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DEFINITION 2.1 For a ring A we define its spectrum as
Spec A = {p | p< A is a prime ideal }.

The set Spec A has a topology which generalizes the Zariski topology on a
variety, and the definitions are very similar: the closed sets in Spec A are defined

to be those of the form
w pedioday  V (a)
V(a)={peSpecAlp2a} [
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LEMMA 2.2 Let A be a ring and assume that {a;}ic1 is a family of ideals in A. Let a
and b be two ideals in A. Then the following three statements hold true:

i) V(anb) =V(a) UV(b) = V(ab), & 7wt awndunce
i) V(3ia) = V(e);
iii) V(A) = & and V(0) = Spec A.
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LEMMA 2.4 For two ideals a,b < A we have ~
i) V(a) € V(b) if and only if /a 2 \/b. In particular, one has V (a) = V(+/a);
ii) V(a) = Jifand only if a = A;
iii) V(a) = Spec A if and only if a = +/(0).
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For an element f € A, we let D(f) be the complement of the closed
set V(f), that is,

D(f)={plfé¢p}=X-V(f).

These are clearly open sets and are called distinguished open sets.



LEMMA 2.5 The open sets D(f) form a basis for the topology of Spec A when f runs
through the elements of A.
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LEMMA 2.6 A family {D(f;)} forms an open covering of Spec A if and only if one may
write 1 = ), a; f; with the a;’s being elements from A only a finite number of which are
non-zero.

Proor: One has V(3..(fi))° = (N; V(fi))¢ = U,; D(fi), so the open sets D(f;)
constitute a covering if and only if the ideal generated by the f;’s is the whole
ring A; that is, if and only if 1 belongs there. But this happens if and only if 1 is

a combination of finitely many of the f;’s. -
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LEMMA 2.8 One has D(g) < D(f) if and only if §" € (f) for a suitable natural number
n. In particular, one has D(f) = D(f") for all natural numbers n.

Proor: The inclusion D(g) € D(f) holds if and only if V(f) € V(g), and by
Lemma 2.4 on page 45 this is true if and only if () € +/(f), i.e., if and only if
g" € (f) for a suitable n. Q
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In fact, the inclusion D(g) < D(f) Kquivalent to the condition that the localiza-
tion map p: A — A, extends to a map pf, : Af — A,. Indeed, p extends if and

only if p(f), i.e., f regarded as an element in A, is invertible, which in its turn
is equivalent to there being an b€ A and an m € ]N such that g"(fb—1) = 0 or
in other words, if and only if g" = cf for some d and some m € IN.



in other words, if and only if g" = cf for some d and some m € IN. This enables
us to define the localization map by
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More generally, for an A-module M, we have localization maps

where x € M.
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PROPOSITION 2.9 If p is a prime ideal of A, the closure {p} of the one-point set {p} in
Spec A equals the closed set V (p).

Proor: If the point p is contained in a smaller closed set than V(p), there is an

ideal a with p € V(a) € V(p). By lemma 2.4, this implies that ,/p S 4/a S p, from
which it follows that p = 4/a, and hence we conclude that V(a) = V(p). a

\)/r = W
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DEFINITION 2.10 A point x in a closed subset Z of a topological space X is called a
generic point of Z if Z is the closure of the singleton {x}; that is, if {x} = Z,
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PROPOSITION 2.11 Let A be a ring. Then the following statements hold:
i) A closed subset Z < Spec A is irreducible if and only if Z is of the form
Z = V(p) for some prime ideal p.

ii) The space Spec A itself is irreducible if and only if A has just one minimal
prime ideal; in other words, if and only if the nilradical 1/ (0) is prime.



PrROOF: As the closure of any singleton is irreducible and since we just showed
that V(p) = {p}, we know that V(p) irreducible. For the reverse implication,
assume that V(a) € Spec A is a closed subset. Recall that v/a = [, p, so if v/a
is not prime, there are more than one prime involved in the intersection. We may
divide them into two different groups thus representing +/a as the intersection
v/a=bn b’ where b and b’ are ideals both different from a. One concludes that
V(a) = V(b) U V(b'), so it is not irreducible.

For the second statement it suffices to observe that Spec A = V(1/(0)). O



A consequence of the lemma is that Spec A is irreducible whenever A is an
integral domain, as in that case (0) is a prime ideal. However, the converse is
not true: The ring A = k[t]/ (#*) is not an integral domain, but it has only one
prime ideal, (¢), so X = Spec A is just point, hence irreducible.



ExampLE 2.12 The scheme X = Specklx,y|/(xy) is the prime example of a
scheme that is connected but not irreducible. The coordinate functions x and
y are zero-divisors in the ring k[x,y]/(xy), and their zero-sets V(x) and V(y)
show that X has two components. Since these two components intersect at the
origin, X is connected. *



Functoriality

Let A and B be two rings and let ¢: A — B be a ring homomorphism. The
inverse image p~!(p) of a prime ideal p B is a prime ideal: that ab € ¢~1(p)
means that ¢(ab) = ¢(a)p(b) € p, so at least one of ¢(a) or ¢(b) has to lie in p.
Hence sending p to ¢~ (p) gives us a well defined map Spec B — Spec A; a map
we shall denote by Spec ¢.
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LEMMA 2.13 Assume that ¢: A — B is a map of rings. Then the induced map between
the ring spectra Spec ¢: Spec B — Spec A is continuous.

Proor: We need to show that inverse images of closed sets are closed. So let
a < A be an ideal. This follows from series of equalities

(Spec) ™' (V(a)) ={p<B |9~ (p) 2a} ={p<B|p2¢(a)} = V(¢(a)B),

which follows because p 2 ¢(a) if and only if ¢~!(p) 2 a because ¢~ (¢(a)) 2 a.
Hence the inverse image (Spec$)~!(V(a)) is closed. Q



EXAMPLE 2.14 (The spectrum of a quotient, Spec(A/a)) If a £ A is an ideal, the
ring homomorphism A — A/a induces a map

f : Spec(A/a) — Spec A.

\vm? = V(a) J\{ﬁ 9]’@«4(’%0
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ExAMPLE 2.15 (The spectrum of a localization, Spec Af) For an element f € A, we
consider the localization A¢ of A in which f is inverted and the corresponding
ring homomorphism A — Ay. The prime ideals in the localized ring A are in a
natural one-to-one correspondence with the prime ideals p of A not containing f;
in other words, with the complement D(f) = Spec A — V(f). Thus the induced
map Spec A¢ — Spec A is a homeomorphism onto the open set D(f) of Spec A.
This is an example of an open immersion. *
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2.2 Examples

2.16 (Fields) If K is a field, the prime spectrum Spec K has only one element,
corresponding to the zero ideal in K. This also holds true for local rings A with
the property that all elements in the maximal ideals are nilpotent, i.e., the radical

(0) of the ring is a maximal ideal. For Noetherian local rings this is equivalent
to the ring being an Artinian local ring.
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2.18 (Artinian rings) More generally, if A is an Artinian ring, then A has only
finitely many prime ideals, so Spec A is a finite set. If A is noetherian, the
converse is also true.
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2.19 (Discrete valuation rings) Consider a discrete valuation ring A, for example
C[[t]], k[x](x) or Z,)). See Appendix A for background on discrete valuation
rings). A has only two prime ideals, the maximal ideal m and the zero ideal (0).
So its prime spectrum Spec A has just two points, and Spec A = {r,x} with x
corresponding to the maximal ideal m and # corresponding to (0). The point x



is closed in Spec A, and therefore {#7} = X — x is open. So # is an open point!
The point 7 is the generic point of Spec A; its closure is the whole Spec A.

The open sets of X are &, X, {n}. In particular Spec A is not Hausdorff, as #
is contained in the only open set containing x, the whole space.

n

s

The spectrum of a DVR



2.20 (The spectrum of the integers, Spec Z) There are two types of prime ideals in
Z . There is the zero-ideal and there are the maximal ideals (p)Z, one for each
prime p. The latter prime ideals give closed points in Spec Z, however one has
V(0) = SpecZ, so the point corresponding to the zero-ideal is a generic point.

@) 3) (5) (Z) (1.1) (1.3) .

The spectrum Spec Z
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The reduction mod p-map Z — [, induces a map SpecIF, — SpecZ. The one
and only point in SpecF, is sent to the point in Spec Z corresponding to the
maximal ideal (p). The inclusion Z < Q of the integers in the field of rational
numbers induces likewise a map SpecQ — Spec Z, that sends the unique point
in Spec Q to the generic point 1 of Spec Z.



A=71

2.21 (The spectrum of the Gaussian integers, Spec Z[i]) The inclusion Z c Z]i]
induces a continuous map

¢ : Spec Z[i] — Spec Z.



(2+1) (3+21)
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The spectrum Spec(Z[i])

(

~

0)

SpecZ][i]

SpecZ
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We will study SpecZ[i] by studying the fibres (i.e., preimages) of this map.
If p € Z is a prime, the fibre over (p)Z consists of those primes that contain
(p)Z]i]. These come in three flavours:



i) p stays prime in Z[i] and the fibre over (p)Z has one element, namely
the prime ideal (p)Z][i]. This happens if and only if p =3 mod 4;

i) p splits into a product of two different primes, and the fibre consists
of the corresponding two prime ideals. This happens if and only if
p=1 mod 4;

iii) p factors into a product of repeated primes (such a prime is said to
‘ramify”). This happens only at the prime (2): note that

(2)zl[i] = (2)z[i] = (1+1)*Z][i],

which is not radical. So the fibre consists of the single prime (1 +7)Z][i].
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If one lets A = k[xi,...,x,] denote the ring of polynomials over k in the
variables xi,...,x,, one knows thanks to Hilbert’s Nullstellensatz that the
maximal ideals in A stand in a one-to-one correspondence with the points
of the affine space A" (k); they are all of the form (x; —ay,...,x, —a,) with the
a;’s being elements in k.



The affine variety A" (k) is the subset of the scheme A} = Spec A consisting
of the closed points; that is, the points in Spec A corresponding to maximal
ideals. The good old Zariski topology on the variety A" (k) is the induced
topology. Indeed, the closed sets of the induced topology are by definition all



(x-a) (0)
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2.22 (The affine line A; = Speck[x]) In the polynomial ring k[x] all ideals are
principal, and all non-zero prime ideals are maximal. They are of the form
(f(x)) where f(x) is an irreducible polynomial, hence of the form (x —a) when
we assume that k is algebraically closed. There is only one non-closed point in
Speck[x], the generic point # corresponding to the zero-ideal. The closure {7} is
the whole line A!.



2.23 (The affine plane A2 = S
P Q h Bl ‘1/) peck[x1, x2])
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(flx,y ):) Generic points of curves

Generic point




2.3 The structure sheaf on Spec A

We have now come to point where we define the structure sheaf on the topologi-
cal space Spec A. This is a sheaf of rings Ospec 4 Whose stalks all are local rings,
so that the pair (Spec A, Ospec 4) is what one calls a locally ringed space.



The two most important properties of the structure sheaf Og,ec 4 are the
following:

3 Sections over distinguished opens: I'(D(f), Ospeca) = Ag;

0 Stalks: OSpec Ax = Ap

x*



DEFINITION 2.26 Let & be the collection of distinguished open subsets D(f). We
define the 98-presheaf O by

O(D(f)) = Ay,
and for D(g) < D(f) we let the restriction map be localization map Ay — Ag of (2.2).



Let Sp(r) be the multiplicative system {s € A | s ¢ p for all p € D(f)}. There is
(f) P y

a localization map 7: Ay — SB% f)A since f € Sp(y). The following lemma says

that the ring O(D(f)) is independent of which ring element f used to define
D(f):

LEMMA 2.27 The map T is an isomorphism, permitting us to identify Ar = SB% f)A.



LEMMA 2.27 The map T is an isomorphism, permitting us to identify Ar = SD( f)

Proor: The point is that any element s € Sp(f) does not lie in p for any p € D(f);
in other words, one has D(f) < D(s). This is equivalent to 4/(s) > 1/(f), so
one may write f" = cs for some c € A and n € IN. Assume that af ™™ € Ay
maps to zero in S D( f)A. This means that sa = 0 for some s € Sp(s). But
then f"a = csa = 0, and therefore 2 = 0 in Ay. This shows that the map 7
is injective. To see that is surjective, take any as~! in SB% f)A and write is as

as~! =ca(cf")~! = caf ™. 0



PrROPOSITION 2.28 O is a HB-sheaf of rings.
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Unraveling the definitions, this can be rephrased as a concrete statement in
commutative algebra. We are given a distinguished set D(f) and an open
covering D(f) = J,.; D(fi), where we by quasi-compactness may assume that
the index set I is finite. Of course then D( f;) < D(f), and we have localization
maps p;: Ay — Ay, and pjj: Ay, — Agr. The statement in the Proposition is
then equivalent to the exactness of the following sequence

0O —— Af L) HiAfi L Hi,jAfifj (24)

where a(a); = Pz( ) and ,B((ai))i,]‘ = (pi]-(ai) - p]l(ll])) It is clear that x o p =0
since pjj o p; = pji © p;j.



LEMMA 2.29 The sequence (2.4) is exact.

Proor: We start by observing that we may assume that A = A (in other words,
that f = 1). Indeed, one has (Af)y, = Ay, and (Af)fs, = Agy, since f/" = h;f for
suitable natural numbers n;.



w B
0 —— Af — |1 Afi — Hi,j Afifj

Then to the proof: To say that a(a) = 0 is to say that a is mapped to zero in
each of the localizations Ay,. Hence a power of each f; kills 4; that is, for each
index i one has f;"a = 0 for an appropriate natural number 7;. The open sets
D(f;) cover D(f), which then is covered by the D(f;") as well. Thus we may

1



write 1 = Y, b;f;"" for some elements b; € A, and upon multiplication by a this
gives

a= Zbifi"ia = 0.
i

Hence « is injective.



p
0 — Ay —— [L;Ar, —— TLij Az,

Q, — Ot[—“j
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In down-to-earth terms, the equality Ker B = Ima means the following;:
assume given a sequence of elements 4; € Ay, such that a; and 4; are mapped to
the same element in Ay, for every pair i, j of indices. Then there should be an
a € A, such that every g; is the image of a in Ag, i.e., pi(a) = a;.



B
0 — Ay —— [[;Af, — [ijAss,
a;

Each a; can be written as a; = b;/ fi"i where b; € A, and since the indices are
finite in number, one may replace n; with n = max; n;. That 4; and a; induce the
same element in the localization Ay,r, means that we have the equations

N if = bif!) =0, (2.5)

where N a priori depends on i and j, but again due to there being only finitely
many indices, it can be chosen to work for all. Equation (2.5) gives

bify = bif N f =0 (2.6)

where m = N + n. Putting b} = b;fN we see that 4; equals b}/ f" in A £, and
equation (2.6) takes the form

bifi" —bifi" =0. (2.7)



Now D(f") = D(fi), and the distinguished open sets D(f/") form an open
covering of Spec A. Therefore we may also write 1 = >, c;f™". Letting a = , c;b;,
we find
off = SeHsT = Sy = § s =,
i i i
and hence a = b;/ f" in Ay, Q

\
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DEFINITION 2.30 We let Ospec 4 be the unique sheaf extending the 98-sheaf O.

Explicitly, the sections of Ospec 4 OVer an open set U < X, are given by the limit
of localizations
Ox(U) = ll(Ln Af. (2.8)
D(f)cu



PROPOSITION 2.31 The sheaf Ospec 4 01 Spec A as defined above is a sheaf of rings
satisfying the two paramount properties, namely

i) Sections over distinguished opens: T(D(f), Ospeca) = Af;
ii) Stalks: Ospec ax = Ap,-
In particular, T (X, Ox) = A.
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ExaMPLE 2.32 Let us continue Example 2.19. In X = Spec A, the spectrum of
a DVR, we have three open sets JJ, 17, and X. The structure sheaf takes the
following values at these opens:

Ox() =0, Ox(X)=A4, Ox(n)=A,=K(A),

where K(A) denotes the fraction field of A. The stalks are given by Ox , = A
and OX,U = K(A) *



Maps between the structure sheaves of two spectra

Previously, we assigned to any map ¢: A — B of rings a continuous map
¢*: Spec B — Spec A. We now climb one step in the hierarchy of structures and
associate to ¢ a map of sheaves of rings

‘Pﬁ: OSpecA — Px OSpecB-



By Proposition 1.29, it suffices to tell what ¢* should do to the sections over
the distinguished open sets D(f). Here everything follows from the following
simple lemma:

LEMMA 2.33 Let ¢: A — B be a map of rings and let f € A be an element. Then

(¢*)~(D(f)) = D(¢(f))

Proor: We have

@) (D(f)) ={p<B|fe¢d'(n)} ={p<=B| ¢(f) ¢p} =D($(f)).



This means that we have the equality I'(D(f), ¢+ OspecB) = By(5), and we know
that T(D(f), Ospeca) = A¢. The original map of rings ¢: A — B now localizes

toa map Af — By(y), sending af " to ¢(a)¢(f) ", and this shall be the map ¢*
on sections over the distinguished open set D(f).



To prove that ¢* is well defined, we need to check that it is compatible with
the restriction maps among distinguished open sets: indeed, when D(g) < D(f),
we write as usual g" = cf, and the localization map Ay — A, will then send
af~" to ac"g~"™. One has ¢(g)" = ¢(c)¢(f), which makes the diagram below
commutative:

A f— Ag

|

By(r) — By(g)

and this is exactly the required compatibility.



Note by the way, for p € Spec B, with image ¢—!(p) € Spec A, that the stalk
map

(Pg : OSpec Ap—1(p) — OSpec B,p
coincides with the localization A,-1(,y — Bj. This is a map of local rings, or a local

homomorphism, in the sense that it the preimage of the maximal ideal of A,-1(
equals the maximal ideal in B,.

p)



/GwaAﬁxg He ﬁﬂ{-iwi‘\‘oy\ of a Schuue

DEFINITION 2.34 A ringed space is a pair (X, Ox) where X is a topological space
and Oy is a sheaf of rings on X. A morphism of ringed spaces is a pair (f, f*) :
(X, O0x) — (Y,Oy) where f : X — Y is continuous, and

fﬁZOY_’f*OX

is a map of sheaves of rings on Y (so that f*(U) is a ring homomorphism for each open
ucy).



DEFINITION 2.35 A locally ringed space is a pair (X, Ox) as above, but with the
additional requirement that for every x € X, the stalk Ox , is a local ring.
A morphism of locally ringed spaces is a pair (f, f*) : (X, Ox) — (Y, Oy) as
above, with the additional requirement that for every x € X, the map on stalks
f)tt/’f(x) : OY,f(x) — Ox»

is a map of local rings; that is,

(f?/,f(x))_l(mx) = Mg (x)

where my © Oxx and my(yy S Oy ¢(x) are the maximal ideals.



Scames

Finally, we can give the formal definition of a scheme.

DEFINITION 2.36 O An affine scheme is a locally ringed space (X, Ox) which is
isomorphic to (Spec A, Ospec A) for some ring A.

O A scheme is a locally ringed space (X, Ox) that is locally isomorphic to an
affine scheme, i.e., there is an open cover U; of X such that each (U;, Ox|y,) is
isomorphic to some (Spec A, Ospec a-

Schy = Cm@@% O/k éa@um@g
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Relative schemes

There is also the notion of relative schemes where a base scheme S is chosen. A
scheme over S is scheme X together with a morphism f: X — S, which we call
the structure map or the structure morphism. If two schemes over S are given, say
X — Sand Y — S, then a map between them is a map X — Y compatible with
the two structure maps; that is, such that the diagram below is commutative

N
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2.5 Open immersions and open subschemes

If X is a scheme and U < X is an open subset, the restriction Ox|y; is a sheaf on
U, making (U, Ox|y) into a locally ringed space. This is even a scheme, since
if X is covered by affines V; = Spec A;, then each U n V; is open in V;, hence
can be covered by affine schemes. It follows that there is a canonical scheme
structure on U, and we call (U, Ox|y) an open subscheme of X and say that U
has the induced scheme structure.. We say that a morphism of schemes 1 : V — X
is an open immersion if it is an isomorphism onto an open subscheme of X.



As a special case, consider V = Spec Ay and the map 1 : V — Spec A = X,
induced by the localization map A — A;. This is an open immersion onto
the open set U = D(f) < X. Indeed, we saw in Example 2.15 that ¢ is a
homeomorphism onto U, and it follows from the definition of the sheaf Ox that
the restriction Ox|y coincides with the structure sheaf on Spec Ay. A word of



2.6 Closed immersions and closed subschemes

If X is a scheme, we would like to define what it means for a closed subset Z < X
to be a closed subscheme of X. The prototypical example of a closed subscheme
is the scheme Spec(A/I), which as we have seen, embeds as the closed subset
V(I) of Spec A. However, there may be many ideals that correspond to the same



V(I) of Spec A. However, there may be many ideals that correspond to the same
closed subset V(a) (as V(a) = V(4/a)). This makes the definition of a closed



V(I) of Spec A. However, there may be many ideals that correspond to the same
closed subset V(a) (as V(a) = V(4/a)). This makes the definition of a closed
subscheme little bit more complicated than the case of open subsets, as we have
to specify the locally ringed space structure on Z, and there is no canonical one.



DEFINITION 2.37 i) A closed subscheme of X is given by a closed subset
Z < X and a sheaf of rings Oz on Z so such that (Z,Oy) is a scheme
and 1,0z ~ Ox/.Z for some sheaf of ideals .# < Ox, where 1 denotes the
inclusion map.

ii) A morphism 1 : Z — X is called a closed immersion if it induces a
homeomorphism of Z onto a closed subset of X, and the sheaf map i* : Ox —
1Oz is surjective.



PROPOSITION 2.38 Let X = Spec A be an affine scheme. Then the map a — V(a)
induces a one-to-one correspondence between the set of ideals of A and the set of closed
subschemes of X. In particular, any closed subscheme of an affine scheme is also affine.



ExamPLE 2.39 Let k be a field. The ring map ¢ : k[x,y,z] — k[t] given by
x — t,y > t2,z — t> defines a morphism of schemes

f:Bg— A

thich is a closed immersion. The corresponding closed subscheme is the twisted
Cdoic curve V(I) c A7 defined by the ideal I = Ker¢ = (y — x?,z — x°).






ExamrLE 2.40 Consider the affine 4-space A‘,f = Spec A, with A = k[x,y,z, w].
Then the three ideals

I = (x,y), b = (x¥*,y) and Iy = (x%, xy, y%, xw — yz),

give rise to the same closed subset V(x,y) = A, but they give different closed
subschemes of A3. *



2.7 Residue fields

For varieties, we construct the sheaf Ox from the regular functions which we
think of as continuous maps X — k. However, in the world of schemes, we do
not have the luxury of having a field k to map into — all we know is that locally
Ox is built from elements of a ring.



We can still define an analogy between the elements f of A and some sort of
functions on Spec A. If x is a point in Spec A corresponding to the prime ideal
p, the localization A, is a local ring with maximal ideal pA,, and one obtains
the field k(p) = A,/ (pAy). The element f reduced modulo p gives an element
f(x) € k(p), which may considered as the ‘value’ of f at x; clearly f(x) = 0 if
and only if f € p.

DEFINITION 2.41 The field k(p) is called the residue field of Spec A at p.

e yfa = Sxesmh | fo—o fol gea



This generalizes to arbitrary schemes:

DEFINITION 2.42 For a scheme X, we can define the residue field k(x) at a point
x € X as k(x) = Ox »/m,, where m, is the maximal ideal in Oy ,.

If U c X is an open set containing x, and s € Ox(U) (or if s is an element of Ox ),
we let s(x) denote the class of s modulo my in k(x) — this is the ‘value’ of s at x.

Note in particular that we may speak of the zero set V(s) = {x € U|s(x) = 0} of
the section s € Ox(U). This is a closed subset of U.



ExaMrLE 2.43 Consider X = A} = Speck[t]. When k is algebraically closed,
there are two types of points, the maximal ideals (f — a) and (0). The residue
fields are of the form k(a) = k[t];_s)/ (t —a) ~ k and k(0) = k[t] o) = k().
When k is not algebraically closed, we have more interesting residue fields;
for instance p = (x% + 1) defines a point in AL, with residue field C. In general,

a maximal ideal m in k[t] is generated by an irreducible polynomial, say f (),
and defines a point in A} whose residue field is the extension of k obtained by
adjoining a root of f. *



It is important to note that the ‘values’ of an element f € A lie in different
fields which might vary with the point. For instance, the element f =17 € Z
defines a function on X = SpecZ. Some of its values are given by

f(2) =1,£((3) =2,£((7)) = 3,f((11)) = 6, ((17)) =0, (((19)) =17,

and each value has to be interpreted as an element in the appropriate residue
field Z /pZ. Thus we tweak our notion of a ‘regular function” on X; they are not
maps into some fixed field, but rather maps into the disjoint union [ [, .x k(x).



2.8 R-valued points

For a scheme X, it makes sense to study morphisms Spec R — X from affine

schemes into it. We call such morphisms R-valued points, and the set of all such
will be denoted by X(R).



EXAMPLE 2.44 Let A" = SpecZ]x1,...,%xn]. An R-valued point of A" is a
morphism g : Spec R — SpecZ|[x3, ..., x|, which determines and is determined
by the n-tuple a; = g*(x;) of elements in R. Hence,

A"(R) = R™.



Now, let X = SpecZ|x1,...,x,]/I where I = (f1,..., f;) is an ideal. The set of
R-points of X can be found similarly: indeed, any morphism

g :SpecR — SpecZ[x1,...,x,]/1

is determined by the n-tuple a; = ¢*(x;), and those n-tuples that occur are
exactly those such that f — f(ay,...,a,) defines a homomorphism

Zlx1,...,x5]/I — R.

In other words, the 4; are elements in R which are solutions of the equations
flzo--:fr:O. *



EXAMPLE 2.45 (A conic with no real points) Let X = Spec A, where A is the real
algebra A = R[x,y]/(x*> + y*> + 1). Note that the conic x*> + y* + 1 = 0 has no
real points, so X(R) = ¢J. However, A has infinitely many prime ideals. %



