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14.1  Cohomology of sheaves on affine schemes
THEOREM 14.1 Let X = Spec A and let F be a quasi-coherent sheaf on X. Then
HP(X,F) =0forall p > 0.
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ProOF: Recall that we defined the groups H'(X, F) by taking the direct limit of
H'(U, F) over finer and finer coverings U of X. Since the distinguished opens
subsets form a basis for the topology on X. It suffices to prove that

HP(U,F) =0 forall p > 0.

for a covering U = {D(gi)} where the g; are finitely many elements of A
generating the ring. (We can choose finitely many g;, by the quasi-compactness
of X).
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As F is quasi-coherent, we may write F = M for some A-module M, and
M = I'(X, F). With this setup, the fact that Cech cohomology vanishes of a
quasi-coherent module on an affine scheme corresponds to the observation that
for a commutative ring A; a finite sequence of elements (g;);c; of A generating
A as an ideal; and some A-module M, the following sequence is exact:

0—-M— HM&. — HMgigj — H Mgigjgk — ...
iel i,jel ijkel
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0—>M- HMgi - H Mgg; — H Myigig —
i€l ijel i,jkel

Here the boundary maps are given as alternating sums of localization maps. For

example,
d: H Myg,g; = H Myg;gi
ijel ijkel —
maps (07j)ij € Mgg; to (T — Ok + 07 j k- N N
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Notice that the beginning of the exact sequence

0—-M— HM&' - HMgigj
i ]

appeared in the construction of the quasi-coherent module M. The proof for the
exactness of this sequence is similar to the general case.



To prove that the cohomology groups vanish, we must to each cocycle o
(such that do = 0) find an element T such making ¢ = dt a boundary. The proof
is a direct calculation; one constructs an element 7 by hand.
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0—>M-— HMgi - HM&'&' - H Mg;gigy = - - -
iel i,jel i,j,kel

377 O’:(D’:j) — 0

To see how this can be done, let us for simplicity consider the case p = 1 first.
Let o € []; Mg, be in the kernel of d. We may write

m..
oij = —l]r where m;; € M
(8i8;)

for some r (since the index set I is finite, we may choose this independent of i, j).



The relation do = 0 gives the relation

&& O% Mk n mij _
g]gk  (gigK)" | (2i8))"

in Mgig,-gk- In other words, we have, in nggk,

r+1
8i

ot !
mik _ 8i8jMik  8i8xMij

(gig)"  (gjgu)"  (8jgk)"

(14.1)
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for some I > 0. Now, as the open sets D(g;) = D(g/™) cover X, we have a
relation

1= thgl'“

iel

where h; € A. Let us define T = (7;) € [[ Mg, by

Zh gzml]

iel




In [ Mgq,, we may write this as

Z h glgkmz]
i€l g]gk

We want to show that dt = ¢. This is a basic computation, using the relation



(14.1) above:

(d7)jk

Tk—Tj

S gfg;m,-f Y gl g,’cmir]-

= (sig) o (88K)

2 h gigjmix  glgimi
(8ige)”  (gjgk)"

Eh gz m]k Mk Zh

iel (g gk) (g]gk) icl

= (7;
(8i8x)" A

As desired. Hence H' (U, F) = 0.




Cech cohomology and affine coverings

As a Corollary of the previous theorem, we see that affine coverings of schemes
satisfy the conditions of Leray’s theorem (see Theorem 13.13). This implies

COROLLARY 14.2 Let X be a noetherian scheme and let U = {U;} be an affine covering
such that all intersections U;, N - - - n U, are affine. Then

H!(X,F) = HU,F)

In particular, the theorem applies to any affine covering on a noetherian separated
scheme.
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ExamPLE 14.3 Consider the ‘affine line with two origins” X from Example 5.4. X
is covered by two affine subsets X; = Spec A[u]| and X, = Spec A[u] and these
are glued along their common open set X1» = D(u) = Spec A[u, u~']. The Cech
complex looks like ?(“-\ qf(ﬂ 3 q,bu,) - P( w)

0 — Afu] x Alu] —% Afuw,u1] £ 0

As we checked in the example, Ox(X) = Kerd! = A[u]. More strikingly,
the cokernel H'(X,Ox) = Cokerd! of the map Alu]® A[u] — Alu,u=!] is
Alu,u=1)/Alu], so H}(X, Ox) is not finitely generated as an A-module. This
gives another proof that X is not isomorphic to an affine scheme. *



14.2 Cohomology and dimension

THEOREM 14.4 Let X be a topological space of dimension n, and let F be a sheaf on X.
Then
HP(X,F)=0

forall p > n.
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We will prove this in a special case, namely for a quasi-projective scheme.

LEMMA 14.5 Let X be a topological space and let Z — X be a closed subset. Then for

any abelian sheaf F on Z/we have HP (Z, F) = HP(X,i,F).

Proor: This follows from the basic fact that for U < X open I'(U,i.F) =
I'(Z A U,F), so the two cohomolgy groups arise from the same Cech complexc<¢

1



THEOREM 14.6 Let X be a quasi-projective scheme of dimension n. Then X admits an
open cover U consisting of at most n + 1 affine open subsets.
This implies that
H(X,F)=0fori>n

for any quasi-coherent sheaf F on X.



Proor: Let X be a quasi-projective scheme, i.e., X =Y — W, where Y, W c IP"}
are closed subschemes. Consider the irreducible decomposition Y = [ J; Y; and
observe that Iy & (J Iy, where I/ A[x,,...,xn] denotes the ideal of the set
\T'  PV. Pick a homogenous polynomial f of degree d such that f € Iy — (U;ly,).
Let H = Z(f). Then P" — H = D (f) is affine and hence so is Y — H (being a
closed subscheme of an affine scheme).



By construction Y —H c Y — W = X and H D Y; for any i by the choice of f.
Therefore dim (Y; n H) < dim Y; so we may use induction on dim X. Notice that
the affine subset is obtained as an affine subset of the ambient projective space
intersected with our scheme, so the affine schemes obtained subsequently are
restrictions of affine subschemes of the original X. This shows the first claim.
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For the second, note that for < n + 1vaffines, there are at most n terms
Ci(X,F) in the Cech complex. From this it follows that 0 = H!(U,F) =
H'(X,F) forany F and i > n. O

O



14.3 Cohomology of sheaves on projective space

On projective space P’} we have a distinguished covering via the open sets
D, (x;). We can use the Cech complex associated to this covering to compute
the cohomology of the invertible sheaves O(m) on IP%.



THEOREM 14.7 Let X = IP"; = Proj R where R = Alxy, ..., x,| where A is a noethe-
rian ring.

i)

(¥ o) = HOxX, Ox(m)) = {Rmform?() gt 7 M;AM

0 otherwise an)
ii) %
H" (X, Ox (m)) = {Af"r m=-n=1 62)) = A

0form>-—n—1
iii) For m > 0, there is a perfect pairing® of A-modules
Vs RM
H(X, Ox(m)) x H*(X,Ox(—m —n—1)) - H"(X,0x(-n—1)) ~ A
v) For0 <i< dallmeZ, weh : n
iv) For i<nandalm we have dim { (a~“4~n_,))
H'(X,0x(m)) =0 ~ i B,

= (”’7‘4\7
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Proor: Consider the Ox-module F = @,,.z O(m). We would like to show for
instance that H'(X, F) = 0 for i # 0, n; this is equivalent to H'(X, Ox(m)) =0
for all m, but F has the advantage that it is a graded Ox-algebra. Consider
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the Cech complex'associated with the standard covering U/ = {U;} where
U; = D4(x;) = SpecR(y,). This is simply



We have a graded isomorphism of R-modules:

H°(X, F) = Kerd®
= {(ri)ie1lri € Ry, 7i = rj€ inx].}

~ R.

This isomorphism preserves the grading, so we get (i).
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For (ii): Note that Ry, ...y, is a free graded A-module spanned by monomials
of the form

ao a
xO ...xn"

for multidegrees (ay,...,a,) € Z"t'. The image of d"~! is spanned by such
monomials where at least one 4; is non-negative. Hence

H"(X, F) = Cokerd"!

= A {x(u)o s x,‘;"|ai < OVZ} c Rxo...xn

= “
n o — P\XO@ R.ﬁ‘ —) EXOX, — D
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Hence
H"(X, (’)X(m)) = H"(X, f)m
= A {xgo oo xzn|ai < OVi,Zai = m} - Rxo...xn

In degree —n — 1 there is only one such monomial, namely x,* - - - x; .



(iii): If we identify H"(X, Ox(—m —n — 1)) with
A{xgo ceexing < OVi,Za,- = m}

and H°(X,O(m)) = Ry, we can define the pairing via multiplication of Laurent
polynomials:

H°(X,0(m)) x H" (X, Ox(—m —n —1)) — Ryy...x,

(xgm ce x:’:") X (xgo ce x‘rll”) — x80+m0 ce xﬁ""'mn



Here the exponents satisfy m; > 0,a; <0 > a; = —m—n—1, >,m; = m. This
gives a map

H(X,0(m)) x H*(X,Ox(—m —n—1)) - H*(X,Ox(-n—1)) = Axy'---x, "

sending (xp° - xp") x (x3°---x%") to zero if m; +a; > 0 for some i. This
pairing is perfect: The dual of a monomial (x;°---xy™") is represented by



Vwm €7
( A CO
\(\(@A)Q(Vm 1 &g MY

—_—

(iv) This point is more involved, and we proceed by induction on n. For
n = 1, there is nothing to prove. For n > 1, let H = V(x,) ~ P"! be the
hyperplane determined by x,. We have an exact sequence

0— R(-1) = R — R/(x,) =0 (14.3)



o
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Applying ~, we find I
0 — Ox(=1) - Ox — i,Oy — 0 © ©(m

where i : H — X is the inclusion. If we take the direct sum of all the twists of
this sequence, we get

0> F(-1) > F - iy Fy — 0

H — @\Em—l) — @(M) — ('% (9H Qg@(‘“) — O

e (04 ()



where Fy = @,,cz On(m). By induction on 1, we have for 0 < i < n —1 and all
me Z: H(X,i,Oy(m)) = H'(H,Og(m)) = 0. So taking the long exact seqence
of cohomology, we get isomorphisms

H{(X,F(-1)) 2 H'(X, F)



for 1 <i < n—1. We claim that we have isomorphisms also for i = 1 and
i =n — 1. For i = 1, this follows because the sequence

0— HX,F(-1)) - H'(X,F) - H'(X,i,Fy) =0

is exact (this is the same sequence as (14.3)).



For i = n — 1 we need to show that
0 —» H" 1(X,i,Fy) > H (X, F(-1)) 2% H*(X, F)

is exact. The kernel of -x;, is generated by monomials xgo ... xym with a; < 0 for
all i. So it suffices to show that the connecting map J is just multiplication by
x,; 1. Define R’ = R/x,. Writing the arrows in the Cech complex, vertically we
get the diagram

0—— T R(=1)xy22y ——TT; Ragtxy — R ——0

xoo..xn_l

J J |

0— > Rygox, (—1) — 2 3 Ryyooy, ——————0
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If xg’ - - xfl"__ll is a monomial in H"~!(H, Fy) witha; < Oforall1 <i<n-—1,

then it comes from an (n + 1)-tuple in [, Ry,...¢,...x, which maps to £xg’ - - - x"
in Ry,...x,, which is in turn mapped onto by the monomial x{°- - - x,"7'x; ! in
Ryyx, (—1). S0 8(x" - - - x."~1) is represented by the monomial x{’ - - - x."~'x; ! in

n—1 n—1"n
H"(X, F(~1)).
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Now we claim that we have an isomorphism H*(X, F)x, = H*(Uy, Flu,)-
Indeed, the Cech complex of F|i;, with respect to the covering U; n U, is just the

Um = %Tzc <P\7<n> o

)

(0, F) = 3_(707%“ T =300



localization of C*(X, F) at x,,. Localization is exact, so it preserves cohomology,
which gives the claim.

We know that H'(X, F),, = H'(U,, F|y ) = 0 for all i > 0, since U, is affine.
Hence for I » 0, xilHi(X, F) = 0 as an A-module. However, we have shown
that -x,, gives an isomorphism of H'(X,F) for 0 < i < n. This implies that
H!(X,F) =0. Q



COROLLARY 14.8 Let k be a field. Then for m > 0

a dimg HO(P?, O(m)) = (™1™ ( =+ 0 Wfﬂ
a dimy H" (P!, O(—m)) = (™) &3 i <0)

n

and all other cohomology groups are 0.
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14.4 Extended example: Plane curves

Let X = V(f) < IP? be a plane curve, defined by an homogeneous polynomial

f(xo,x1,x2) of degree d. Let us compute the groups of the structure sheaf
H!(X,Ox). We have the ideal sheaf sequence

0—Zx — Op2 = i,O0x — 0
v o WOG& W Q)
mm @f/{ﬁ\i&i@&v W, >< ﬁlﬂ%ﬂ\/\Wﬁ Somn

|
= hi(xo)
= QUim HI(Xf Ox)
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where the ideal sheaf Zx is the kernel of the restriction Op> — i, Ox. By Section
12.8, Op2(—X) >~ Op2(—d), and the sequence can be rewritten as

0 — Opo(—d) — L Ops — i,0x —— 0.

T
o= Rdl — R — 12/7,1,40



From the short exact sequence, we get the long exact sequence as follows:

0 //\Q
0 —— H°(IP?2,0(—d)) —— H°(IP?,Op:) —— H°(X, Ox)

<"— fb 40

H(P2,O(~d)) —— HY(P2, Op) — H(X, Ox)

N

>

< >
H2(P2, O(—d)) —— H2(P?2, Op2) —— 0.
e 3 1,0 :
—9 —) — 0 0
0 a 1A at)) <o

o= (ko) = Wi otd)] —o 4> -n-
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WL =~ & - H(aw) % (4:

Using the results on cohomology of line bundles on IP?, we deduce that
H°(X,Ox) ~ k and

HY(X, Ox) ~ k(7).

The dimension of the cohomology group on the left is the genus of the curve X
(it will be introduced properly in Chapter 19). So the above can be rephrased as
saying the genus of a plane curve of degree d is 3(d —1)(d —2).
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14.5 Extended example: The twisted cubic in P3

Let k be a field and consider IP?> = Proj R where R = k[xg, x1, X2, x3]. We will
continue Example 12.23 and consider the twisted cubic curve C = V(I) where
I c R is the ideal generated by the 2 x 2-minors of the matrix

X X1 X
M = 0 1 2 /
X1 X2 X3 )



Let us by hand compute the group H!(X, Ox). Of course we know what the
answer should be, since X ~ P!, and H'(PP!,Op:) = 0. Indeed, S = R/I is
isomorphic to the third Veronese subring k[s, t](®) = k[s3, s2t, st?, t3]; the Proj of
this ring is IP}.



Nowv, to co“mpute H! (X, Ox) on X, it is convenient to relate it to a cohomology
group on IP3. We have H}(X,Ox) = H'(IP3,i,Ox) where i : X — 3 is the
inclusion. The sheaf i, Ox fits into the ideal sheaf sequence

0— T — Ops — ixOx — 0.

1l 0,0 (= 1)
H\(\f\l ®><} - ?



where 7 is the ideal sheaf of X in IP3. Applying the long exact sequence in
cohomology, we get

/O

. —— HYP,Z) —— HY(IP?,Ops) —— H(P3,i,Ox)
< —
H?(P3,7) —— H*(P3,0ps) ———— -

f
0
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By our description of sheaf cohomology on P?, H!(IP3, Ops) = H?(IP%, Ops) =
0, which implies that H'(X,Ox) = H?(IP?,Z). We can compute the latter
cohomology group using the exact sequence of Example 12.23:

0 — Ops(—3)* = Ops(—2)° - — 0. R

2 3

o— R(-?3) — Rl-t) 5 17 —, ,
<»<‘03((3L e, — 9“’;7%)*7,” N

M %, o, — 9.7 ><O><9 —x]x%
20— 9. = XXz "Xg



e o)+ W(E, td-r-)

fim = (k—wy—]1+nj . (’t))

Now, taking the long exact sequence we get k\\ (\@ 0 )
4 0 I( K
- —— HX(P%,0(=3) — HY(P, Ops(-2)°) — H(RT)

— >
H3(P3, 0(—3)?) —— H3(P3, Ops(—2)%) —— H3(K,7)
\(

\\
O\

\\(lfﬁ,@(d«\.\ =0 4 >-n-

0)
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Here H2(IP3, O(-2)) = 0 and H3*(IP?, O(-3)) = 0 by our previsous computa-
tions. Hence by exactness, we find H?(IP?,Z) = 0. It follows that H! (X, Ox) =0
also, as expected.



A locally free sheaf is said to be split if it is isomorphic to a direct sum of
invertible sheaves. We have seen several examples of locally free sheaves that
are not free, even on affine schemes, but a priori it is not so clear whether these
are direct sums of projective modules of rank 1. In this section we will study
the sheaf & from Section 12.9 and show that it is indeed non-split.
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The sheaf & is the Iqgcally free sheaf of rank n on IP} sitting in the exag¢t
sequence (12.6)

0 — Opr(-1) — Og,gl — & — 0.

Suppose that & is not split, i.e., & is not isomorphic to a direct sum of invertible
sheaves. Since Pic(IP}) = Z is generated by the class of O(1), this would mean
that & ~ Opy(a1) @ #)Opy (ax) for some integers ay, ... a, € Z.



Recall that for n > 2, we have H"! (P¥,O(m)) = 0 for any m € Z. So if we
could show that H"~1(IP}, &) # 0, we would have a contradiction. Actually, it is
the case that H"‘l(]PZ, &) = 0, but we can instead consider F = &(—n), which
fits into the sequence

O—»(Q]p;:(—n—l)—>(9]p;:(—n)"+1—>.7—>0. QQ @(_}/]>
"

o //7 — H7(0 /m —j"’(af)
m%ﬂ('”")) — 3r\v\(@ ~m\>




Taking the long exact sequence in cohomology, we get
o= H'H O — H''(F) % H'(Opy(-n —1)) — H'(Op{") — -+

Here the two outer cohomology groups are zero, by Theorem 14.7. Hence, by
exactness, we find that H"~' (P}, F(—1)) ~ H*(P{Opr) = k. This implies that
F = &(—n), and hence & cannot be a sum of invertible sheaves, and we are
done.



14.7 Extended example: Hyperelliptic curves

Let us recall the hyperelliptic curves defined in Chapter 3. Let k be a field. For

an integer ¢ > 1 we consider the scheme X glued together by the affine schemes
U = Spec A and V = Spec B, where

A — k[x, y] and B — k[u,v]
(—y% +agg1x28F .- 4 a1x) (—v? 4+ aggp1u+ - - +aqu?8tl)

As before, we glue D(x) to D(u) using the identifications u = x~! and v =
x—8~1y.
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Let us compute the cohomology groups of Ox using Cech cohomology. We
will use the affine covering U = {U,V} above. Viewing the first ring as a
k[x]-module, we can write

klx, y]
(=9 + agg x4+ arx)

= k[x] @ k[x]y

and similarly B ~ k[u] @ k[u]v as a k[u]-module.

OV @ Ox(v) = A®B

\ — \Z[)ﬁi@ /(\57 B /:)

Oo
\!

()
\



Since U has only two elements, the Cech complex of Ox has only two terms,
Ox(U) ®Ox(V) and Ox(U n V) and the differential between them is given by

d° : (k[x] @ k[x]y) @ (k[x‘ll ® k[x‘llx‘g‘ly) — k[x* ] @k[x*y
(p(x) +q(x)y, r(x™") +s(xH)x8y) — p(x) —r(x1) + (q(x) —s(x~)x 8 Ny



Comparing monomials x™y" on each side, we deduce that
H°(X,0x) =Kerd’ =k

and
HY(X,Ox) = Cokerd® = k{yx~1,yx2,...,yx"8} ~ k8.

B



In particular, dim; H'(X, Ox) = g. The latter invariant us usually referred to as
the arithmetic genus of a curve; we have shown that the hyperelliptic curve X has
arithmtic genus g.



For ¢ = 2, we get a particularly interesting curve — an irreducible projective
curve which cannot be embedded in P?2. Indeed, we showed that for any
irreducible curve in P? of degree d and the corresponding arithmetic genus
equals dim H(X, Ox) = 3(d — 1)(d — 2). However, there is no integer solution
to 3(d —1)(d —2) = 2. This implies the following:

PROPOSITION 14.9 There exist non-singular projective curves which cannot be embed-
ded in P2,

N - \ W\\{Wl W Duon ‘*\QJ.K ?(U/uAd



X ¥ = vt = 27

Note that we still haven’t proved that X is projective. As we have just shown,
there is no closed immersion X — P? in general for ¢ > 2. However, it is



not hard to see that X can be embedded into the weighted projective space
IP(1,1,g + 1) = Projk[xp, x1, w] given by the equation

2¢+1

2 29+1
w” = ﬂ2g+1x0g X1+ -+ a1XpX, (14-4)

Note that this makes sense if w has degree g+ 1, but it does not define a
subscheme of IP2.



