3.1 The structure sheaf on Spec A

We have now come to point where we define the structure sheaf on the topologi-
cal space Spec A. This is a sheaf of rings Ospec 4 Whose stalks all are local rings,
so that the pair (Spec A, Ospec 4) is what one calls a locally ringed space.



The two most important properties of the structure sheaf Ogpec 4 are the
following:

0 Sections over distinguished opens: I'(D(f), Ospeca) = Af;

0 Stalks: OSpec Ax = Apx'



DEFINITION 3.1 Let A be the collection of distinguished open subsets D(f). We define
the 98-presheaf O by

O(D(f)) = Ay,
and for D(g) < D(f) we let the restriction map be localization map Ay — Ag of (2.2).



ProPOSITION 3.3 O is a %B-sheaf of rings.



maps p;: Ay — Ay, and pj;: Ap, — Agr. The statement in the Proposition is
then equivalent to the exactness of the following sequence

P
0 —— Af 2 HiAfi — l—[i,jAfifj (31)

where a(a)i = pi(a) and /S((a,-))l-,j = (plj(a,) — p],(a])) It is clear that « ocp = 0
since p,] op; = pﬂ ¢} p]



LEMMA 3.4 The sequence (3.1) is exact.



DEFINITION 3.5 We let Ospec 4 be the unique sheaf extending the %-sheaf O.



Explicitly, the sections of Ogpec 4 Over an open set U < X, are given by the
inverse limit of localizations

Ox(U) = lim Ay, el Vs

D(f)cu

Thus Ox(U) is an A-module, with universal restriction maps into each of the
localizations in the inverse system

~,
N
[N



PrOPOSITION 3.6 The sheaf Ospec 4 0n Spec A as defined above is a sheaf of rings
satisfying the two paramount properties, namely

i) Sections over distinguished opens: T'(D(f), Ospeca) = Af;
ii) Stalks: OSpecA,x = APx'
In particular, T (X, Ox) = A.

Proor: We defined O so that the first property would hold. The second follows
from Lemma 1.19. The last statement follows by taking f = 1. Q
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COROLLARY 3.7 Let A be an integral domain with fraction field K, and let X = Spec A.
Then Oy is naturally a subsheaf of the constant sheaf Kx, and

Ox(U) = {f <K where h(x) # 0 for every x € U.

f can be represented as g/ h } CK



Furthermore, we have
i) Ox(D(g)) ={a/g" | feA,n>0}cK

i) Oxx={f/g1f 8§ A g¢px} =K
Q) =0
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ExaMPLE 3.8 Let us continue Example 2.19. In X = Spec A, the spectrum of
a DVR, we have three open sets (J, 77, and X. The structure sheaf takes the
following values at these opens:

Ox(g) =0, Ox(X)=4, Ox(n) = A =K(4),

where K(A) denotes the fraction field of A. The stalks are given by Ox » = A
and Oy, = K(A). *



DEFINITION 3.9 A ringed space is a pair (X, Ox) where X is a topological space
and Oy is a sheaf of rings on X. A morphism of ringed spaces is a pair (f, f!) :
(X, 0x) — (Y, Oy) where f : X — Y is continuous, and / %3 ®)

ft: Oy > f,0x ,

—

is a map of sheaves of rings on Y. IQ & 4
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This means that the f*(U) are ring homomorphisms f#(U) : Oy(U) — Ox(f~1U),
and we require that they commute with the restriction maps:

0y(U) fHU) N (’)X(f—ll,I) = (‘?ﬂ( 0 )( U)
o g\
J{Pu,v lpf luf-1v
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oy(v) — s oy (v)
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DEFINITION 3.10 A locally ringed space is a pair (X, Ox) as above, but with the
additional requirement that for every x € X, the stalk Ox , is a local ring.

A morphism of locally ringed spaces is a pair (f, f*) : (X,0x) — (Y,Oy) as
above, with the additional requirement that for every x € X, the map on stalks

f 1ﬂ/,f(x) t Oy f(x) = Oxx
is a map of local rings; that is, N—x

(flﬁr,f(x))_l (my) = M (x)

where my < Ox,x and mg(,) < Oy, ¢(y) are the maximal ideals.
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Proros1TiON 3.11 For a ring A, the pair (X,Ox) = (Spec A, Ospec 4) is a locally
ringed space. Moreover, for a map of rings ¢ : A — B, there is an induced map of
locally ringed spaces (h, h*) : (Spec B, Ogpec) — (Spec A, Ospec 4)-
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Proor: We defined the structure sheaf Ox on X = Spec A so that Ox , = Ay at
each point x = [p]. In particular, the stalks are local rings.



For the second claim, let ¢: A — B be a morphism of rings and let h: Spec B —
Spec A be the induced map given by h([p]) =[¢‘1 (pﬂ We want to associate to ¢
a map of sheaves of rings

ht: OSpecA - h*OSpecB-



1/\#
O s = M Do V(£)
Ap — By

By Proposition 1.53, it suffices to tell what ¢* should do to the sections over the
distinguished open sets D(f). Here we recall Lemma 2.21, which tells us that

h1(D(f)) = D(¢(f))-

This means that we have the equality I'(D(f), h+OspecB) = By(f), and we know
that I'(D(f), Ospeca) = Ay. The original map of rings ¢: A — B now localizes
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to amap As — By s), sending af " to ¢(a)¢(f) ", and this shall be the map h*
on sections over the distinguished open set D(f).



To prove that k! is well defined, we need to check that it is compatible with
the restriction maps among distinguished open sets: indeed, when D(g) < D(f),
we write as usual ¢ = cf, and the localization map A; — A, will then send
af " to ac"g~"™. One has ¢(g)" = ¢(c)¢(f), which makes the diagram below

commutative:
A f—— A g

| ]

By(r) — By(g)

and this is exactly the required compatibility.
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Note that for [p] € Spec B, with image [q] = [¢~!(p)] € Spec A, the stalk map

hg : OSpec Agqg — OSpec By

coincides with the localization Ag-1(,) — By. Thus the preimage of the maximal

ideal of A-1(,) equals the maximal ideal in By, making hg a map of local rings.
Hence (h,h*) is a morphism of locally ringed spaces. Q



3.3 Schemes

Finally, we can give the formal definition of a scheme.

DEFINITION 3.12 O An affine scheme is a locally ringed space (X, Ox) which is
isomorphic to (Spec A, Ospec a) for some ring A.

0 A scheme is a locally ringed space (X, Ox) that is locally isomorphic to an
affine scheme, i.e., there is an open cover U; of X such that each (U;, Ox|u,) is
isomorphic to some affine scheme (Spec A, Ospec a).
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3.4 Open immersions and open subschemes

If X is a scheme and U < X is an open subset, the restriction Ox|; is a sheaf on
U, making (U, Ox|y) into a locally ringed space. This is even a scheme, since
if X is covered by affines V; = Spec A;, then each U n V; is open in V;, hence
can be covered by affine schemes. It follows that there is a canonical scheme
structure on U, and we call (U, Ox|y) an open subscheme of X and say that U
has the induced scheme structure. We say that a morphism of schemes ¢ : V — X
is an open immersion if it is an isomorphism onto an open subscheme of X.



AT ) ~ q
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As a special case, consider V = Spec Ay and the map ¢ : V — Spec A = X,
induced by the localization map A — Ay. This is an open immersion onto
the open set U = D(f) < X. Indeed, we saw in Example 2.22 that ¢ is a
homeomorphism onto U, and it follows from the definition of the sheaf Ox that
the restriction Ox|y; coincides with the structure sheaf on Spec A £



—%

3.5 Closed immersions and closed subschemes

If X is a scheme, we would like to define what it means for a closed subset
Z < X to be a closed subscheme of X. This is a little bit more subtle than the
case for open subsets, as for a given closed subset Z — X, there is no canonical
locally ringed space structure on Z.
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The prototypical example of a closed subscheme is Spec(A/a), which as
we have seen, embeds as the closed subset V(a) of Spec A. Here the scheme
structure clear. So we have a clear intuitive picture of what a closed subscheme
should be in general: It is a scheme (Z, Oz) and with a morphismi: Z — X, so
that there is an affine cover U; = Spec A; of X, so that each i~!(U;) is given by
some ideal in A; (i.e., i~} (U;) ~ Spec(A;/a;).

s cloeld 3&4\0 sl = &OC%(% dé H}«fl %‘rW\
Spec (’AYO\B,



DEFINITION 3.14 i) A closed subscheme of X is given by a closed subset
Z < X and a sheaf of rings Oz on Z so such that (Z,Oz) is a scheme
and 1,07 ~ Ox /[ F for some sheaf of ideals .# — Ox, where 1 denotes the

inclusion map.

ii) A morphism 1 : Z — X is called a closed immersion if it induces a
homeomorphism of Z onto a closed subset of X, and the sheaf map i* : Ox —
1Oz is surjective.
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Note that Z is already required to be a scheme in the definition. Each closed
subscheme is determined by a sheaf of ideals .#, but not all ideal sheaves .# give
rise to a closed subscheme.
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PROPOSITION 3.15 Let X = Spec A be an affine scheme. Then the map a — Spec(A/a)
induces a one-to-one correspondence between the set of ideals of A and the set of closed
subschemes of X. In particular, any closed subscheme of an affine scheme is also affine.



ExampLE 3.16 Consider the affine 4-space A% = Spec A, with A = k[x,y,z, w).
Then the three ideals

L=(xy), L= (xz,y) and I = (xz, xy,yz,xw —yz),

give rise to the same closed subset V(x,y) < A}, but they give different closed

subschemes of A;. *



3.6 R-valued points

For a scheme X, it makes sense to study morphisms SpecR — X from affine
schemes into it. We call such morphisms R-valued points, and the set of all such
will be denoted by X(R). The jargon here is justified from the following:

A
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ExampLE 3.17 Let A" = SpecZlxy,...,x,]. An R-valued point of A" is a
morphism g : SpecR — SpecZ|[x1, ..., x|, which determines and is determined

by the n-tuple a; = g*(x;) of elements in R. Hence,

A"(R) = R".
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Now, let X = SpecZ|x1,...,x,]/I where I = (fi,..., f;) is an ideal. The set of
R-points of X can be found similarly: indeed, any morphism

¢ :SpecR — SpecZ|x1,...,x4|/1

is determined by the n-tuple 4; = g#(xi), and those n-tuples that occur are
exactly those such that f — f(ay,...,a,) defines a homomorphism

Zlxi,...,x5)/1— R.

In other words, the 4; are elements in R which are solutions of the equations
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ExXAMPLE 3.18 (A conic with no real points) Let X = Spec A, where A is the real
algebra A = R[x,y]/(x?® +y*> + 1). Note that the conic x*> + y*> +1 = 0 has no
real points, so X(R) = . However, A has infinitely many prime ideals. *
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The sets X(R) of points over R are obviously important in number theory, as
they naturally generalize the solution set of the polynomials f; = --- = f, = 0.
Of course, even when R is a field, it can be very difficult to describe the set X(K)
of K-valued points Spec K — X, or even determining whether X(K) #+ .



PROPOSITION 3.19 Let X be a scheme and let K be a field. Then to give a morphism
of schemes Spec K — X is equivalent to giving a point x € X plus an embedding
k(x) — K.
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More generally, one may for a fixed scheme S define X(S) to be the set of all
morphisms S — X; the so-called S-valued points of X. In the example above, we
have for any scheme S,

A"(S) = Homse (S, A™) = (S, Os)".

In fancy terms, this says that A" represents the functor taking a scheme to n-
tuples of elements of I'(S, Og). We shall see a similar functorial characterization
of projective space IP" later in the book.



