Chapter 2 - Schemes

X affin semetet
$$\sim$$
, $A = A(X) \sim$ maximal ideals in A

 \rightleftharpoons points in χ

t: commentive min with 1.

DEFINITION 2.1 For a ring A we define its spectrum as

Spec
$$A = \{ \mathfrak{p} \mid \mathfrak{p} \subseteq A \text{ is a prime ideal } \}.$$

The set Spec *A* has a topology which generalizes the Zariski topology on a variety, and the definitions are very similar: the closed sets in Spec *A* are defined to be those of the form

$$V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \supseteq \mathfrak{a} \}$$
 in particular $V(\mathfrak{a})$ contains the maximal ideals containing \mathfrak{a} .

aca ideal

LEMMA 2.2 Let A be a ring and assume that $\{a_i\}_{i\in I}$ is a family of ideals in A. Let a and b be two ideals in A. Then the following three statements hold true:

i)
$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b}) = V(\mathfrak{ab});$$
 \leftarrow prime avoidance

ii)
$$V(\sum_i \mathfrak{a}_i) = \bigcap_i V(\mathfrak{a}_i)$$
;

iii)
$$V(A) = \emptyset$$
 and $V(0) = \operatorname{Spec} A$.

Lemma 2.4 For two ideals $\mathfrak{a}, \mathfrak{b} \subset A$ we have

- i) $V(\mathfrak{a}) \subseteq V(\mathfrak{b})$ if and only if $\sqrt{\mathfrak{a}} \supseteq \sqrt{\mathfrak{b}}$. In particular, one has $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$;
- ii) $V(\mathfrak{a}) = \emptyset$ if and only if $\mathfrak{a} = A$;
- *iii)* $V(\mathfrak{a}) = \operatorname{Spec} A$ *if and only if* $\mathfrak{a} \subseteq \sqrt{(0)}$.

Distinguished open sets

For an element $f \in A$, we let D(f) be the complement of the closed set V(f), that is,

$$D(f) = \{ \mathfrak{p} \mid f \notin \mathfrak{p} \} = X - V(f).$$

These are clearly open sets and are called *distinguished open sets*.

Lemma 2.5 The open sets D(f) form a basis for the topology of Spec A when f runs through the elements of A.

Mà vise: Alle àpre V kan shrives som en union av

D(f)'ev. $V \subseteq Spec A \implies V^{c} = V(I)$ er luthbet $\{f_{i}\}_{i\in J}^{c} \text{ generalorer for } I :$ $V = V(I)^{c} = V(\sum_{i\in J} (f_{i}))^{c} = (\bigcap_{i\in J} V(f_{i}))^{c} = (\bigcap_{i\in J}$

LEMMA 2.6 A family $\{D(f_i)\}$ forms an open covering of Spec A if and only if one may write $1 = \sum_i a_i f_i$ with the a_i 's being elements from A only a finite number of which are non-zero.

PROOF: One has $V(\sum_i (f_i))^c = (\bigcap_i V(f_i))^c = \bigcup_i D(f_i)$, so the open sets $D(f_i)$ constitute a covering if and only if the ideal generated by the f_i 's is the whole ring A; that is, if and only if 1 belongs there. But this happens if and only if 1 is a combination of finitely many of the f_i 's.

.. Spec A is "quasicompact": Any open cover U has a finite subcover.

U overleha av Spec A = X

=> UE U kan Shmes
Som en amion av
D(f) 'er

=> X deples av D(f) 'er

=> kun endelig wange trengs.

LEMMA 2.8 One has $D(g) \subseteq D(f)$ if and only if $g^n \in (f)$ for a suitable natural number g^n . In particular, one has $D(f) = D(f^n)$ for all natural numbers g^n .

PROOF: The inclusion $D(g) \subseteq D(f)$ holds if and only if $V(f) \subseteq V(g)$, and by Lemma 2.4 on page 45 this is true if and only if $(g) \subseteq \sqrt{(f)}$, i.e., if and only if $g^n \in (f)$ for a suitable n.

In fact, the inclusion $D(g) \subseteq D(f)$ be equivalent to the condition that the localization map $\rho \colon A \to A_g$ extends to a map $\rho_{fg} \colon A_f \to A_g$. Indeed, ρ extends if and only if $\rho(f)$, i.e., f regarded as an element in A_g is invertible, which in its turn is equivalent to there being an $b \in A$ and an $m \in \mathbb{N}$ such that $g^m(fb-1)=0$; or in other words, if and only if $g^m=cf$ for some d and some $m \in \mathbb{N}$.

in other words, if and only if $g^m = cf$ for some d and some $m \in \mathbb{N}$. This enables us to define the localization map by

$$\mathcal{D}(f) \geq \mathcal{D}(g) \implies \begin{array}{c} \rho_{fg} : A_f \to A_g \\ \frac{a}{f^n} \mapsto \frac{c^n a}{g^{nm}} \end{array}$$

More generally, for an *A*-module *M*, we have localization maps

$$\rho_{fg}: M_f \to M_g$$

$$\frac{x}{f^n} \mapsto \frac{c^n x}{g^{nm}}$$

where $x \in M$.

Generic points

det kan herde at

> PESpecA hav

V(p) = P # P.

PROPOSITION 2.9 If \mathfrak{p} is a prime ideal of A, the closure $\{\mathfrak{p}\}$ of the one-point set $\{\mathfrak{p}\}$ in Spec A equals the closed set $V(\mathfrak{p})$.

PROOF: If the point \mathfrak{p} is contained in a smaller closed set than $V(\mathfrak{p})$, there is an ideal \mathfrak{a} with $\mathfrak{p} \in V(\mathfrak{a}) \subseteq V(\mathfrak{p})$. By lemma 2.4, this implies that $\sqrt{\mathfrak{p}} \subseteq \sqrt{\mathfrak{a}} \subseteq \mathfrak{p}$, from which it follows that $\mathfrak{p} = \sqrt{\mathfrak{a}}$, and hence we conclude that $V(\mathfrak{a}) = V(\mathfrak{p})$.

DEFINITION 2.10 A point x in a closed subset Z of a topological space X is called a generic point of Z if Z is the closure of the singleton $\{x\}$; that is, if $\overline{\{x\}} = Z$,

Irreducible subsets in Spec A

Proposition 2.11 Let A be a ring. Then the following statements hold:

- i) A closed subset $Z \subseteq \operatorname{Spec} A$ is irreducible if and only if Z is of the form $Z = V(\mathfrak{p})$ for some prime ideal \mathfrak{p} .
- ii) The space Spec A itself is irreducible if and only if A has just one minimal prime ideal; in other words, if and only if the nilradical $\sqrt{(0)}$ is prime.

Proof: As the closure of any singleton is irreducible and since we just showed that $V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}}$, we know that $V(\mathfrak{p})$ irreducible. For the reverse implication, assume that $V(\mathfrak{a}) \subseteq \operatorname{Spec} A$ is a closed subset. Recall that $\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{a} \subseteq \mathfrak{p}} \mathfrak{p}$, so if $\sqrt{\mathfrak{a}}$ is not prime, there are more than one prime involved in the intersection. We may

divide them into two different groups thus representing $\sqrt{\mathfrak{a}}$ as the intersection $\sqrt{\mathfrak{a}} = \mathfrak{b} \cap \mathfrak{b}'$ where \mathfrak{b} and \mathfrak{b}' are ideals both different from \mathfrak{a} . One concludes that

 $V(\mathfrak{a}) = V(\mathfrak{b}) \cup V(\mathfrak{b}')$, so it is not irreducible.

For the second statement it suffices to observe that Spec $A = V(\sqrt(0))$.

A consequence of the lemma is that Spec A is irreducible whenever A is an integral domain, as in that case (0) is a prime ideal. However, the converse is not true: The ring $A = k[t]/(t^2)$ is not an integral domain, but it has only one prime ideal, (t), so $X = \operatorname{Spec} A$ is just point, hence irreducible.

EXAMPLE 2.12 The scheme $X = \operatorname{Spec} k[x,y]/(xy)$ is the prime example of a scheme that is connected but not irreducible. The coordinate functions x and y are zero-divisors in the ring k[x,y]/(xy), and their zero-sets V(x) and V(y) show that X has two components. Since these two components intersect at the origin, X is connected.

Functoriality

Let A and B be two rings and let $\phi: A \to B$ be a ring homomorphism. The inverse image $\mathfrak{p}^{-1}(\mathfrak{p})$ of a prime ideal $\mathfrak{p} \subseteq B$ is a prime ideal: that $ab \in \phi^{-1}(\mathfrak{p})$ means that $\phi(ab) = \phi(a)\phi(b) \in \mathfrak{p}$, so at least one of $\phi(a)$ or $\phi(b)$ has to lie in \mathfrak{p} . Hence sending \mathfrak{p} to $\phi^{-1}(\mathfrak{p})$ gives us a well defined map Spec $B \to \operatorname{Spec} A$; a map we shall denote by Spec ϕ .

$$A \xrightarrow{\phi} B \longrightarrow f: Spec B \longrightarrow Spec A$$

$$F \mapsto \phi^{-1}(F)$$

LEMMA 2.13 Assume that $\phi: A \to B$ is a map of rings. Then the induced map between the ring spectra Spec $\phi: \operatorname{Spec} B \to \operatorname{Spec} A$ is continuous.

PROOF: We need to show that inverse images of closed sets are closed. So let $\mathfrak{a} \subseteq A$ be an ideal. This follows from series of equalities

$$(\operatorname{Spec} \phi)^{-1}(V(\mathfrak{a})) = \{ \mathfrak{p} \subseteq B \mid \phi^{-1}(\mathfrak{p}) \supseteq \mathfrak{a} \} = \{ \mathfrak{p} \subseteq B \mid \mathfrak{p} \supseteq \phi(\mathfrak{a}) \} = V(\phi(\mathfrak{a})B),$$

which follows because $\mathfrak{p} \supseteq \phi(\mathfrak{a})$ if and only if $\phi^{-1}(\mathfrak{p}) \supseteq \mathfrak{a}$ because $\phi^{-1}(\phi(\mathfrak{a})) \supseteq \mathfrak{a}$. Hence the inverse image (Spec ϕ)⁻¹($V(\mathfrak{a})$) is closed.

EXAMPLE 2.14 (*The spectrum of a quotient,* Spec(A/\mathfrak{a})) If $\mathfrak{a} \subseteq A$ is an ideal, the ring homomorphism $A \to A/\mathfrak{a}$ induces a map

 $f: \operatorname{Spec}(A/\mathfrak{a}) \to \operatorname{Spec} A.$

Im
$$f = V(a)$$

$$F \in Spec(4a)$$

$$F \supseteq a$$

A
$$\stackrel{\rho}{\rightarrow}$$
 Af $\stackrel{h}{\sim}$ Spec Af $\stackrel{h}{\rightarrow}$ Spec A $\stackrel{h}{\rightarrow}$ Spec Af $\stackrel{h}{\rightarrow}$ Spec

EXAMPLE 2.15 (*The spectrum of a localization*, Spec A_f) For an element $f \in A$, we consider the localization A_f of A in which f is inverted and the corresponding ring homomorphism $A \to A_f$. The prime ideals in the localized ring A_f are in a natural one-to-one correspondence with the prime ideals \mathfrak{p} of A not containing f; in other words, with the complement $D(f) = \operatorname{Spec} A - V(f)$. Thus the induced map $\operatorname{Spec} A_f \to \operatorname{Spec} A$ is a homeomorphism onto the open set D(f) of $\operatorname{Spec} A$. This is an example of an *open immersion*.

2.2 Examples

2.16 (*Fields*) If K is a field, the prime spectrum Spec K has only one element, corresponding to the zero ideal in K. This also holds true for local rings A with the property that all elements in the maximal ideals are nilpotent, i.e., the radical $\sqrt{(0)}$ of the ring is a maximal ideal. For Noetherian local rings this is equivalent to the ring being an Artinian local ring.

s Spec A

2.18 (*Artinian rings*) More generally, if *A* is an Artinian ring, then *A* has only finitely many prime ideals, so Spec *A* is a finite set. If *A* is noetherian, the converse is also true.

$$V: A^{\times} \longrightarrow \mathbb{Z}$$
 $V(x+y) = \min_{x \in \mathbb{Z}} (V(x), V(y))$
 $V(xy) = V(x) + V(y)$

2.19 (*Discrete valuation rings*) Consider a discrete valuation ring A, for example $\mathbb{C}[[t]]$, $k[x]_{(x)}$ or $\mathbb{Z}_{(p)}$). See Appendix A for background on discrete valuation rings). A has only two prime ideals, the maximal ideal \mathfrak{m} and the zero ideal (0). So its prime spectrum Spec A has just two points, and Spec $A = \{\eta, x\}$ with x corresponding to the maximal ideal \mathfrak{m} and η corresponding to (0). The point x

is closed in Spec A, and therefore $\{\eta\} = X - x$ is open. So η is an open point! The point η is the generic point of Spec A; its closure is the whole Spec A.

The open sets of X are \emptyset , X, $\{\eta\}$. In particular Spec A is not Hausdorff, as η is contained in the only open set containing x, the whole space.

The spectrum of a DVR

2.20 (*The spectrum of the integers*, Spec \mathbb{Z}) There are two types of prime ideals in \mathbb{Z} . There is the zero-ideal and there are the maximal ideals $(p)\mathbb{Z}$, one for each prime p. The latter prime ideals give closed points in Spec \mathbb{Z} , however one has $V(0) = \operatorname{Spec} \mathbb{Z}$, so the point corresponding to the zero-ideal is a generic point.

The reduction mod p-map $\mathbb{Z} \to \mathbb{F}_p$ induces a map $\operatorname{Spec} \mathbb{F}_p \to \operatorname{Spec} \mathbb{Z}$. The one and only point in $\operatorname{Spec} \mathbb{F}_p$ is sent to the point in $\operatorname{Spec} \mathbb{Z}$ corresponding to the maximal ideal (p). The inclusion $\mathbb{Z} \subseteq \mathbb{Q}$ of the integers in the field of rational numbers induces likewise a map $\operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$, that sends the unique point in $\operatorname{Spec} \mathbb{Q}$ to the *generic* point η of $\operatorname{Spec} \mathbb{Z}$.

A=Z[i]

2.21 (*The spectrum of the Gaussian integers,* Spec $\mathbb{Z}[i]$) The inclusion $\mathbb{Z} \subseteq \mathbb{Z}[i]$ induces a continuous map

 $\phi : \operatorname{Spec} \mathbb{Z}[i] \to \operatorname{Spec} \mathbb{Z}.$

We will study Spec $\mathbb{Z}[i]$ by studying the fibres (i.e., preimages) of this map. If $p \in \mathbb{Z}$ is a prime, the fibre over $(p)\mathbb{Z}$ consists of those primes that contain $(p)\mathbb{Z}[i]$. These come in three flavours:

- *i*) p stays prime in $\mathbb{Z}[i]$ and the fibre over $(p)\mathbb{Z}$ has one element, namely the prime ideal $(p)\mathbb{Z}[i]$. This happens if and only if $p \equiv 3 \mod 4$;
- the prime ideal $(p)\mathbb{Z}[i]$. This happens if and only if $p \equiv 3 \mod 4$; ii) p splits into a product of two different primes, and the fibre consists of the corresponding two prime ideals. This happens if and only if $p \equiv 1 \mod 4$;
- *iii*) *p* factors into a product of repeated primes (such a prime is said to 'ramify'). This happens only at the prime (2): note that

$$(2)\mathbb{Z}[i] = (2i)\mathbb{Z}[i] = (1+i)^2\mathbb{Z}[i],$$

which is not radical. So the fibre consists of the single prime $(1+i)\mathbb{Z}[i]$.

Affine n-space

If one lets $A = k[x_1, ..., x_n]$ denote the ring of polynomials over k in the variables $x_1, ..., x_n$, one knows thanks to Hilbert's Nullstellensatz that the maximal ideals in A stand in a one-to-one correspondence with the points of the affine space $\mathbb{A}^n(k)$; they are all of the form $(x_1 - a_1, ..., x_n - a_n)$ with the a_i 's being elements in k.

The affine variety $\mathbb{A}^n(k)$ is the subset of the scheme $\mathbb{A}^n_k = \operatorname{Spec} A$ consisting of the closed points; that is, the points in Spec A corresponding to maximal

ideals. The good old Zariski topology on the variety $\mathbb{A}^n(k)$ is the induced

topology. Indeed, the closed sets of the induced topology are by definition all

2.22 (*The affine line* $\mathbb{A}^1_k = \operatorname{Spec} k[x]$) In the polynomial ring k[x] all ideals are principal, and all non-zero prime ideals are maximal. They are of the form (f(x)) where f(x) is an irreducible polynomial, hence of the form (x-a) when we assume that k is algebraically closed. There is only one non-closed point in $\operatorname{Spec} k[x]$, the generic point η corresponding to the zero-ideal. The closure $\overline{\{\eta\}}$ is the whole line \mathbb{A}^1_k .

2.23 (The affine plane $\mathbb{A}^2_k = \operatorname{Spec} k[x_1, x_2]$)

p ck[xy]

- $\beta = (f(x,y))$ fixed.

2.3 The structure sheaf on Spec A

We have now come to point where we define the structure sheaf on the topological space Spec A. This is a sheaf of rings $\mathcal{O}_{\operatorname{Spec} A}$ whose stalks all are local rings, so that the pair (Spec A, $\mathcal{O}_{\operatorname{Spec} A}$) is what one calls a *locally ringed space*.

The two most important properties of the structure sheaf $\mathcal{O}_{\operatorname{Spec} A}$ are the following:

- □ Sections over distinguished opens: $\Gamma(D(f), \mathcal{O}_{\operatorname{Spec} A}) = A_f$;
- □ Stalks: $\mathcal{O}_{\operatorname{Spec} A,x} = A_{\mathfrak{p}_x}$.

DEFINITION 2.26 Let \mathcal{B} be the collection of distinguished open subsets D(f). We define the \mathcal{B} -presheaf \mathcal{O} by

$$\mathcal{O}(D(f)) = A_f,$$

and for $D(g) \subseteq D(f)$ we let the restriction map be localization map $A_f \to A_g$ of (2.2).

Let $S_{D(f)}$ be the multiplicative system $\{s \in A \mid s \notin \mathfrak{p} \text{ for all } \mathfrak{p} \in D(f)\}$. There is a localization map $\tau \colon A_f \to S_{D(f)}^{-1}A$ since $f \in S_{D(f)}$. The following lemma says that the ring $\mathcal{O}(D(f))$ is independent of which ring element f used to define D(f):

LEMMA 2.27 The map τ is an isomorphism, permitting us to identify $A_f = S_{D(f)}^{-1} A$.

Lemma 2.27 The map τ is an isomorphism, permitting us to identify $A_f = S_{D(f)}^{-1} A$.

PROOF: The point is that any element $s \in S_{D(f)}$ does not lie in \mathfrak{p} for any $\mathfrak{p} \in D(f)$; in other words, one has $D(f) \subseteq D(s)$. This is equivalent to $\sqrt{(s)} \supset \sqrt{(f)}$, so one may write $f^n = cs$ for some $c \in A$ and $n \in \mathbb{N}$. Assume that $af^{-m} \in A_f$ maps to zero in $S_{D(f)}^{-1}A$. This means that sa = 0 for some $s \in S_{D(f)}$. But then $f^na = csa = 0$, and therefore a = 0 in A_f . This shows that the map τ is injective. To see that is surjective, take any as^{-1} in $S_{D(f)}^{-1}A$ and write is as $as^{-1} = ca(cf^n)^{-1} = caf^{-n}$.

Proposition 2.28 O is a B-sheaf of rings.

$$S \longrightarrow CSlv_i) \qquad (Si) \longrightarrow (Si-Silv_inv_i)$$

$$O \longrightarrow F(V) \longrightarrow TT F(V_i) \longrightarrow TT F(V_inv_j)$$

$$f \text{ Europhe a clearly}$$

$$i \in I$$

$$i, j \in I$$

Unraveling the definitions, this can be rephrased as a concrete statement in commutative algebra. We are given a distinguished set D(f) and an open covering $D(f) = \bigcup_{i \in I} D(f_i)$, where we by quasi-compactness may assume that the index set I is finite. Of course then $D(f_i) \subseteq D(f)$, and we have localization maps $\rho_i \colon A_f \to A_{f_i}$ and $\rho_{ij} \colon A_{f_i} \to A_{f_i f_j}$. The statement in the Proposition is then equivalent to the exactness of the following sequence

$$0 \longrightarrow A_f \stackrel{\alpha}{\longrightarrow} \prod_i A_{f_i} \stackrel{\beta}{\longrightarrow} \prod_{i,j} A_{f_i f_j}$$
 (2.4)

where $\alpha(a)_i = \rho_i(a)$ and $\beta((a_i))_{i,j} = (\rho_{ij}(a_i) - \rho_{ji}(a_j))$. It is clear that $\alpha \circ \rho = 0$ since $\rho_{ij} \circ \rho_i = \rho_{ji} \circ \rho_j$.

LEMMA 2.29 The sequence (2.4) is exact.

PROOF: We start by observing that we may assume that $A = A_f$ (in other words, that f = 1). Indeed, one has $(A_f)_{f_i} = A_{f_i}$ and $(A_f)_{f_i f_j} = A_{f_i f_j}$ since $f_i^{n_i} = h_i f$ for suitable natural numbers n_i .

$$0 \longrightarrow A_f \stackrel{lpha}{\longrightarrow} \prod_i A_{f_i} \stackrel{eta}{\longrightarrow} \prod_{i,j} A_{f_i f_j}$$

Then to the proof: To say that $\alpha(a) = 0$ is to say that a is mapped to zero in each of the localizations A_{f_i} . Hence a power of each f_i kills a; that is, for each index i one has $f_i^{n_i}a = 0$ for an appropriate natural number n_i . The open sets $D(f_i)$ cover D(f), which then is covered by the $D(f_i^{n_i})$ as well. Thus we may

write $1 = \sum_i b_i f_i^{n_i}$ for some elements $b_i \in A$, and upon multiplication by a this gives

$$a = \sum_{i} b_i f_i^{n_i} a = 0.$$

Hence α is injective.

$$0 \longrightarrow A_f \stackrel{\alpha}{\longrightarrow} \prod_i A_{f_i} \stackrel{\beta}{\longrightarrow} \prod_{i,j} A_{f_i f_j}$$

$$0 \stackrel{\alpha}{\longleftarrow} \alpha_{i} - \alpha_{j}$$

$$2 \alpha$$

In down-to-earth terms, the equality $\operatorname{Ker} \beta = \operatorname{Im} \alpha$ means the following: assume given a sequence of elements $a_i \in A_{f_i}$ such that a_i and a_j are mapped to the same element in $A_{f_if_j}$ for every pair i,j of indices. Then there should be an $a \in A$, such that every a_i is the image of a in A_{f_i} , i.e., $\rho_i(a) = a_i$.

Each a_i can be written as $a_i = b_i/f_i^{n_i}$ where $b_i \in A$, and since the indices are finite in number, one may replace n_i with $n = \max_i n_i$. That a_i and a_j induce the same element in the localization $A_{f_if_i}$ means that we have the equations

$$f_i^N f_j^N (b_i f_j^n - b_j f_i^n) = 0, (2.5)$$

where N a priori depends on i and j, but again due to there being only finitely many indices, it can be chosen to work for all. Equation (2.5) gives

$$b_i f_i^N f_j^m - b_j f_j^N f_i^m = 0 (2.6)$$

where m = N + n. Putting $b'_i = b_i f_i^N$ we see that a_i equals b'_i / f_i^m in A_{f_i} , and equation (2.6) takes the form

$$b_i' f_j^m - b_j' f_i^m = 0. (2.7)$$

Now $D(f_i^m) = D(f_i)$, and the distinguished open sets $D(f_i^m)$ form an open covering of Spec A. Therefore we may also write $1 = \sum_i c_i f_i^m$. Letting $a = \sum_i c_i b_i'$, we find

we find
$$af_j^m=\sum_i c_ib_i'f_j^m=\sum_i c_ib_j'f_i^m=b_j'\sum_i c_if_i^m=b_j',$$

and hence $a = b'_i/f_i^m$ in A_{f_i} .

DEFINITION 2.30 We let $\mathcal{O}_{\operatorname{Spec} A}$ be the unique sheaf extending the \mathscr{B} -sheaf \mathcal{O} .

Explicitly, the sections of $\mathcal{O}_{\operatorname{Spec} A}$ over an open set $U \subset X$, are given by the limit of localizations

$$\mathcal{O}_X(U) = \varprojlim_{D(f) \subseteq U} A_f. \tag{2.8}$$

PROPOSITION 2.31 The sheaf $\mathcal{O}_{\operatorname{Spec} A}$ on $\operatorname{Spec} A$ as defined above is a sheaf of rings satisfying the two paramount properties, namely

- i) Sections over distinguished opens: $\Gamma(D(f), \mathcal{O}_{\operatorname{Spec} A}) = A_f$;
- ii) Stalks: $\mathcal{O}_{\operatorname{Spec} A,x} = A_{\mathfrak{p}_x}$.

In particular, $\Gamma(X, \mathcal{O}_X) = A$.

EXAMPLE 2.32 Let us continue Example 2.19. In $X = \operatorname{Spec} A$, the spectrum of a DVR, we have three open sets \emptyset , η , and X. The structure sheaf takes the following values at these opens:

$$\mathcal{O}_X(\varnothing) = 0$$
, $\mathcal{O}_X(X) = A$, $\mathcal{O}_X(\eta) = A_x = K(A)$,

where K(A) denotes the fraction field of A. The stalks are given by $\mathcal{O}_{X,x} = A$ and $\mathcal{O}_{X,\eta} = K(A)$.

Maps between the structure sheaves of two spectra

Previously, we assigned to any map ϕ : $A \to B$ of rings a continuous map ϕ^* : Spec $B \to \operatorname{Spec} A$. We now climb one step in the hierarchy of structures and associate to ϕ a map of sheaves of rings

$$\phi^{\sharp} \colon \mathcal{O}_{\operatorname{Spec} A} \to \phi_* \mathcal{O}_{\operatorname{Spec} B}.$$

By Proposition 1.29, it suffices to tell what ϕ^{\sharp} should do to the sections over the distinguished open sets D(f). Here everything follows from the following simple lemma:

Lemma 2.33 Let $\phi: A \to B$ be a map of rings and let $f \in A$ be an element. Then $(\phi^*)^{-1}(D(f)) = D(\phi(f))$

Proof: We have

$$(\phi^*)^{-1}(D(f)) = \{ \mathfrak{p} \subseteq B \mid f \notin \phi^{-1}(\mathfrak{p}) \} = \{ \mathfrak{p} \subseteq B \mid \phi(f) \notin \mathfrak{p} \} = D(\phi(f)).$$

This means that we have the equality $\Gamma(D(f), \phi_* \mathcal{O}_{\operatorname{Spec} B}) = B_{\phi(f)}$, and we know that $\Gamma(D(f), \mathcal{O}_{\operatorname{Spec} A}) = A_f$. The original map of rings $\phi \colon A \to B$ now localizes to a map $A_f \to B_{\phi(f)}$, sending af^{-n} to $\phi(a)\phi(f)^{-n}$, and this shall be the map ϕ^{\sharp} on sections over the distinguished open set D(f).

To prove that ϕ^{\sharp} is well defined, we need to check that it is compatible with the restriction maps among distinguished open sets: indeed, when $D(g) \subseteq D(f)$, we write as usual $g^m = cf$, and the localization map $A_f \to A_g$ will then send af^{-n} to ac^ng^{-nm} . One has $\phi(g)^m = \phi(c)\phi(f)$, which makes the diagram below commutative:

$$A_f \longrightarrow A_g$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_{\phi(f)} \longrightarrow B_{\phi(g)}$$

and this is exactly the required compatibility.

Note by the way, for $\mathfrak{p} \in \operatorname{Spec} B$, with image $\phi^{-1}(\mathfrak{p}) \in \operatorname{Spec} A$, that the stalk map

$$\phi_{\mathfrak{p}}^{\sharp}: \mathcal{O}_{\operatorname{Spec} A, \phi^{-1}(\mathfrak{p})} \to \mathcal{O}_{\operatorname{Spec} B, \mathfrak{p}}$$

coincides with the localization $A_{\phi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$. This is a *map of local rings*, or a *local homomorphism*, in the sense that it the preimage of the maximal ideal of $A_{\phi^{-1}(\mathfrak{p})}$ equals the maximal ideal in $B_{\mathfrak{p}}$.

Towards the definition of a scheme

DEFINITION 2.34 A ringed space is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of rings on X. A morphism of ringed spaces is a pair (f, f^{\sharp}) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ where $f: X \to Y$ is continuous, and

$$f^{\sharp}:\mathcal{O}_{Y}\to f_{*}\mathcal{O}_{X}$$

is a map of sheaves of rings on Y (so that $f^{\sharp}(U)$ is a ring homomorphism for each open $U \subseteq Y$).

DEFINITION 2.35 A locally ringed space is a pair (X, \mathcal{O}_X) as above, but with the additional requirement that for every $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.

A morphism of locally ringed spaces is a pair $(f, f^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ as above, with the additional requirement that for every $x \in X$, the map on stalks

$$f_{Y,f(x)}^{\sharp}:\mathcal{O}_{Y,f(x)}\to\mathcal{O}_{X,x}$$

is a map of local rings; that is,

$$(f_{Y,f(x)}^{\sharp})^{-1}(\mathfrak{m}_x)=\mathfrak{m}_{f(x)}$$

where $\mathfrak{m}_x \subseteq \mathcal{O}_{X,x}$ and $\mathfrak{m}_{f(x)} \subseteq \mathcal{O}_{Y,f(x)}$ are the maximal ideals.

Schemes

Finally, we can give the formal definition of a scheme.

- **DEFINITION 2.36** \square *An* affine scheme is a locally ringed space (X, \mathcal{O}_X) which is isomorphic to $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ for some ring A.
 - □ A scheme is a locally ringed space (X, \mathcal{O}_X) that is locally isomorphic to an affine scheme, i.e., there is an open cover U_i of X such that each $(U_i, \mathcal{O}_X|_{U_i})$ is isomorphic to some (Spec A, $\mathcal{O}_{Spec\ A}$.

Relative schemes

There is also the notion of *relative schemes* where a base scheme S is chosen. A *scheme over* S is scheme X together with a morphism $f: X \to S$, which we call the *structure map* or the *structure morphism*. If two schemes over S are given, say $X \to S$ and $Y \to S$, then a map between them is a map $X \to Y$ compatible with the two structure maps; that is, such that the diagram below is commutative

Any may has a canonical map Z -> A m canonical map Spec A -> Spec Z m Aff Sch = Aff Sch/z Sch /2 = Sch

2.5 Open immersions and open subschemes

If X is a scheme and $U \subseteq X$ is an open subset, the restriction $\mathcal{O}_X|_U$ is a sheaf on U, making $(U, \mathcal{O}_X|_U)$ into a locally ringed space. This is even a scheme, since if X is covered by affines $V_i = \operatorname{Spec} A_i$, then each $U \cap V_i$ is open in V_i , hence can be covered by affine schemes. It follows that there is a canonical scheme structure on U, and we call $(U, \mathcal{O}_X|_U)$ an *open subscheme* of X and say that U has the *induced scheme structure*.. We say that a morphism of schemes $\iota: V \to X$ is an *open immersion* if it is an isomorphism onto an open subscheme of X.

As a special case, consider $V = \operatorname{Spec} A_f$ and the map $\iota: V \to \operatorname{Spec} A = X$, induced by the localization map $A \to A_f$. This is an open immersion onto the open set $U = D(f) \subset X$. Indeed, we saw in Example 2.15 that ι is a homeomorphism onto U, and it follows from the definition of the sheaf \mathcal{O}_X that

the restriction $\mathcal{O}_X|_U$ coincides with the structure sheaf on Spec A_f . A word of

2.6 Closed immersions and closed subschemes

If X is a scheme, we would like to define what it means for a closed subset $Z \subset X$ to be a *closed subscheme* of X. The prototypical example of a closed subscheme is the scheme $\operatorname{Spec}(A/I)$, which as we have seen, embeds as the closed subset V(I) of $\operatorname{Spec} A$. However, there may be many ideals that correspond to the same

V(I) of Spec A. However, there may be many ideals that correspond to the same closed subset $V(\mathfrak{a})$ (as $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$). This makes the definition of a closed

V(I) of Spec A. However, there may be many ideals that correspond to the same closed subset $V(\mathfrak{a})$ (as $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$). This makes the definition of a closed

subscheme little bit more complicated than the case of open subsets, as we have to specify the locally ringed space structure on *Z*, and there is no canonical one.

 $Z \subseteq X$ and a sheaf of rings \mathcal{O}_Z on Z so such that (Z, \mathcal{O}_Z) is a scheme and $\iota_*\mathcal{O}_Z \simeq \mathcal{O}_X/\mathscr{I}$ for some sheaf of ideals $\mathscr{I} \subset \mathcal{O}_X$, where ι denotes the inclusion map.

DEFINITION 2.37 *i)* A closed subscheme of X is given by a closed subset

ii) A morphism $\iota: Z \to X$ is called a closed immersion if it induces a homeomorphism of Z onto a closed subset of X, and the sheaf map $i^{\sharp}: \mathcal{O}_X \to \iota_* \mathcal{O}_Z$ is surjective.

PROPOSITION 2.38 Let $X = \operatorname{Spec} A$ be an affine scheme. Then the map $\mathfrak{a} \mapsto V(\mathfrak{a})$ induces a one-to-one correspondence between the set of ideals of A and the set of closed subschemes of X. In particular, any closed subscheme of an affine scheme is also affine.

EXAMPLE 2.39 Let k be a field. The ring map $\phi: k[x,y,z] \to k[t]$ given by $x \mapsto t, y \mapsto t^2, z \mapsto t^3$ defines a morphism of schemes

$$f: \mathbb{A}^1_k \to \mathbb{A}^3_k$$

Which is a closed immersion. The corresponding closed subscheme is the *twisted* Cubic curve $V(I) \subset \mathbb{A}^3_k$ defined by the ideal $I = \operatorname{Ker} \phi = (y - x^2, z - x^3)$.

EXAMPLE 2.40 Consider the affine 4-space $\mathbb{A}_k^4 = \operatorname{Spec} A$, with A = k[x, y, z, w]. Then the three ideals

$$I_1 = (x, y), I_2 = (x^2, y) \text{ and } I_3 = (x^2, xy, y^2, xw - yz),$$

give rise to the same closed subset $V(x,y) \subset \mathbb{A}^4_k$, but they give different closed subschemes of \mathbb{A}^4_k .

2.7 Residue fields

For varieties, we construct the sheaf \mathcal{O}_X from the regular functions which we think of as continuous maps $X \to k$. However, in the world of schemes, we do not have the luxury of having a field k to map into – all we know is that locally \mathcal{O}_X is built from elements of a ring.

We can still define an analogy between the elements f of A and some sort of functions on Spec A. If x is a point in Spec A corresponding to the prime ideal \mathfrak{p} , the localization $A_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$, and one obtains the field $k(\mathfrak{p}) = A_{\mathfrak{p}}/(\mathfrak{p}A_{\mathfrak{p}})$. The element f reduced modulo \mathfrak{p} gives an element $f(x) \in k(\mathfrak{p})$, which may considered as the 'value' of f at x; clearly f(x) = 0 if and only if $f \in \mathfrak{p}$.

DEFINITION 2.41 The field $k(\mathfrak{p})$ is called the residue field of Spec A at \mathfrak{p} .

Note:
$$V(\alpha) = \begin{cases} x \in Spec A \mid f(x) = 0 \text{ for all } f \in \alpha \end{cases}$$

This generalizes to arbitrary schemes:

DEFINITION 2.42 For a scheme X, we can define the residue field k(x) at a point $x \in X$ as $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$, where \mathfrak{m}_x is the maximal ideal in $\mathcal{O}_{X,x}$.

If $U \subset X$ is an open set containing x, and $s \in \mathcal{O}_X(U)$ (or if s is an element of $\mathcal{O}_{X,x}$), we let s(x) denote the class of s modulo \mathfrak{m}_x in k(x) – this is the 'value' of s at x.

Note in particular that we may speak of the zero set $V(s) = \{x \in U | s(x) = 0\}$ of the section $s \in O_X(U)$. This is a closed subset of U.

EXAMPLE 2.43 Consider $X = \mathbb{A}^1_k = \operatorname{Spec} k[t]$. When k is algebraically closed, there are two types of points, the maximal ideals (t-a) and (0). The residue fields are of the form $k(a) = k[t]_{(t-a)}/(t-a) \simeq k$ and $k(0) = k[t]_{(0)} = k(t)$.

When k is not algebraically closed, we have more interesting residue fields; for instance $\mathfrak{p}=(x^2+1)$ defines a point in $\mathbb{A}^1_{\mathbb{R}}$ with residue field \mathbb{C} . In general, a maximal ideal \mathfrak{m} in k[t] is generated by an irreducible polynomial, say f(t), and defines a point in \mathbb{A}^1_k whose residue field is the extension of k obtained by adjoining a root of f.

It is important to note that the 'values' of an element $f \in A$ lie in different fields which might vary with the point. For instance, the element $f = 17 \in \mathbb{Z}$

fields which might vary with the point. For instance, the element
$$f = 17 \in \mathbb{Z}$$
 defines a function on $X = \operatorname{Spec} \mathbb{Z}$. Some of its values are given by

 $f((2)) = \overline{1}, f((3)) = \overline{2}, f((7)) = \overline{3}, f((11)) = \overline{6}, f((17)) = \overline{0}, f((19)) = \overline{17},$

and each value has to be interpreted as an element in the appropriate residue field $\mathbb{Z}/p\mathbb{Z}$. Thus we tweak our notion of a 'regular function' on X; they are not maps into some fixed field, but rather maps into the disjoint union $\prod_{x \in X} k(x)$.

2.8 R-valued points

For a scheme X, it makes sense to study morphisms Spec $R \to X$ from affine schemes into it. We call such morphisms R-valued points, and the set of all such will be denoted by X(R).

EXAMPLE 2.44 Let $\mathbb{A}^n = \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]$. An R-valued point of \mathbb{A}^n is a morphism $g : \operatorname{Spec} R \to \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]$, which determines and is determined by the n-tuple $a_i = g^*(x_i)$ of elements in R. Hence,

 $\mathbb{A}^n(R) = R^n$.

Now, let $X = \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]/I$ where $I = (f_1, \dots, f_r)$ is an ideal. The set of R-points of X can be found similarly: indeed, any morphism

$$g: \operatorname{Spec} R \to \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]/I$$

is determined by the n-tuple $a_i = g^*(x_i)$, and those n-tuples that occur are exactly those such that $f \mapsto f(a_1, \ldots, a_n)$ defines a homomorphism

$$\mathbb{Z}[x_1,\ldots,x_n]/I\to R.$$

In other words, the a_i are elements in R which are solutions of the equations $f_1 = \cdots = f_r = 0$.

EXAMPLE 2.45 (*A conic with no real points*) Let $X = \operatorname{Spec} A$, where A is the real algebra $A = \mathbb{R}[x,y]/(x^2+y^2+1)$. Note that the conic $x^2+y^2+1=0$ has no real points, so $X(\mathbb{R}) = \emptyset$. However, A has infinitely many prime ideals.