Chapter 13
First steps in sheaf cohomology



We have seen several examples of the global sections functor I’ failing to be exact
when applied to a short exact sequence. On the other hand, we have a sequence

0 — I'(X,F) — T(X,F) — (X, F")

which is exact at each stage except on the right.



Essentially, cohomology is a tool that allows us to continue this sequence, giving
rise to a long exact sequence of cohomology:

0 —— I'X,F) —— T(X,F) ———— I'(X, F")
S —
H'(X,F') — HY(X,F) —— HY(X, F")
— >

(X, F') —— HA(X,F) — HA(X,F') — -




In other words, the failure of surjectivity of the above is controlled by the group
HY(X, F') and the other groups in the sequence.



Cohomology groups can be defined in a completely general setting, for any
topological space X and a (pre)sheaf F on it. With that as only input, we will
define the cohomology groups H*(X, F), which will capture the main geometric
invariants of /. These should also be functorial in F, which means that we

want to construct functors
H‘f(X,—): AbShx — Ab
F — HI(X,F)



satisfying the following properties:
i) H (X, F) =T(X,F) = F(X);

i1) A morphism of sheaves ¢ : F — G induces for all i group homo-
morphisms H!(X, F) — H'(X,G) which are functorial and takes the

identity to the identity; in other words, each H'(X, —) is a functor;

iii) Every short exact sequence 0 - F' — F — F” — 0 gives a long exact
sequence as above.



13.1  Some homological algebra

Complexes of groups
Recall that a complex of abelian groups A® is a sequence of groups A’ together

with maps between them ﬁ\

i—2 . i—1 i .
LA Al d y Al L\ S AN

such that d*! o d’ = 0 for each i. A morphism of complexes A® J, B* is a collection



such that di+1 o d' = 0 for each i. A morphism of complexes A* 2> B* is a collection
of maps f, : AP — BF making the following diagram commutative:

. — Al a7, A LA
lfi—l lfi lfm
. — Bi-1 s Bt s BiF1 o ...

In this way, we can talk about kernels, images, cokernels, exact sequences of
complexes, etc.
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We say that an element o € A7 is a cocycle if it lies in the kernel of the map
d? ie., dPo = 0. A coboundary is an element in the image of 4P}, ie., 0 = dP~!t
for some T € AP~1. These form subgroups of A?, denoted by ZP A* and BP A*
respectively. Since dP (dP~'a) = 0 for all 4, all coboundaries are cocycles, so that
ZPA® o BPA*. The cohomology groups of the complex A* are set up to measure



ZP A* o BP A®. The cohomology groups of the complex A® are set up to measure
the difference between these two notions. We the p-th cohomology group as the
quotient group

HPA® = ZP(A®)/BP(A*) = Kerd? /ImdP~ .



One thinks of HP A® as a group that measures the failure of the complex A*® of
being exact at stage p: A® is exact if and only if HP A* = 0 for every p.
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The following fact is very important: v ‘ g
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PROPOSITION 13.1 Suppose that 0 — F* L, G* & H* - 0 s an exact sequence of

complexes. Then there is a long exact sequence of cohomology groups

. —» HPF* — HPG® s HPH®

>

HPHF* — HPFIG®* —— HPFIH® —
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Proor: For each pe Z, c«l\ader the ci\mutatlve Jgram
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where the rows are exact by assumption. By the Snake lemma, we obtain a
sequence

fp &g
—

0 —— ZP(F*) ZP(G*) —=— ZP(H*)

)

Fp+1/Bp(F*) 775 Gr+1/Br(G*) 25 HP+1/BP(H®) — 0
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Consider now the diagram

0 — FP/BP(F*) 25 GP/BP(G*) —5's HP/BP(H")

/| b

0 — s zri(E) M ZrHi(Ge)

above. For the maps in this diagram, HPF* =

time, wi the desired exact sequence. EI

P

A S P T



Complexes of sheaves

The definitions and arguments of the previous subsection apply much more
generally (to any abelian category). In particular, we make the following sheaf
analogue. A complex of sheaves F* is a sequence of sheaves with maps between
them

di—z di—l di di—i—l
= Fia——— Fi ———— Fi ——

such that d'*! od’ = 0 for each i. Given such a complex, we define the cohomology
sheaves HP F* as Kerd' /Imd'~1. As above, a short exact sequence of complexes
of sheaves gives rise to a long exact sequence of cohomology sheaves.



13.2  Cech cohomology

Let X be a topological space, and let F be a presheaf on it. Let i/ = {U;} be an
open cover of X, indexed by an ordered set I. As we saw previously, if F is a
sheaf, the following sequence is exact: ) — ~ —~ 1.

g seq (4) — -4,

0— F(X —>HJ—“ -—>HJ—“(u,-muj). JuJ‘

s = sly |
-4~ %Jca
ﬂ ?(U (\U /\O )



The Cech complex is essentially the continuation of this sequence; it is a complex
obtained by adjoining all the groups F(U;, n---n U, ) over all intersections
U, n---nU.



DEFINITION 13.2 For a presheaf F on X, define the Cech complex C*(U, F) of F
(with respect to U) as

W, F) L, F) L AU F) S

where
cUu,r) = ||[Fu .
@ = [7w ()
Cl(u’]:) = ]:(uio M uil) ,
(io,ill_)[eﬂ (O/'J —)‘]
CP(U,F) = 1‘[ FUiy - ;). (‘Tio B i? )

(0,--rip)€IPH

NG ) — TTFG) — TT Hya)
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and the coboundary map d : CP (U, F) — CP*1(U, F) by
(@P0)igusipn = D, (—1) Oipyed iy Ui oo,

j=0

where iy, . . . zA], e lpp1 means iy, . . ., i,y 1 with the index ij omitted.



ExaMPLE 13.3 Let us look at the first few maps in the complex:
d do : CO(U,.F) — Cl(L{,]-"). If o = (O'i)i, then

(d°0);j = 0 — 03

o’:(@@> —



adl Cl(L{,]-“) — Cz(L{,]-“). If o = (O'i]'%, then

e

(d'0)ijx = o3 — o + 03



By direct substitution, we see that d' 0 d° = 0 (all the 0;; cancel). This happens
also in higher degrees by a basic computation using the definition of .

LEMMA 13.4 dPTlodP = 0.



In particular, the C*(U, F) forms a complex of abelian groups. As before, we
say that an element o € C?(U, F) is a cocycle if dPo = 0, and a coboundary if
o = dP~'7, and denote these by ZP and B? respectively. The Cech cohomology
groups of F are set up to measure the difference between these two notions:



DEFINITION 13.5 The p-th Cech cohomology of F with respect to U is defined as

HP(U,F) = ZP/BP = (Kerd?)/(ImdP™ 1)



It is not hard to check that a sheaf homomorphism 7 — G induces a mapping
of Cech cohomology groups, so we obtain functors F — H? (U, F) from abelian
sheaves to abelian groups
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EXAMPLE 13.6 Again it is instructive to consider the group H’(U, F). Here the
map d° : CO(U, F) — CY(U, F), which is simply the usual map
[[F@) -] [FUnw)
R J—— 5j =5
which has kernel F(X) by the sheaf axioms. It follows that H(U, F) = F(X).

0 bsr L°
H = /—“ _ = })!W £0 = ?{K)
' o




ExamPLE 13.7 The most interesting cohomology group is arguably H' (U, F). It
is the group of cochains ¢;; such that oy = 0;; + 0jx modulo the cochains of the
form o =7, — 1. . *



ExampLE 13.8 Consider the unit circle X = S! (with the Euclidean topology),
with its standard covering U = {U, V} (intersecting in two intervals) and let
F = Zyx (the constant sheaf).

U

~
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The map C’ — C! is the map d° : Z? — Z2 given by d°(a,b) = (b—a,b —a).
Hence
H'(U,Zx) = Kerd = Z(1,1) ~ Z

and

HY(U,Zx) = Cokerd =

0 S haprodis ~ S sk
O Y | I S
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ExamrLE 13.9 Consider the projective line P} covered by Uy = Speck[t] and
U; = Speck[t™!]. For the structure sheaf F, the Cech -complex takes the
following form: P C!

0 —— (’)]Pl(llo) X O]In(ul) L) (’)]Pl(llo N LI1) — 0 "
-V~
T TZ 4 rit?) 2 %,)f do- T |

—_—

0 — > k[t] x k[t7]] y k[t — 2 0

(F&) ) %G—,))/? ?G‘“) — plt)
HO(U Op) = by & = F

WU, ) < e L= 00



Where d sends a pair (p(t),q(t™!)) to g(t7!) — p(t). As we saw in Chapter 5,
Ker d = k. It is on the other hand clear that any element of k[t*!] can be written
as a sum of a polynomial in t and one in t~!, hence

H'(U,O) = Cokerd = 0.
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ExamPpLE 13.10 Continuing the above example, let us compute the sheaf coho-
mology groups for F = O@. The sequence takes the following form:

0 — k[t] x k[t7!] = k[t*!] —— 0 where the map d is now given

by
d(p(t),q(t™")) = t"q(t™") — p(t)

(see Section 5.3). As we computed in Proposition 5.2, we have Kerd ~ k"1 if
n > 0, and Kerd = 0 otherwise. The computation of H! is slightly more subtle.

n;o[u)@(nﬁ = boe A = §F&)<tﬂ9f[ﬂe“’) )ﬂfeﬂu«}
k14, -,

1
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AU, 06 = cdor 4 = 0 (70)

Consider first the case n > 0. As before, it is easy to see that any Laurent
polynomial in k[t,#~!] can be written in the form t"q(t~1) — p(t). In fact, this
also works forn = —1,as t % = t71.t%1 _0and t* = 1.0 — t5. Hence

HY(U,O(n)) = 0 for n > —1. For n < —2 however, any linear combination of
the following monomials are not in the image:

=1 =2 gt

This implies that H* (4, O(n)) is a k-vector space of dimension —n + 1.
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ProPOSITION 13.11 Let X be an irreducible topological space. Then for any covering
U of X we have for a constant sheaf Ax

HP(U, Ax) =0

for p > 0.

Mok : S
wpan wihigle Qo W (5, 2)= €

el el bl S - Q“O
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Proor: In this case the Cech complex takes the form

[[a~][a~ [ A~

iel i,jel i,j kel

Note that this complex of groups does not depend on X or the covering U — it is
only the index set I which plays a role. In particular, the complex is the same
as the Cech complex of A on a 1-point space (which makes it plausible that the
higher cohomology should vanish). In this case it is easy to show by hand show
that any p-cocycle is the boundary of some (p — 1)-cochain for p > 0.



For instance, given a 1-cocycle g = (g;j) € [ [;; A, fix some n € I and define
the element h = (h;) € C°(U, A) = [[;c; A by h; = g,i. The cocycle condition
0=d! (g)nij = &ij — &nj + Sni translates into 0 = 8ij — h]‘ + h; or 8ij = hj — h;. This
proves that the cocycle ¢ = (g; ;) is the coboundary of the element h = (h;), and
thus that the class of that cocycle is zero in H' (U, Ax).



Sheaf cohomology

As seen in the examples above, the groups HP (U, F) are easily computable,
if one is given a nice cover of X. Indeed, the maps in the Cech complex are
completely explicit, and computing their kernels and images involve only basic
row operations from linear algebra.



On the other hand, the definition of the cohomology groups is a little bit
unsatisfactory for various reasons. First of all, the groups H? (U, F) depend on
the cover U, whereas we want something canonical that only depends on F.
More importantly, it is not clear that the definition above really captures enough
of the desired information about . For instance, U could consist of the single
open set X, and so H' (U, F) = 0 for all i > 1! Finally, it is not at all clear if these
groups satisfy the requirements mentioned in the introduction.



There is a fix for all of these problems which involves passing to finer and
finer ‘refinements’ of the covering. We say that a covering V = {Vj}j¢; is a
refinement of U = {U;};e; if for every V; € V, thereis a i € I so that V; < U;. This
defines a partial ordering on the coverings which we denote by V < U. If we

U V)

0 )

K Vi %W%



o

fix amap € : ] — I so that V; < U,(; for every j, we can define a refinement
homomorphism
refulv . H”(U,f) - HP(V,.F)

by setting

(refy y(o ))jo,...,j,, = (‘Tejo,---rejp) |V]~0n_..ﬁ]-,,



One computes easily that d o ref = ref od, so that ref induces a map on cohomol-
ogy groups. Moreover, one can check that while the refinement depends on the
choice of the function € : ] — I, the map ref on cohomology does not.



One can then define a group H? (X, F) to be the direct limit of all H? (U, F)
as U runs through all possible open covers U ordered by <. The resulting groups
are indeed canonical, and turn out to give the right answer for cohomology:



DErINITION 13.12 The groups HP (X, F) are called the cohomology groups of F.
In symbols,
HP (X, F) = lim HP (U, F)

- lM}UY Wﬁlt



The main preoperties of Cech cohomology are summarized in the following
theorem:

THEOREM 13.13 Let X be a topological space and let F be a sheaf on X.
0 The Cech cohomology groups are functors H' (X, —) : Shx — Groups.
Q HY(X, F) = I[(X, F) = F(X),
O Short exact sequences of sheaves induce long exact sequences of cohomology.

O (Leray’s theorem). If F is a sheaf and U is a covering such that H'(U;, N
e Uip,]-" ) = 0 for all i > 0 and multiindexes i1 < --- < iy, then

H'(X,F)=HU,F).

P U v s HEEM\O«% —) H((Mﬁ:) QQVQWW
h'0GT)
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The last statement (Leray’s theorem) is very important. It says that even
though H'(X, F) is defined as an infinite directed limit over coverings U, it
suffices to compute it at a covering which is ‘sufficiently fine’ in the sense
that the higher groups H'(U;, n--- n U;,, F) = 0 vanish for i > 0. In practice,
the latter condition is rather easy to check: It holds for instance if all of the
intersections are affine schemes (see Corollary 14.2).

W 7 Up Y

U( (\Vv/



Sbal e X= 9]766 A
F o

X SOQ«M%’r Suttd e *Q’?“M” U.C><
o oM ok

The long exact sequence for quasi-coherent sheaves

2% H‘(X)j\;) -0

20,

Let X be a scheme and consider a short exact sequence of quasi-coherent sheaves

0 > F s g > H > 0.



If U = Spec A is affine, proved in Proposition ??? that the sequence
0— F(U) — g(U) —— HU) —— 0. (13.1)

is exact. This means that if we have an affine cover U = {U;};c; with the property
that each intersection
u.

i N0 U

lp



is affine, then we have an exact sequence
0 — CPU,F) — CP(U,G) —— CP(U,H) —— O.
and consequently, the sequence of Cech complexes

oOo—C'U,r)—CcUu,gG — C*U,H) — 0.



is also exact. Thus we are in position to apply Lemma 13.1 to get a long exact
sequence of Cech cohomology groups

. —— H'U,F) — HU,G) —— HU,H) — ---



If X is separated, such coverings are cofinal in the directed system of coverings,
so we in fact get a proof of the long exact sequence (13.1) for quasi-coherent
sheaves.



In general, it can certainly happen that the restriction map (13.1) is not
surjective — one can for instance take the open covering of X with just one open
set X. This explains why the Cech cohomology groups H(U, F) do not give
long exact sequences in general. However, by passing to smaller refinements
VYV < U, we can arrange that any section lifts and we can use the above to
construct 9.



