Chapter 13
First steps in sheaf cohomology

We have seen several examples of the global sections functor Γ failing to be exact when applied to a short exact sequence. On the other hand, we have a sequence

$$0 \longrightarrow \Gamma(X, \mathcal{F}') \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{F}'')$$

which is exact at each stage except on the right.

Essentially, *cohomology* is a tool that allows us to continue this sequence, giving rise to a *long exact sequence* of cohomology:

$$0 \longrightarrow \Gamma(X, \mathcal{F}') \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{F}'')$$

$$H^{1}(X, \mathcal{F}') \longrightarrow H^{1}(X, \mathcal{F}) \longrightarrow H^{1}(X, \mathcal{F}'')$$

$$H^{2}(X, \mathcal{F}') \longrightarrow H^{2}(X, \mathcal{F}) \longrightarrow H^{2}(X, \mathcal{F}'') \longrightarrow \cdots$$

rds, the failure of s and the other grou	•	ne above is controll nce.	ed by the grou

Cohomology groups can be defined in a completely general setting, for any topological space X and a (pre)sheaf \mathcal{F} on it. With that as only input, we will define the *cohomology groups* $H^k(X,\mathcal{F})$, which will capture the main geometric invariants of \mathcal{F} . These should also be functorial in \mathcal{F} , which means that we want to construct functors

$$H^q(X,-)\colon \mathsf{AbSh}_X \to \mathsf{Ab}$$

 $\mathcal{F} \mapsto H^q(X,\mathcal{F})$

$$F \rightarrow G \qquad H'(X, F) \longrightarrow H'(X, g)$$

satisfying the following properties:

i) $H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$;

ii) A morphism of sheaves $\phi : \mathcal{F} \to \mathcal{G}$ induces for all i group homomorphisms $H^i(X,\mathcal{F}) \to H^i(X,\mathcal{G})$ which are functorial and takes the identity to the identity; in other words, each $H^i(X,-)$ is a functor;

iii) Every short exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ gives a *long exact sequence* as above.

13.1 Some homological algebra

Complexes of groups

Recall that a *complex of abelian groups* A^{\bullet} is a sequence of groups A^{i} together with maps between them

$$\cdots \xrightarrow{d^{i-2}} A^{i-1} \xrightarrow{d^{i-1}} A^i \xrightarrow{d^i} A^{i+1} \xrightarrow{d^{i+1}} \cdots$$

such that $d^{i+1} \circ d^i = 0$ for each i. A morphism of complexes $A^{\bullet} \xrightarrow{f} B^{\bullet}$ is a collection

such that $d^{i+1} \circ d^i = 0$ for each i. A morphism of complexes $A^{\bullet} \xrightarrow{f} B^{\bullet}$ is a collection of maps $f_p : A^p \to B^p$ making the following diagram commutative:

In this way, we can talk about kernels, images, cokernels, exact sequences of complexes, etc.

ZP
$$\sigma \in A^{P}$$
 kosyhel derom $\sigma \in \ker d^{P}$

BP $\sigma \in A^{P}$ kovand derom $\sigma = d^{P-1}T$ $T \in A^{P-1}$

We say that an element $\sigma \in A^p$ is a *cocycle* if it lies in the kernel of the map d^p i.e., $d^p\sigma=0$. A *coboundary* is an element in the image of d^{p-1} , i.e., $\sigma=d^{p-1}\tau$ for some $\tau \in A^{p-1}$. These form subgroups of A^p , denoted by Z^pA^{\bullet} and B^pA^{\bullet} respectively. Since $d^p(d^{p-1}a)=0$ for all a, all coboundaries are cocycles, so that $Z^pA^{\bullet}\supset B^pA^{\bullet}$. The *cohomology groups* of the complex A^{\bullet} are set up to measure

$$A^{P-1} \xrightarrow{d^{P-1}} A^{P} \xrightarrow{d^{P}} A^{P+1}$$

$$T \xrightarrow{\rightarrow} dT$$

 $Z^pA^{\bullet} \supset B^pA^{\bullet}$. The *cohomology groups* of the complex A^{\bullet} are set up to measure the difference between these two notions. We the *p-th cohomology group* as the quotient group

$$H^p A^{\bullet} = Z^p(A^{\bullet})/B^p(A^{\bullet}) = \operatorname{Ker} d^p/\operatorname{Im} d^{p-1}.$$

One thinks of H^pA^{\bullet} as a group that measures the failure of the complex A^{\bullet} of being exact at stage p: A^{\bullet} is exact if and only if $H^pA^{\bullet} = 0$ for every p.

The following fact is very important:

PROPOSITION 13.1 Suppose that $0 \to F^{\bullet} \xrightarrow{f} G^{\bullet} \xrightarrow{g} H^{\bullet} \to 0$ is an exact sequence of complexes. Then there is a long exact sequence of cohomology groups

$$\cdots \longrightarrow H^{p}F^{\bullet} \longrightarrow H^{p}G^{\bullet} \longrightarrow H^{p}H^{\bullet}$$

$$H^{p+1}F^{\bullet} \longrightarrow H^{p+1}G^{\bullet} \longrightarrow H^{p+1}H^{\bullet} \longrightarrow \cdots$$

PROOF: For each $p \in \mathbb{Z}$, consider the commutative diagram

$$0 \longrightarrow F^{p} \xrightarrow{f_{p}} G^{p} \xrightarrow{g_{p}} H^{p} \longrightarrow 0$$

$$\downarrow^{d^{p}} \downarrow^{d^{p}} \downarrow^{d^{p}} \downarrow^{d^{p}}$$

$$0 \longrightarrow F^{p+1} \xrightarrow{f_{p+1}} G^{p+1} \xrightarrow{g_{p+1}} H^{p+1} \longrightarrow 0$$

$$\downarrow^{p} \downarrow^{p} \downarrow^{p$$

where the rows are exact by assumption. By the Snake lemma, we obtain a sequence

$$0 \longrightarrow Z^p(F^ullet) \stackrel{f_p}{\longrightarrow} Z^p(G^ullet) \stackrel{g_p}{\longrightarrow} Z^p(H^ullet)$$
 δ
 $F^{p+1}/B^p(F^ullet) \stackrel{f_{p+1}}{\longrightarrow} G^{p+1}/B^p(G^ullet) \stackrel{g_{p+1}}{\longrightarrow} H^{p+1}/B^p(H^ullet) \longrightarrow 0$

Consider now the diagram

$$egin{aligned} 0 & \longrightarrow F^p/B^p(F^ullet) & \stackrel{f_p}{\longrightarrow} G^p/B^p(G^ullet) & \stackrel{g_p}{\longrightarrow} H^p/B^p(H^ullet) & \longrightarrow 0 \ & \downarrow^{d^p} & \downarrow^{d^p} & \downarrow^{d^p} \ 0 & \longrightarrow Z^{p+1}(F^ullet) & \stackrel{f_{p+1}}{\longrightarrow} Z^{p+1}(G^ullet) & \stackrel{g_{p+1}}{\longrightarrow} Z^{p+1}(H^ullet) \end{aligned}$$

where the rows are exact by the above. For the maps in this diagram, $H^pF^{\bullet} = \operatorname{Ker} d^p$ and $H^{p+1}F^{\bullet} = \operatorname{Coker} d^p$. Hence applying the Snake lemma one more time, we get the desired exact sequence.

Complexes of sheaves

The definitions and arguments of the previous subsection apply much more generally (to any abelian category). In particular, we make the following sheaf analogue. A *complex of sheaves* \mathcal{F}^{\bullet} is a sequence of sheaves with maps between them

$$\cdots \xrightarrow{d^{i-2}} \mathcal{F}_{i-1} \xrightarrow{d^{i-1}} \mathcal{F}_{i} \xrightarrow{d^{i}} \mathcal{F}_{i+1} \xrightarrow{d^{i+1}} \cdots$$

such that $d^{i+1} \circ d^i = 0$ for each i. Given such a complex, we define the *cohomology* sheaves $H^p\mathcal{F}^{\bullet}$ as $\operatorname{Ker} d^i/\operatorname{Im} d^{i-1}$. As above, a short exact sequence of complexes of sheaves gives rise to a long exact sequence of cohomology sheaves.

13.2 Čech cohomology

Let X be a topological space, and let \mathcal{F} be a presheaf on it. Let $\mathcal{U} = \{U_i\}$ be an open cover of X, indexed by an ordered set I. As we saw previously, if \mathcal{F} is a sheaf, the following sequence is exact: $\{\xi_i\}$ \longrightarrow $\{\xi_i\}$ $\{\xi_i\}$

shows the following sequence is shall
$$(\mathcal{V}_{i}) \rightarrow \mathcal{F}(\mathcal{U}_{i}) \rightarrow \mathcal{F}(\mathcal{U}_{i})$$
 of $\mathcal{F}(\mathcal{U}_{i})$ of $\mathcal{F}(\mathcal{U}_{i})$.

$$S \rightarrow S|_{\mathcal{V}_{i}}$$

$$\mathcal{F}(\mathcal{V}_{i} \cap \mathcal{V}_{i}) \rightarrow \mathcal{F}(\mathcal{V}_{i} \cap \mathcal{V}_{i}) \rightarrow \mathcal{F}(\mathcal{V}_{i} \cap \mathcal{V}_{i})$$

The Čech complex is essentially the continuation of this sequence; it is a complex obtained by adjoining all the groups $\mathcal{F}(U_{i_1} \cap \cdots \cap U_{i_r})$ over all intersections

 $U_{i_1} \cap \cdots \cap U_{i_r}$.

Empleks av grupper

DEFINITION 13.2 For a presheaf \mathcal{F} on X, define the Čech complex $C^{\bullet}(\mathcal{U}, \mathcal{F})$ of \mathcal{F} (with respect to \mathcal{U}) as

$$C^0(\mathcal{U},\mathcal{F}) \xrightarrow{d^0} C^1(\mathcal{U},\mathcal{F}) \xrightarrow{d^1} C^2(\mathcal{U},\mathcal{F}) \xrightarrow{d^2} \cdots$$

where

$$TT F(U_i) \longrightarrow TT F(U_{ij}) \longrightarrow TT F(U_{ijk})$$

$$\sigma = \left(\begin{array}{c} \sigma \\ J_{0} - J_{p} \end{array}\right)_{j_{0} - J_{p}} \sim \partial \sigma \in C^{p+1}$$

and the coboundary map $d: C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F})$ by

$$(d^p\sigma)_{i_0,...,i_{p+1}} = \sum_{j=0}^{p+1} (-1)^j \sigma_{i_0,...\hat{i_j},...,i_{p+1}} |_{U_{i_0} \cap \cdots \cap U_{i_p}}$$

where $i_0, \ldots \hat{i_j}, \ldots, i_{p+1}$ means i_0, \ldots, i_{p+1} with the index i_j omitted.

EXAMPLE 13.3 Let us look at the first few maps in the complex:

 $d^0: C^0(\mathcal{U}, \mathcal{F}) \to C^1(\mathcal{U}, \mathcal{F}).$ If $\sigma = (\sigma_i)_i$, then

$$(d^0\sigma)_{ij} = \sigma_j - \sigma_i$$

$$(d^1\sigma)_{ijk} = \sigma_{jk} - \sigma_{ik} + \sigma_{ij}$$

By direct substitution, we see that $d^1 \circ d^0 = 0$ (all the σ_{ij} cancel). This happens also in higher degrees by a basic computation using the definition of d^i .

LEMMA 13.4 $d^{p+1} \circ d^p = 0$.

Ofregung.

In particular, the $C^{\bullet}(\mathcal{U}, \mathcal{F})$ forms a *complex of abelian groups*. As before, we say that an element $\sigma \in C^p(\mathcal{U}, \mathcal{F})$ is a *cocycle* if $d^p\sigma = 0$, and a *coboundary* if $\sigma = d^{p-1}\tau$, and denote these by Z^p and B^p respectively. The Čech cohomology groups of \mathcal{F} are set up to measure the difference between these two notions:

DEFINITION 13.5 The p-th Čech cohomology of \mathcal{F} with respect to \mathcal{U} is defined as

$$H^p(\mathcal{U},\mathcal{F}) = Z^p/B^p = (\operatorname{Ker} d^p)/(\operatorname{Im} d^{p-1})$$

It is not hard to check that a sheaf homomorphism $\mathcal{F} \to \mathcal{G}$ induces a mapping of Čech cohomology groups, so we obtain functors $\mathcal{F} \to H^p(\mathcal{U}, \mathcal{F})$ from abelian sheaves to abelian groups

$$0 \stackrel{d^{-1}}{\longrightarrow} (0 \stackrel{d^{0}}{\longrightarrow} (1 \stackrel{d^{1}}{\longrightarrow} (2 \stackrel{d^{-1}}{\longrightarrow} (2 \stackrel{d^{-1}}{\longrightarrow}$$

EXAMPLE 13.6 Again it is instructive to consider the group $H^0(\mathcal{U}, \mathcal{F})$. Here the map $d^0: C^0(\mathcal{U}, \mathcal{F}) \to C^1(\mathcal{U}, \mathcal{F})$, which is simply the usual map

$$\prod_{i} F(U_{i}) \to \prod_{i,j} \mathcal{F}(U_{i} \cap U_{j})$$

$$\downarrow_{i} \qquad \downarrow_{i,j} \qquad \downarrow_{j} \qquad \downarrow_{$$

which has kernel $\mathcal{F}(X)$ by the sheaf axioms. It follows that $H^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X)$.

$$H^{\circ} = \frac{\text{bor d}^{\circ}}{\text{im d}^{-1}} = \text{her d}^{\circ} = f(X).$$

EXAMPLE 13.7 The most interesting cohomology group is arguably $H^1(\mathcal{U}, F)$. It is the group of cochains σ_{ij} such that $\sigma_{ik} = \sigma_{ij} + \sigma_{jk}$ modulo the cochains of the form $\sigma_{ij} = \tau_j - \tau_i$.

EXAMPLE 13.8 Consider the unit circle $X = S^1$ (with the Euclidean topology), with its standard covering $\mathcal{U} = \{U, V\}$ (intersecting in two intervals) and let $\mathcal{F} = \mathbb{Z}_X$ (the constant sheaf).

$$\mathcal{T} \mathcal{F}(\mathcal{V}_i)$$

Here we have

$$C^0(\mathcal{U},\mathcal{F}) = \mathbb{Z}_U \times \mathbb{Z}_V \qquad C^1(\mathcal{U},\mathbb{Z}) = \mathbb{Z}_{U \cap V} = \mathbb{Z} \times \mathbb{Z}$$

0-7/2

$$(a_1b) \longrightarrow (b-a, b-a)$$

The map $C^0 \to C^1$ is the map $d^0: \mathbb{Z}^2 \to \mathbb{Z}^2$ given by $d^0(a,b) = (b-a,b-a)$. Hence

$$H^0(\mathcal{U},\mathbb{Z}_X)=\operatorname{Ker} d=\mathbb{Z}(1,1)\simeq \mathbb{Z}$$

and

$$H^1(\mathcal{U},\mathbb{Z}_X) = \operatorname{Coker} d = \frac{\mathbb{Z} \times \mathbb{Z}}{\mathbb{Z}(1,1)} \simeq \mathbb{Z}$$

 $(P^{(t)}, q^{(t-1)}) \longrightarrow q^{(t-1)} - p^{(t)}$

EXAMPLE 13.9 Consider the projective line \mathbb{P}^1_k covered by $U_0 = \operatorname{Spec} k[t]$ and $U_1 = \operatorname{Spec} k[t^{-1}]$. For the structure sheaf \mathcal{F} , the Čech -complex takes the following form:

H°(U, Opr) = bor d = k H'(U, Opi) = coher d = 0

Where d sends a pair $(p(t), q(t^{-1}))$ to $q(t^{-1}) - p(t)$. As we saw in Chapter 5, Ker d = k. It is on the other hand clear that any element of $k[t^{\pm 1}]$ can be written as a sum of a polynomial in t and one in t^{-1} , hence

 $H^1(\mathcal{U}, \mathcal{O}) = \operatorname{Coker} d = 0.$

EXAMPLE 13.10 Continuing the above example, let us compute the sheaf cohomology groups for $\mathcal{F} = \mathcal{O}(n)$. The sequence takes the following form:

 $0 \longrightarrow k[t] \times k[t^{-1}] \stackrel{d}{\longrightarrow} k[t^{\pm 1}] \longrightarrow 0$ where the map d is now given by

$$d(p(t), q(t^{-1})) = t^n q(t^{-1}) - p(t)$$

(see Section 5.3). As we computed in Proposition 5.2, we have $\text{Ker } d \simeq k^{n+1}$ if $n \ge 0$, and Ker d = 0 otherwise. The computation of H^1 is slightly more subtle.

$$H^{\circ}(U, O(n)) = \text{ker} d = \begin{cases} P(t) = t^{n} q(t^{-1}) & | q | Polin \end{cases}$$

= $k \begin{cases} 1, t, ..., t^{n} \end{cases}$

$$\mathcal{H}^{\prime}(\mathcal{U},\mathcal{O}(n)) = cher d = 0 \qquad (n > 0)$$

Consider first the case $n \ge 0$. As before, it is easy to see that any Laurent polynomial in $k[t,t^{-1}]$ can be written in the form $t^nq(t^{-1})-p(t)$. In fact, this also works for n=-1, as $t^{-k}=t^{-1}\cdot t^{-k+1}-0$ and $t^k=t^{-1}\cdot 0-t^k$. Hence $H^1(\mathcal{U},\mathcal{O}(n))=0$ for $n\ge -1$. For $n\le -2$ however, any linear combination of the following monomials are not in the image:

$$t^{-1}$$
, t^{-2} , ..., t^{n+1}

This implies that $H^1(\mathcal{U}, \mathcal{O}(n))$ is a k-vector space of dimension -n+1.

$$N = -2:$$

$$0 \longrightarrow k[t] \times k[t^{-1}] \longrightarrow k(t,t^{-1}) \longrightarrow 0$$

$$(k[t] q(t^{-1})) \longrightarrow t^{-2}q(t^{-1}) - p(t)$$

$$H^0 = ber d = 0$$
 $H' = coher d = k \cdot t' \geq k$
 $H'(\mathcal{U}, \mathcal{O}(-2)) \simeq k$

Proposition 13.11 Let X be an irreducible topological space. Then for any covering

Proposition 13.11 Let X be an irreducible topological space. Then for any covering \mathcal{U} of X we have for a constant sheaf A_X

$$H^p(\mathcal{U},A_X)=0$$

for p > 0.

PROOF: In this case the Čech complex takes the form

$$\prod_{i \in I} A \to \prod_{i,j \in I} A \to \prod_{i,j,k \in I} A \to \cdots$$

Note that this complex of groups does not depend on X or the covering \mathcal{U} – it is only the index set I which plays a role. In particular, the complex is the same as the Čech complex of A on a 1-point space (which makes it plausible that the higher cohomology should vanish). In this case it is easy to show by hand show that any p-cocycle is the boundary of some (p-1)-cochain for p>0.

For instance, given a 1-cocycle $g = (g_{ij}) \in \prod_{i,j} A$, fix some $n \in I$ and define the element $h = (h_i) \in C^0(\mathcal{U}, A) = \prod_{i \in I} A$ by $h_i = g_{ni}$. The cocycle condition $0 = d^1(g)_{nij} = g_{ij} - g_{nj} + g_{ni}$ translates into $0 = g_{ij} - h_j + h_i$ or $g_{ij} = h_j - h_i$. This proves that the cocycle $g = (g_{i,j})$ is the coboundary of the element $h = (h_i)$, and

thus that the class of that cocycle is zero in $H^1(\mathcal{U}, A_X)$.

Sheaf cohomology

As seen in the examples above, the groups $H^p(\mathcal{U}, \mathcal{F})$ are easily computable, if one is given a nice cover of X. Indeed, the maps in the Čech complex are completely explicit, and computing their kernels and images involve only basic row operations from linear algebra.

Problem: kan velge
$$\mathcal{U} = \{X, X\}$$

~ Cech komplets $v \to f(X) \to 0$

On the other hand, the definition of the cohomology groups is a little bit unsatisfactory for various reasons. First of all, the groups $H^p(\mathcal{U},\mathcal{F})$ depend on the cover \mathcal{U} , whereas we want something canonical that only depends on \mathcal{F} . More importantly, it is not clear that the definition above really captures enough of the desired information about \mathcal{F} . For instance, \mathcal{U} could consist of the single open set X, and so $H^i(\mathcal{U},\mathcal{F})=0$ for all $i\geqslant 1$! Finally, it is not at all clear if these groups satisfy the requirements mentioned in the introduction.

There is a fix for all of these problems which involves passing to finer and finer 'refinements' of the covering. We say that a covering $\mathcal{V} = \{V_j\}_{j \in J}$ is a refinement of $\mathcal{U} = \{U_i\}_{i \in I}$ if for every $V_j \in \mathcal{V}$, there is a $i \in I$ so that $V_j \subset U_i$. This defines a partial ordering on the coverings which we denote by $\mathcal{V} \leq \mathcal{U}$. If we

fix a map $\epsilon: J \to I$ so that $V_j \subset U_{\sigma(j)}$ for every j, we can define a *refinement* homomorphism

$$\operatorname{ref}_{\mathcal{U},\mathcal{V}}:H^p(\mathcal{U},\mathcal{F})\to H^p(\mathcal{V},\mathcal{F})$$

by setting

by setting
$$(\operatorname{ref}_{\mathcal{U},\mathcal{V}}(\sigma))_{j_0,...,j_p} = \left(\sigma_{\epsilon j_0,...,\epsilon j_p}\right)ig|_{V_{j_0\cap\cdots\cap j_p}}$$

One computes easily that $d \circ \text{ref} = \text{ref} \circ d$, so that ref induces a map on cohomology groups. Moreover, one can check that while the refinement depends on the choice of the function $\epsilon: I \to I$, the map ref on cohomology does not.

One can then define a group $H^p(X, \mathcal{F})$ to be the direct limit of all $H^p(\mathcal{U}, \mathcal{F})$ as \mathcal{U} runs through all possible open covers \mathcal{U} ordered by \leq . The resulting groups

are indeed canonical, and turn out to give the right answer for cohomology:

DEFINITION 13.12 The groups $H^p(X, \mathcal{F})$ are called the cohomology groups of \mathcal{F} . In symbols,

$$H^p(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} H^p(\mathcal{U},\mathcal{F})$$

avherger ihlre ær overdelinger i helt kanvonisk The main preoperties of Čech cohomology are summarized in the following theorem:

THEOREM 13.13 Let X be a topological space and let \mathcal{F} be a sheaf on X.

- □ *The Čech cohomology groups are functors* $H^i(X, -) : \mathsf{Sh}_X \to \mathsf{Groups}$.
- □ Short exact sequences of sheaves induce long exact sequences of cohomology.
- □ (Leray's theorem). If \mathcal{F} is a sheaf and \mathcal{U} is a covering such that $H^i(U_{i_1} \cap U_{i_n}, \mathcal{F}) = 0$ for all i > 0 and multiindexes $i_1 < \cdots < i_p$, then

$$H^i(X,\mathcal{F})=H^i(\mathcal{U},\mathcal{F}).$$

Deron X er separert

3) alle affine overlahreger $U = \{U_i\}$ Vikig!) tilfreethler deme behingligen.

The last statement (Leray's theorem) is very important. It says that even though $H^i(X, \mathcal{F})$ is defined as an infinite directed limit over coverings \mathcal{U} , it suffices to compute it at a covering which is 'sufficiently fine' in the sense that the higher groups $H^i(U_{i_1} \cap \cdots \cap U_{i_p}, \mathcal{F}) = 0$ vanish for i > 0. In practice, the latter condition is rather easy to check: It holds for instance if all of the intersections are affine schemes (see Corollary 14.2).

The long exact sequence for quasi-coherent sheaves

Let *X* be a scheme and consider a short exact sequence of quasi-coherent sheaves

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0.$$

If $U = \operatorname{Spec} A$ is affine, proved in Proposition ??? that the sequence

$$0 \longrightarrow \mathcal{F}(U) \longrightarrow \mathcal{G}(U) \longrightarrow \mathcal{H}(U) \longrightarrow 0. \tag{13.1}$$

is exact. This means that if we have an affine cover $\mathcal{U} = \{U_i\}_{i \in I}$ with the property that each intersection

$$U_{i_1} \cap \cdots \cap U_{i_p}$$

TT F (V;)

is affine, then we have an exact sequence

$$0 \longrightarrow C^p(\mathcal{U},\mathcal{F}) \longrightarrow C^p(\mathcal{U},\mathcal{G}) \longrightarrow C^p(\mathcal{U},\mathcal{H}) \longrightarrow 0.$$

and consequently, the sequence of Čech complexes

$$0 \longrightarrow C^{ullet}(\mathcal{U},\mathcal{F}) \longrightarrow C^{ullet}(\mathcal{U},\mathcal{G}) \longrightarrow C^{ullet}(\mathcal{U},\mathcal{H}) \longrightarrow 0.$$

is also exact. Thus we are in position to apply Lemma 13.1 to get a long exact sequence of Čech cohomology groups

$$\cdots \longrightarrow H^i(\mathcal{U},\mathcal{F}) \longrightarrow H^i(\mathcal{U},\mathcal{G}) \longrightarrow H^i(\mathcal{U},\mathcal{H}) \longrightarrow \cdots.$$

•	e directed system of covering ence (13.1) for quasi-cohere

In general, it can certainly happen that the restriction map (13.1) is *not* surjective – one can for instance take the open covering of X with just one open set X. This explains why the Čech cohomology groups $H^i(\mathcal{U}, \mathcal{F})$ do not give long exact sequences in general. However, by passing to smaller refinements $\mathcal{V} \leq \mathcal{U}$, we can arrange that any section lifts and we can use the above to construct δ .