernel of (12.3) on the $D_+(f)$ -sections. Then the lemma implies that there is a power f^N with $s \otimes f^N \in \Gamma(X, \mathcal{F}(n+N)) = 0$. This states that $s/f^n = 0$ in $\Gamma_*(\mathcal{F})_{(f)}$ by the definition of localization and so the map is injective.

We have now defined two functors

$$\sim: \mathsf{GrMod}_R \to \mathsf{QCoh}_X \qquad \qquad \text{the allfil}$$
 and

 $\Gamma_*: \mathsf{QCoh}_X \to \mathsf{GrMod}_R$

$$M = \frac{\mathbb{E}\left[x_0, x_1\right]}{\left(x_0, x_1^2\right)} \sim M = 0$$

Since $\beta : \widetilde{\Gamma_*(\mathcal{F})} \to \mathcal{F}$ is an isomorphism, it follows that \sim is essentially surjective.

However, unlike the affine case, the functors do not give mutual inverses. This is because, as we have seen, that \sim is not faithful; the \sim of any module M which is finite over R_0 is the zero sheaf.

We can define an equivalence relation on graded modules by setting $M \sim N$ if $\bigoplus_{i \geq i_0} M_i \simeq \bigoplus_{i \geq i_0} N_i$ for some $i_0 \in \mathbb{Z}$. For two finitely generated graded R-modules M, N we have $M \sim N$ if and only if $\tilde{M} \simeq \tilde{N}$, so we have identified precisely the 'kernel' of the functor \sim .

Putting everything together, we find

THEOREM 12.17 Let R be a graded ring, finitely generated in degree 1 over R_0 and let X = Proj R. Then the functors

 \sim : GrMod_R \rightarrow QCoh_X

and

$$\Gamma_* : \mathsf{QCoh}_X \to \mathsf{GrMod}_R^{sat}$$

satisfy $\Gamma_*(\overline{\mathcal{F}}) = \mathcal{F}$ for all $\mathcal{F} \in \mathsf{QCoh}_X$, and give an equivalence between the categories of quasi cohoherent sheaves on X and graded R-modules modulo the equivalence relation $M \sim N$.

$$Y \xrightarrow{i} X$$
 \Leftrightarrow quasiksherent ideal-kupp T

$$(Y, Q_{i}) = \left(\text{Supp} \left(\frac{O_{X}}{I} \right), \frac{O_{X}}{I} \right)$$

12.5 Closed subschemes of Proj R

Having discussed what quasi-coherent sheaves are on projective spectra, we will now use this to study closed subschemes. We saw earlier that given a graded ideal $I \subset R$ we could associate a closed subscheme $V(I) \subset \operatorname{Proj} R$ and a closed immersion $\operatorname{Proj}(R/I) \to \operatorname{Proj} R$. On the other hand, we also saw above that

immersion $Proj(R/I) \rightarrow Proj R$. On the other hand, we also saw above that

many graded modules M could give rise to the same quasi-coherent sheaf \widetilde{M} .

This is also the case for graded ideals, as we shall see, but luckily we are again

able to completely identify which ideals give rise to the same closed subscheme.

$$B = R_{+}$$

In the discussion it will be convenient to introduce the *saturation* of an ideal. The upshot will be that this will serve as the 'largest' ideal corresponding to a given subscheme. We fix an ideal $B \subset R$ (which will typically be the irrelevant ideal R_+). Then for a graded ideal $I \subset R$, we define the *saturation* of I with respect to an ideal B is defined as the ideal

$$I: B^{\infty} := \bigcup_{i \geqslant 0} I: B^i = \{r \in R | B^n r \in I \text{ for some } n \geqslant 0\}.$$

We say that I is B-saturated if $I = I : B^{\infty}$ and more concisely, saturated if it is R_+ -saturated. We will here denote $I : (R_+)^{\infty}$ by \overline{I} . Note that the ideal \overline{I} is homogeneous if I is.

$$[x_0, x_0x_1) = (x_0) \cap (x_0, x_1)$$

$$I = (x_0, x_0x_1) \longrightarrow I : (x_0, x_1) = (x_0)$$

EXAMPLE 12.18 In $R = k[x_0, x_1]$, the (x_0, x_1) -saturation of $(x_0^2, x_0 x_1)$ is the ideal (x_0) . Note that both (x_0) and $(x_0^2, x_0 x_1)$ define the same subscheme of \mathbb{P}^1_k , but in some sense the latter ideal is inferior, since it has a component in the irrelevant ideal (x_0, x_1) . This example is typical; the saturation is a process which throws away components of I supported in the irrelevant ideal.

PROPOSITION 12.19 Let A be a ring and let $R = A[x_0, ..., x_n]$.

- i) To each closed subscheme Y of \mathbb{P}^n_A , there is a corresponding homogeneous saturated ideal $I \subset R$, such that Y corresponds to the subscheme $\operatorname{Proj}(R/I) \to \operatorname{Proj} R$.
- ii) Two ideals I, J defined the same subscheme if and only if they have the same saturation. I = J $B = (x_0...x_n)$
- iii) If $Y \subset \mathbb{P}^n_A$ is a closed subscheme with ideal sheaf \mathcal{I} , then $\Gamma_*(\mathcal{I})$ is a saturated ideal of R. In fact, the ideal $\Gamma_*(\mathcal{I})$ is the largest ideal that defines the subscheme Y.

l'hanvniske ideslet som definerer y In particular, there is a 1-1 correspondence between closed subschemes $i: Y \to \mathbb{P}^n_A$ and

saturated homogeneous ideals $I \subset R$.

PROOF: (i) Let $i: Y \to \mathbb{P}_A^n$ be a subscheme of $\mathbb{P}_A^n = \operatorname{Proj} R$ and let $\mathcal{I} \subset \mathcal{O}_{\mathbb{P}_A^n}$ denote the ideal sheaf of Y. Using the fact that global sections is left-exact, we have $\Gamma_*(\mathcal{I}) \subset \Gamma_*(\mathcal{O}_{\mathbb{P}_A^n}) = R$. $I = \Gamma_*(\mathcal{I})$ is naturally an R-module, so in fact I is a (homogeneous) ideal of R.

Any such ideal I gives rise to a closed subscheme i': $\operatorname{Proj}(R/I) \to \mathbb{P}^n_A$ and hence an ideal sheaf \mathcal{J} satisfying $\widetilde{I} = \mathcal{J}$. By Proposition 12.16, we also have $\widetilde{I} = \mathcal{I}$, so the two quasi-coherent ideal sheaves coincide and i is indeed the same as i'. By construction $I = \Gamma_*(\widetilde{I})$, so I is saturated.

(ii) If I, J define the same subscheme, they have the same ideal sheaf $\tilde{I} = \mathcal{I} = \mathcal{I} = \tilde{I}$ on \mathbb{R}^n . Let $r \in I$, then on II = D, (r_i) , the fraction rr^{-d} defines

 $\mathcal{I} = \mathcal{J} = \widetilde{J}$ on \mathbb{P}^n_A . Let $r \in I_d$, then on $U_i = D_+(x_i)$, the fraction rx_i^{-d} defines an element of $\Gamma(U_i, \widetilde{I}) = \Gamma(U_i, \widetilde{J})$. Since also \mathcal{I} corresponds to J, we have

an element of $\Gamma(U_i, \tilde{I}) = \Gamma(U_i, \tilde{J})$. Since also \mathcal{I} corresponds to J, we have $rx_i^{-d} = t_ix_i^{-d}$ for some $t_i \in J_d$ of degree d. Hence there is a power n_i such that $x_i^{n_i}(r-t_i) = 0$ in R. This shows that r is in the saturation of J. By symmetry, we have $\bar{I} = \bar{I}$.

(iii) Let $r \in R$ be such that $x_i^{n_i} r \in \Gamma_*(\mathcal{I})$ (that is $r \in \overline{\Gamma_*(\mathcal{I})}$). Let $m = \max n_i$.

We want to show that $r \in \Gamma_*(\mathcal{I})_d = \Gamma(X, \mathcal{I}(d))$. On $U_i = D_+(x_i)$, we see that

 $x_i^{-m} \otimes x_i^m r$ defines a section of $\mathcal{I}(d+m) \otimes \mathcal{O}(-n)$. The latter is isomorphic to $\mathcal{I}(d)$ and $x_i^{-m} \otimes x_i^m r = r$ via this isomorphism. So $r \in \Gamma(U_i, \mathcal{I}(d))$. Hence

 $r \in \Gamma(X, \mathcal{I}(d)) \subset \Gamma_*(\mathcal{I})$, and $\Gamma_*(\mathcal{I})$ is saturated.

Veronese nique $R^{(n)}$ Example 12.20 Let k be a field and let $R \neq k[u,v]$. Moreover introduce the graded ring $S = R^{(n)} = k[u^n, u^{n-1}v, \dots, v^n]$. We have a graded surjection

$$\phi: k[x_0,\ldots,x_n] \to S$$

given by $x_i \mapsto u^i v^{n-i}$ for i = 0, ..., n. The ideal $I = \text{Ker } \phi$ is generalted by the 2×2 -minors of the matrix

$$\mathbb{P}_{k}^{1} \xrightarrow{i} \mathbb{P}_{k}^{n}$$

perjoral nombel

$$\begin{pmatrix} x_0 & x_1 & \dots & x_{n-1} \\ x_1 & x_2 & \dots & x_n \end{pmatrix}$$

Thus we have an embedding of $\mathbb{P}^1_k = \operatorname{Proj} S$ into \mathbb{P}^n with image V(I). The image is called a *rational normal curve of degree n*. Note that for n = 2, the image of $\mathbb{P}^1_k \to \mathbb{P}^2_k$ is the conic $x_1^2 = x_0 x_2$.

12.6 The Segre embedding

Recall that for affine schemes $X = \operatorname{Spec} B$, $Y = \operatorname{Spec} C$ over $S = \operatorname{Spec} A$, the fiber product $X \times_S Y$ was defined as $\operatorname{Spec}(B \otimes_A C)$. There is a similar statement for Proj:

THEOREM 12.21 Let R, R' be graded rings with $R_0 = R'_0 = A$. Let $S = \bigoplus_{n \geqslant 0} (R_n \otimes R'_n)$. Then

 $\operatorname{Proj} S \simeq \operatorname{Proj} R \times_A \operatorname{Proj} R'$

COROLLARY 12.22 Let A be a ring and let $m, n \ge 1$ be integers. Then there is a closed immersion

$$\sigma_{m,n}: \mathbb{P}_A^m \times_A \mathbb{P}_A^n \to \mathbb{P}_A^{mn+m+n}$$

PROOF: Consider the A-algebra $S = \bigoplus_{n \ge 0} (R_n \otimes R'_n)$ above, where $R = A[x_0, \ldots, x_m]$ and $R' = A[y_0, \ldots, y_n]$ are the polynomial rings. Consider the following morphism of graded A-algebras.

$$A[z_{ij}]_{0 \leqslant i \leqslant m, 0 \leqslant j \leqslant n} \to A[x_0, \dots, x_m] \otimes A[y_0, \dots, y_n]$$
$$z_{ij} \mapsto x_i \otimes y_j.$$

It is clear that S is generated as an $R_0 \otimes R_0'$ -algebra by the products $x_i \otimes y_j$, so the map is surjective and thus we get the desired closed immersion.

EXAMPLE 12.23 Let $R = k[x_0, x_1]$, $R' = k[y_0, y_1]$. Then $u_{ij} = x_i y_j$ defines an isomorphism

$$S = \bigoplus_{n \geq 0} (R_n \otimes R'_n) \to k[u_{00}, u_{01}, u_{10}, u_{11}] / (u_{00}u_{11} - u_{01}u_{10})$$

This recovers the usual embedding of $\mathbb{P}^1_k \times_k \mathbb{P}^1_k$ as a quadric surface in \mathbb{P}^3_k .

A smooth quadric surface

12.7 Two important exact sequences

Hypersurfaces

Let $R = k[x_0, ..., x_n]$ and $\mathbb{P}_k^n = \text{Proj } R$. Let $F \in R$ denote a homogeneous polynomial of degree d > 0. F determines a projective hypersurface X = V(F),

$$X = Pwi \left(P(F) \right) C_{k}$$

which has dimension n-1. Note that I(X)=(F)then have an isomorphism

We

 $R(-d) \to I(X)$ given by multiplication with F. Note the shift here: The constant '1' gets sent to F should have degree d on both sides! This gives the sequence of R-modules

$$0 \to R(-d) \to R \to R/(F) \to 0$$

$$\downarrow \downarrow \downarrow$$

$$\downarrow \downarrow \chi$$

Sjekk clebke på hver $D_{+}(f)$.

We have $R(-d) = \mathcal{O}_{\mathbb{P}^n_k}(-d)$ and $(R/F) = i_*\mathcal{O}_X$, where $i: X \to \mathbb{P}^n_k$ is the inclusion, so we get the exact sequence of sheaves

 $0 \to \mathcal{O}_{\mathbb{P}_{+}^{n}}(-d) \to \mathcal{O}_{\mathbb{P}_{+}^{n}} \to i_{*}\mathcal{O}_{X} \to 0$

brukes mage til å regne at invanianter til X (græd, genny,...) -> skal se på delke i Kap. 15.

Complete intersections

deron din X = n-2

Let F, G be two homogeneous polynomials without common factors of degrees d, e respectively. Let I = (F, G) and $X = V(I) \subset \mathbb{P}^n_k$. X is called a 'complete intersection'—it is the intersection of the two hypersurfaces V(F) and V(G). To study X we have exact sequences

$$0 \to R(-d-e) \xrightarrow{\alpha} R(-d) \oplus R(-e) \xrightarrow{\beta} I \to 0$$

$$e_0 \qquad e_1 \qquad e_2$$

$$e_2 \to G \cdot e_1 \qquad e_1 \longrightarrow F$$

The maps here are defined by $\alpha(h) = (-hG, hF)$ and $\beta(h_1, h_2) = h_1F + h_2G$. These maps preserve the grading.

To prove exactness, we start by noting that α is injective (since R is an integral domain) and β is surjective (by the defintion of I). Then if $(h_1, h_2) \in \text{Ker } \beta$, we have $h_1F = -h_2G$, which by the coprimality of F, G means that there is an element h so that $h_1 = -hG$, $h_2 = hF$.

Applying ∼, we obtain the following exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^n_k}(-d-e) \to \mathcal{O}_{\mathbb{P}^n_k}(-d) \oplus \mathcal{O}_{\mathbb{P}^n_k}(-e) \to \mathcal{I}_X \to 0$$

These sequences are fundamental in computing the geometric invariants from *X*. We will see several examples of this later.

12.8 Two examples of locally free sheaves

Projective space

Let k be a field and write $\mathbb{P}^n = \operatorname{Proj} R$ where $R = k[x_0, \dots, x_n]$. Consider the map of graded modules $\phi : R(-1) \to R^{n+1}$ sending $1 \in R$ to the element $(x_0, \dots, x_n) \in R^{n+1}$. This map is clearly injective, so we get an exact sequence

where $M = \operatorname{Coker} \phi$. Applying \sim , we get an exact sequence of sheaves

$$0 \to \mathcal{O}_{\mathbb{P}^n_k}(-1) \to \mathcal{O}_{\mathbb{P}^n_k}^{n+1} \to \mathscr{E} \to 0 \tag{12.4}$$

where $\mathscr{E} = \widetilde{M}$. We claim that \mathscr{E} is locally free of rank n. Indeed, on the

$$0 \to \left(R_{\times_0}^{(-1)} \right)_0 \xrightarrow{\phi} \left(R_{\times_0} \right)_0 \xrightarrow{\text{N+1}} \left(R_{\times_0}$$

 $= \left(\bigoplus_{i=0}^n k\left[\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}\right] e_i\right) / \left(e_0 + \frac{x_1}{x_0} e_0 \cdots + \frac{x_n}{x_0} e_n\right)$

distinguished open set
$$D_+(x_0)=\operatorname{Spec} R_{(0)}$$
, we have
$$\mathscr{E}(D_+(x_0)) = \left(\bigoplus_{i=0}^n R/(x_0e_0+\cdots+x_ne_n)\right)_{(x_0)}$$

 $\simeq \bigoplus_{i=1}^n k[\frac{x_1}{x_0},\ldots,\frac{x_n}{x_0}]e_i$

7

Hence $\mathscr{E}|_{D_+(x_0)} \simeq \mathcal{O}_{U_0}$. By a symmetric argument, \mathscr{E} is free also on the other $D_+(x_i)$, so it is locally free of rank n. We will show in Section 15.6 that \mathscr{E} is not free, and in fact not even isomorphic to a direct sum of invertible sheaves.

The four-dimensional quadric hypersurface

Let *k* be a field and let $R = k[p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}]$. Consider the matrix

$$M = egin{pmatrix} p_{12} & p_{13} & p_{23} & 0 \ -p_{02} & -p_{03} & 0 & p_{23} \ p_{01} & 0 & -p_{03} & -p_{13} \ 0 & p_{01} & p_{02} & p_{12} \end{pmatrix}$$

$$: R^{4} \longrightarrow R^{4}$$

Let us consider the loci in $\mathbb{P}^5 = \operatorname{Proj} R$ where this matrix has a given rank. Note that M has rank ≤ 3 precisely when the determinant vanishes. In fact, this matrix M has the special property that the determinant is a square: $\det M = q^2$ where

 $q = p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12}$

The locus of points where M has rank 2 is given by the ideal generated by the 2×2 -minors, which by direct calculation has radical equal to the irrelevant ideal R_+ . Consider the exact sequence

$$0 \to R(-1)^4 \xrightarrow{M} R^4 \to \operatorname{Coker} M \to 0$$

Applying \sim we obtain an exact sequence of sheaves

$$0 \to \mathcal{O}_{\mathbb{P}^5}(-1)^4 \to \mathcal{O}_{\mathbb{P}^5}^4 \to \mathcal{F} \to 0 \tag{12.5}$$

where $\mathcal{F} = \widetilde{\operatorname{Coker} M}$.

Supp
$$(F) = V(q)$$

Consider the quadric hypersurface X = V(q) and let $i: X \to \mathbb{P}^5$ denote the inclusion. Applying, i^* we arrive at an exact sequence of sheaves on X

$$0 \to \mathcal{O}_{\mathbf{X}}(-1)^4 \to \mathcal{O}_{\mathbf{Y}}^4 \to \mathscr{E} \to 0$$

where $\mathscr{E} = i^*\mathcal{F}$. (Recall that i^* is right-exact; the sequence here exact on the left because it is exact on stalks). Now the discussion above shows that \mathscr{E} is locally free of rank 2 (as it has rank 2 at all closed points). The sheaf \mathscr{E} is known as the universal quotient bundle on the Grassmannian Gr(2,4).

12.9 The Hilbert syzygy theorem

Let k be a field and let $R = k[x_0, ..., x_n]$. Then if M is a finitely generated graded R-module, then Hilbert Syzygy theorem says that there is a finite free resolution (that is, an exact sequence)

$$0 \rightarrow F_n \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$

where $F^{b_k} = \bigoplus_{i=1}^{b_k} R(-d_i)$ is a free graded R-module. F_i is called the i-th syzygy module of the resolution. The minimal integer n that appears in such a resolution is called the *projective dimension of* M.

If we apply the \sim -functor here we obtain an exact sequence of sheaves on \mathbb{P}^n_k

$$0 \to \mathcal{E}_n \to \cdots \to \mathcal{E}_1 \to \mathcal{E}_0 \to \widetilde{M} \to 0$$

where $\mathscr{E}_i = \bigoplus_{i=1}^{b_k} \mathcal{O}_{\mathbb{P}^n_k}(-d_i)$ is a direct sum of sheaves of the form $\mathcal{O}(d)$.

direct sums of invertible sheaves. This shows why the invertible sheaves $\mathcal{O}(d)$ are so important: They are the building blocks of all coherent sheaves on \mathbb{P}^n . We already saw some examples such a presentation was convenient. Let us give

We already saw some examples such a presentation was convenient. Let us give one more:

Thus any coherent sheaf can be resolved by locally free sheaves – in fact

Example 12.24 (The twisted cubic curve) Let k be a field and consider $\mathbb{P}^3 = \operatorname{Proj} R$

where $R = k[x_0, x_1, x_2, x_3]$. We will consider the *twisted cubic curve* C = V(I) where $I \subset R$ is the ideal generated by the 2 × 2-minors of the matrix

$$M = \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix}$$

i.e., $I = (q_0, q_1, q_2) = (x_1^2 - x_0x_2, x_0x_3 - x_1x_2, -x_2^2 + x_1x_3).$

Consider the map of R-modules $R^3 \to I$ sending $e_i \mapsto q_i$. This is clearly surjective, since the q_i generate I. Let us consider the kernel of this map, that is, the module of relations of the form $a_0q_0 + a_1q_1 + a_2q_2 = 0$ for $a_i \in R$. There are two obvious relations of this form, i.e., the ones we get from expanding the determinants of the two matrices

$$\begin{pmatrix} x_0 & x_1 & x_2 \\ x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix} \qquad \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \end{pmatrix}$$

(So first matrix gives $x_0q_2 - x_1q_1 + x_2q_2 = 0$ for instance). These give a map $R^2 \xrightarrow{\cdot M} R^3$, where M is the matrix above. This map is injective, and it turns out that there is an exact sequence of R-modules

$$0 \rightarrow R^2 \xrightarrow{M} R^3 \rightarrow I \rightarrow 0$$

Again, if we want to be completely precise, we should consider these as *graded* modules, so we must shift the degrees according to the degrees of the maps above

$$0 \to R(-3)^2 \xrightarrow{M} R(-2)^3 \to I \to 0$$

This gives the resolution of the ideal I of C. Then applying \sim , and using the fact that $\mathcal{I} = \widetilde{I}$, we get a resolution of the ideal sheaf of C:

$$0 \to \mathcal{O}_{\mathbb{P}^3}(-3)^2 \xrightarrow{M} \mathcal{O}_{\mathbb{P}^3}(-2)^3 \to \mathcal{I} \to 0$$

We will see later in Chapter 15 how to use sequences like this to extract geometric information about *C*.

★