3.1 The structure sheaf on Spec A

We have now come to point where we define the structure sheaf on the topological space Spec A. This is a sheaf of rings $\mathcal{O}_{\text{Spec }A}$ whose stalks all are local rings, so that the pair (Spec A, $\mathcal{O}_{\text{Spec }A}$) is what one calls a *locally ringed space*.

The two most important properties of the structure sheaf $\mathcal{O}_{\operatorname{Spec} A}$ are the following:

- □ Sections over distinguished opens: $\Gamma(D(f), \mathcal{O}_{\operatorname{Spec} A}) = A_f$;
- □ Stalks: $\mathcal{O}_{\operatorname{Spec} A,x} = A_{\mathfrak{p}_x}$.

DEFINITION 3.1 Let \mathscr{B} be the collection of distinguished open subsets D(f). We define the \mathscr{B} -presheaf \mathcal{O} by

$$\mathcal{O}(D(f)) = A_f$$

and for $D(g) \subset D(f)$ we let the restriction map be localization map $A_f \to A_g$ of (2.2).

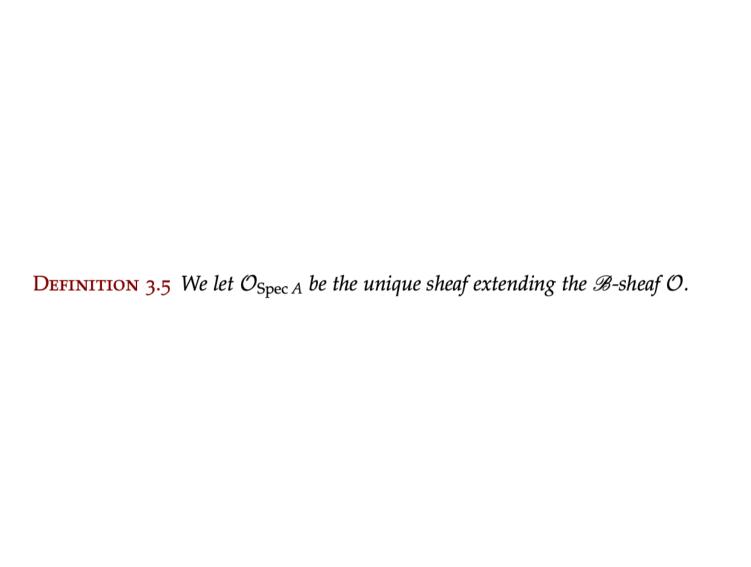
Proposition 3.3 \mathcal{O} is a \mathscr{B} -sheaf of rings.

maps ρ_i : $A_f \to A_{f_i}$ and ρ_{ij} : $A_{f_i} \to A_{f_i f_j}$. The statement in the Proposition is then equivalent to the exactness of the following sequence

$$0 \longrightarrow A_f \stackrel{\alpha}{\longrightarrow} \prod_i A_{f_i} \stackrel{\beta}{\longrightarrow} \prod_{i,j} A_{f_i f_j}$$
 (3.1)

where $\alpha(a)_i = \rho_i(a)$ and $\beta((a_i))_{i,j} = (\rho_{ij}(a_i) - \rho_{ji}(a_j))$. It is clear that $\alpha \circ \rho = 0$ since $\rho_{ij} \circ \rho_i = \rho_{ii} \circ \rho_i$.

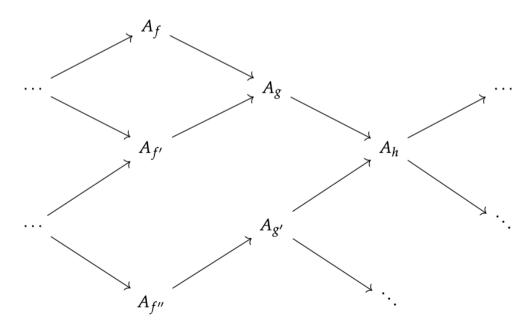
Lemma 3.4 The sequence (3.1) is exact.



Explicitly, the sections of $\mathcal{O}_{\operatorname{Spec} A}$ over an open set $U \subset X$, are given by the inverse limit of localizations

$$\mathcal{O}_X(U) = \varprojlim_{D(f) \subset U} A_f.$$
 (3.5)

Thus $\mathcal{O}_X(U)$ is an A-module, with universal restriction maps into each of the localizations in the inverse system



PROPOSITION 3.6 The sheaf $\mathcal{O}_{\operatorname{Spec} A}$ on $\operatorname{Spec} A$ as defined above is a sheaf of rings satisfying the two paramount properties, namely

- i) Sections over distinguished opens: $\Gamma(D(f), \mathcal{O}_{\operatorname{Spec} A}) = A_f$;
- ii) Stalks: $\mathcal{O}_{\operatorname{Spec} A,x} = A_{\mathfrak{p}_x}$.

In particular, $\Gamma(X, \mathcal{O}_X) = A$.

PROOF: We defined \mathcal{O} so that the first property would hold. The second follows from Lemma 1.19. The last statement follows by taking f = 1.

ex
$$X = variet$$
 $wed $A(X) = A$.
 \sim $O_X(D(f)) = A(X)f$ $f^m$$

COROLLARY 3.7 Let A be an integral domain with fraction field K, and let $X = \operatorname{Spec} A$. Then \mathcal{O}_X is naturally a subsheaf of the constant sheaf K_X , and

$$\mathcal{O}_X(U) = \left\{ f \in K \middle| \begin{array}{l} f \ can \ be \ represented \ as \ g/h \ where \ h(x) \neq 0 \ for \ every \ x \in U. \end{array} \right\} \subset K$$

Furthermore, we have

$$i) \ \mathcal{O}_X(D(g)) = \{ a/g^n \mid f \in A, n \geqslant 0 \} \subset K$$

ii)
$$\mathcal{O}_{X,x} = \{ f/g \mid f,g \in A,g \notin \mathfrak{p}_x \} \subset K$$

ex
$$A = k[x]_{(x)}$$
 \longrightarrow $\eta = (0)$ $x = (x)$ CA

EXAMPLE 3.8 Let us continue Example 2.19. In $X = \operatorname{Spec} A$, the spectrum of a DVR, we have three open sets \emptyset , η , and X. The structure sheaf takes the following values at these opens:

$$\mathcal{O}_X(\emptyset) = 0, \qquad \mathcal{O}_X(X) = A, \qquad \mathcal{O}_X(\eta) = A_x = K(A),$$

where K(A) denotes the fraction field of A. The stalks are given by $\mathcal{O}_{X,x} = A$ and $\mathcal{O}_{X,\eta} = K(A)$.

DEFINITION 3.9 A ringed space is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of rings on X. A morphism of ringed spaces is a pair (f, f^{\sharp}) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ where $f: X \to Y$ is continuous, and

$$f^{\sharp}:\mathcal{O}_{Y}\to f_{*}\mathcal{O}_{X}$$

is a map of sheaves of rings on Y.

$$J \subseteq Y$$
 $f_*O_X(U) = O_X(f^{-1}U)$

This means that the $f^{\sharp}(U)$ are ring homomorphisms $f^{\sharp}(U): \mathcal{O}_{Y}(U) \to \mathcal{O}_{X}(f^{-1}U)$, and we require that they commute with the restriction maps:

$$\mathcal{O}_{Y}(U) \xrightarrow{f^{\sharp}(U)} \mathcal{O}_{X}(f^{-1}U) = \left(f_{\bigstar} \mathcal{O}_{X} \right) \left(\mathcal{O}_{Y}(V) \xrightarrow{f^{\sharp}(V)} \mathcal{O}_{Y}(V) \right)$$

DEFINITION 3.10 A locally ringed space is a pair (X, \mathcal{O}_X) as above, but with the additional requirement that for every $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.

A morphism of locally ringed spaces is a pair $(f, f^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ as above, with the additional requirement that for every $x \in X$, the map on stalks

$$f_{Y,f(x)}^{\sharp}:\mathcal{O}_{Y,f(x)}\to\mathcal{O}_{X,x}$$

is a map of local rings; that is,

$$(f_{Y,f(x)}^{\sharp})^{-1}(\mathfrak{m}_x) = \mathfrak{m}_{f(x)}$$

where $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$ and $\mathfrak{m}_{f(x)} \subset \mathcal{O}_{Y,f(x)}$ are the maximal ideals.

PROPOSITION 3.11 For a ring A, the pair $(X, \mathcal{O}_X) = (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ is a locally ringed space. Moreover, for a map of rings $\phi : A \to B$, there is an induced map of locally ringed spaces $(h, h^{\sharp}) : (\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$.

$$\phi: A \rightarrow 13 \longrightarrow Spec B \rightarrow Spec A$$

$$\varphi \mapsto \phi^{-1}(q)$$

PROOF: We defined the structure sheaf \mathcal{O}_X on $X = \operatorname{Spec} A$ so that $\mathcal{O}_{X,x} = A_{\mathfrak{p}}$ at each point $x = [\mathfrak{p}]$. In particular, the stalks are local rings.

For the second claim, let $\phi: A \to B$ be a morphism of rings and let $h: \operatorname{Spec} B \to \operatorname{Spec} A$ be the induced map given by $h([\mathfrak{p}]) = \phi^{-1}(\mathfrak{p})$. We want to associate to ϕ a map of sheaves of rings

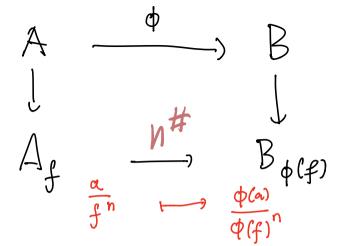
 $h^{\sharp} \colon \mathcal{O}_{\operatorname{Spec} A} \to h_* \mathcal{O}_{\operatorname{Spec} B}.$

$$\begin{array}{cccc}
O_{Spec A} & \xrightarrow{h^{\#}} & h_{\#} & O_{Spec B} & D(f) \\
A_{f} & \longrightarrow & B_{\phi(f)}
\end{array}$$

By Proposition 1.53, it suffices to tell what ϕ^{\sharp} should do to the sections over the distinguished open sets D(f). Here we recall Lemma 2.21, which tells us that

$$h^{-1}(D(f)) = D(\phi(f)).$$

This means that we have the equality $\Gamma(D(f), h_*\mathcal{O}_{\operatorname{Spec} B}) = B_{\phi(f)}$, and we know that $\Gamma(D(f), \mathcal{O}_{\operatorname{Spec} A}) = A_f$. The original map of rings $\phi \colon A \to B$ now localizes



to a map $A_f \to B_{\phi(f)}$, sending af^{-n} to $\phi(a)\phi(f)^{-n}$, and this shall be the map h^{\sharp} on sections over the distinguished open set D(f).

To prove that h^{\sharp} is well defined, we need to check that it is compatible with the restriction maps among distinguished open sets: indeed, when $D(g) \subset D(f)$, we write as usual $g^m = cf$, and the localization map $A_f \to A_g$ will then send af^{-n} to ac^ng^{-nm} . One has $\phi(g)^m = \phi(c)\phi(f)$, which makes the diagram below commutative:

$$egin{aligned} A_f & \longrightarrow & A_g \ & & \downarrow \ & & \downarrow \ B_{oldsymbol{\phi}(f)} & \longrightarrow & B_{oldsymbol{\phi}(g)} \end{aligned}$$

and this is exactly the required compatibility.

Note that for $[\mathfrak{p}] \in \operatorname{Spec} B$, with image $[\mathfrak{q}] = [\phi^{-1}(\mathfrak{p})] \in \operatorname{Spec} A$, the stalk map

$$h_{\mathfrak{p}}^{\sharp}: \mathcal{O}_{\operatorname{Spec} A, \mathfrak{q}} \to \mathcal{O}_{\operatorname{Spec} B, \mathfrak{p}}$$

coincides with the localization $A_{\phi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$. Thus the preimage of the maximal ideal of $A_{\phi^{-1}(\mathfrak{p})}$ equals the maximal ideal in $B_{\mathfrak{p}}$, making $h_{\mathfrak{p}}^{\sharp}$ a map of local rings. Hence (h, h^{\sharp}) is a morphism of locally ringed spaces.

3.3 Schemes

Finally, we can give the formal definition of a scheme.

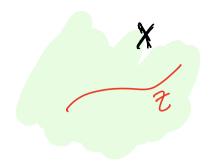
- **DEFINITION 3.12** An affine scheme is a locally ringed space (X, \mathcal{O}_X) which is isomorphic to $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ for some ring A.
 - A scheme is a locally ringed space (X, \mathcal{O}_X) that is locally isomorphic to an affine scheme, i.e., there is an open cover U_i of X such that each $(U_i, \mathcal{O}_X|_{U_i})$ is isomorphic to some affine scheme (Spec A, $\mathcal{O}_{\text{Spec }A}$).

3.4 Open immersions and open subschemes

If X is a scheme and $U \subset X$ is an open subset, the restriction $\mathcal{O}_X|_U$ is a sheaf on U, making $(U, \mathcal{O}_X|_U)$ into a locally ringed space. This is even a scheme, since if X is covered by affines $V_i = \operatorname{Spec} A_i$, then each $U \cap V_i$ is open in V_i , hence can be covered by affine schemes. It follows that there is a canonical scheme structure on U, and we call $(U, \mathcal{O}_X|_U)$ an *open subscheme* of X and say that U has the *induced scheme structure*. We say that a morphism of schemes $\iota: V \to X$ is an *open immersion* if it is an isomorphism onto an open subscheme of X.

A -> Ag
Spec Af -> D(+) C Spec A

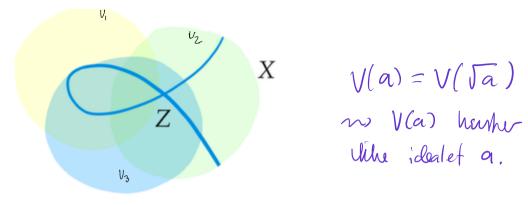
As a special case, consider $V = \operatorname{Spec} A_f$ and the map $\iota : V \to \operatorname{Spec} A = X$, induced by the localization map $A \to A_f$. This is an open immersion onto the open set $U = D(f) \subset X$. Indeed, we saw in Example 2.22 that ι is a homeomorphism onto U, and it follows from the definition of the sheaf \mathcal{O}_X that the restriction $\mathcal{O}_X|_U$ coincides with the structure sheaf on $\operatorname{Spec} A_f$.



3.5 Closed immersions and closed subschemes

If X is a scheme, we would like to define what it means for a closed subset $Z \subset X$ to be a *closed subscheme* of X. This is a little bit more subtle than the case for open subsets, as for a given closed subset $Z \subset X$, there is no canonical locally ringed space structure on Z.

Reason: Ox does not know about open subsets of Z ~ need to specify a structure sheaf.



The prototypical example of a closed subscheme is $\operatorname{Spec}(A/\mathfrak{a})$, which as we have seen, embeds as the closed subset $V(\mathfrak{a})$ of $\operatorname{Spec} A$. Here the scheme structure clear. So we have a clear intuitive picture of what a closed subscheme should be in general: It is a scheme (Z, \mathcal{O}_Z) and with a morphism $i: Z \to X$, so that there is an affine cover $U_i = \operatorname{Spec} A_i$ of X, so that each $i^{-1}(U_i)$ is given by some ideal in A_i (i.e., $i^{-1}(U_i) \simeq \operatorname{Spec}(A_i/\mathfrak{a}_i)$.

- **DEFINITION 3.14** i) A closed subscheme of X is given by a closed subset $Z \subset X$ and a sheaf of rings \mathcal{O}_Z on Z so such that (Z, \mathcal{O}_Z) is a scheme and $\iota_*\mathcal{O}_Z \simeq \mathcal{O}_X/\mathscr{I}$ for some sheaf of ideals $\mathscr{I} \subset \mathcal{O}_X$, where ι denotes the inclusion map.
 - ii) A morphism $\iota: Z \to X$ is called a closed immersion if it induces a homeomorphism of Z onto a closed subset of X, and the sheaf map $i^{\sharp}: \mathcal{O}_X \to \iota_* \mathcal{O}_Z$ is surjective.

Disse er relaterte:
$$i: Z \longrightarrow X$$
 luthet interior $J = \text{ber } L^{\#} \longrightarrow \mathcal{O}_{Z} \simeq \mathcal{O}_{X}/J$.

Note that Z is already required to be a scheme in the definition. Each closed subscheme is determined by a sheaf of ideals $\mathscr I$, but not all ideal sheaves $\mathscr I$ give rise to a closed subscheme.

Will be proved later:

PROPOSITION 3.15 Let $X = \operatorname{Spec} A$ be an affine scheme. Then the map $\mathfrak{a} \mapsto \operatorname{Spec}(A/\mathfrak{a})$ induces a one-to-one correspondence between the set of ideals of A and the set of closed subschemes of X. In particular, any closed subscheme of an affine scheme is also affine.

EXAMPLE 3.16 Consider the affine 4-space $\mathbb{A}_k^4 = \operatorname{Spec} A$, with A = k[x, y, z, w]. Then the three ideals

$$I_1 = (x, y), I_2 = (x^2, y) \text{ and } I_3 = (x^2, xy, y^2, xw - yz),$$

give rise to the same closed subset $V(x,y) \subset \mathbb{A}^4_k$, but they give different closed subschemes of \mathbb{A}^4_k .

3.6 R-valued points

For a scheme X, it makes sense to study morphisms Spec $R \to X$ from affine schemes into it. We call such morphisms R-valued points, and the set of all such will be denoted by X(R). The jargon here is justified from the following:

Important in number theory!

EXAMPLE 3.17 Let $\mathbb{A}^n = \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]$. An R-valued point of \mathbb{A}^n is a morphism $g : \operatorname{Spec} R \to \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]$, which determines and is determined by the n-tuple $a_i = g^{\bullet}(x_i)$ of elements in R. Hence,

$$\mathbb{A}^n(R) = R^n$$
.

$$g : Spec R \rightarrow A_{Z}^{n}$$

$$g : Z[x_{1},...,x_{n}] \rightarrow R$$

$$e \quad \alpha_{i} = g^{\#}(x_{i}) \in R$$

Now, let $X = \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]/I$ where $I = (f_1, \dots, f_r)$ is an ideal. The set of R-points of X can be found similarly: indeed, any morphism

$$g: \operatorname{Spec} R \to \operatorname{Spec} \mathbb{Z}[x_1, \dots, x_n]/I$$

is determined by the *n*-tuple $a_i = g^{(k)}(x_i)$, and those *n*-tuples that occur are exactly those such that $f \mapsto f(a_1, \ldots, a_n)$ defines a homomorphism

$$\mathbb{Z}[x_1,\ldots,x_n]/I\to R.$$

In other words, the a_i are elements in R which are solutions of the equations $f_1 = \cdots = f_r = 0$.

Q: Given a scheme X -> how to describe / study X(R)?

$$X = Spec \frac{\mathcal{Z}[x_1y_1z]}{(x_1+y_1-z_1)} \qquad X(Q)$$

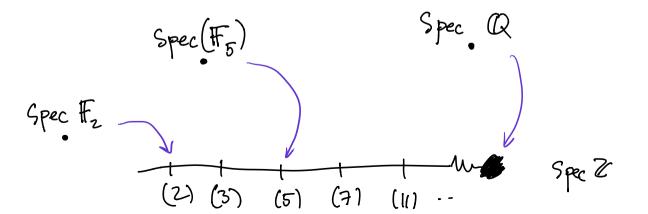
$$x^2 + y^2 + 1 = 0$$

EXAMPLE 3.18 (*A conic with no real points*) Let $X = \operatorname{Spec} A$, where A is the real algebra $A = \mathbb{R}[x,y]/(x^2+y^2+1)$. Note that the conic $x^2+y^2+1=0$ has no real points, so $X(\mathbb{R}) = \emptyset$. However, A has infinitely many prime ideals.

The sets X(R) of points over R are obviously important in number theory, as they naturally generalize the solution set of the polynomials $f_1 = \cdots = f_r = 0$.

Of course, even when R is a field, it can be very difficult to describe the set X(K) of K-valued points Spec $K \to X$, or even determining whether $X(K) \neq \emptyset$.

PROPOSITION 3.19 Let X be a scheme and let K be a field. Then to give a morphism of schemes Spec $K \to X$ is equivalent to giving a point $x \in X$ plus an embedding $k(x) \to K$.



More generally, one may for a fixed scheme S define X(S) to be the set of all morphisms $S \to X$; the so-called *S-valued points* of X. In the example above, we have for any scheme S,

$$\mathbb{A}^n(S) = \operatorname{Hom}_{\operatorname{Sch}}(S, \mathbb{A}^n) = \Gamma(S, \mathcal{O}_S)^n.$$

In fancy terms, this says that \mathbb{A}^n represents the functor taking a scheme to n-tuples of elements of $\Gamma(S, \mathcal{O}_S)$. We shall see a similar functorial characterization of projective space \mathbb{P}^n later in the book.