Chapter 4
Gluing and first results on schemes



4.1 Gluing maps of sheaves
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We are given two sheaves F and G on the topological space X and an
open covering {U;};c; of X. On each open set U;, we are given a map of sheaves
¢i: Flu, — Glu,, and we assume that the following gluing condition hold on the
overlaps:
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for all 7,j € I. Then we have

PROPOSITION 4.1 (GLUING MORPHISMS OF SHEAVES) Under the assumptions above,
there exists a unique map of sheaves ¢: F — G such that ¢|u. = ¢;.



PROPOSITION 4.1 (GLUING MORPHISMS OF SHEAVES) Under the assumptions above,
there exists a unique map of sheaves ¢: F — G such that ¢|y, = ¢;.

Proor: Take a section s € F(V) where Vc X is open, and let V; = U; n V.
Then ¢;(s|v;) is a well defined element in G(V;), and it holds true that ¢;(s|v;) =
¢;(s|v;) by the gluing condition. Hence the sections ¢;(s|y;)’s of the G|y, s glue
together to a section of G over V, which we define to be ¢(s). This gives the
desired map of sheaves.



The uniqueness also follows: If ¢ and ¥ are two morphisms of sheaves so
that ¢(s)|u, = ¥(s)|u, for all i € I then ¢(s) = (s), by the Locality axiom for F,
and hence ¢ = 9. .



4.2 Gluing sheaves £ /Y

The setting in this section is a topological space X and an open covering {U;}icr
of X with a sheaf F; on each open subset U;. We want to “glue” the F; together;
that is, we search for a global sheaf F restricting to F; on each U;.
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The gluing data consists of isomorphisms j;: -7i|u,-]~ > .7-"]-|u1.].. The idea is to
identify sections of F;|u, with Fj|u, using the isomorphisms 7;;. For the gluing
process to be possible, the 7;;’s must satisfy the three conditions
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where the last identity takes place where it makes sense; on the triple intersection
LI,-]-k.



PROPOSITION 4.2 (GLUING SHEAVES) In the setting as above, there exists a sheaf F
on X, unique up to isomorphism, such that there are isomorphisms v;: F|y, — F;
satisfying v; = T;; o v; over the intersections U;;.



Proor: If V< X is an open set, we write V; = U;nV and V;; = U;;n V. We
are going to define the sections of F over V, and they are of course obtained by
gluing sections of the F;’s along V; using the isomorphisms T7;;. We define

F(V) ={(si)ier | Ti(silv,) =sjlv, Y= [ [ Fi(Vi (4.1)
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ExERCISE 4.2 Let {U;}ic; be an open cover of X. Let & be the collection of open
sets V so that V < U; for some i. Show that 4 is a basis for the topology, and
use this to give another proof of Proposition 4.2. *



4.3 Gluing schemes
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In the present setting of ‘scheme gluing” we are given a family {X;};c; of
schemes indexed by a set I. In each of the schemes X; we are given a collection
of open subschemes X;;, where the second index j runs through I. They form
the glue lines in the process, i.e., the contacting surfaces that are to be glued
together: In the glued scheme they will be identified and will be equal to the
intersections of X; and X;. The identifications of the different pairs of the X;;’s
are encoded by a family of scheme isomorphisms 7;;: X;; — Xj;. Furthermore,
we let X;jx = Xj n X;; — these are the various triple intersections before the
gluing has been done — and we have to assume that ‘L'ij(Xi]-k) = Xjix. Notice that
Xijx is an open subscheme of X;.






The three following gluing conditions, very much alike the ones we saw for
sheaves, must be satisfied for the gluing to be possible:
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0 The isomorphism T; takes X;j into X and one has 1y; = T4 o Tj; over Xjj. (WBVC)



PROPOSITION 4.3 (GLUING SCHEMES) Given gluing data X;, T;; as above, there exists
a scheme X with open immersions ;: X; — X such that ¥i|x, = ¥j|x; o Tji, and such
that the images ;(X;) form an open covering of X. Furthermore, one has ;(X;;) =
¥i(Xi) n;(X;). The scheme X is uniquely characterized by these properties up to a
unique isomorphism.
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On the level of topological spaces, we start out with the disjoint union [ [; X;
and proceed by introducing an equivalence relation on it. We declare two points
x € X;; and x’ € Xj; to be equivalent when x" = Tj;(x). Observe that if the point x
does not lie in any X;; with i # j, we leave it alone, and it will not be equivalent
to any other point.

s x= ¥/

ek by iy T LY — X
UEX qun & T (V) open



Y — ULXL
N

Topologically, the maps ¢;: X; — X are just the maps induced by the open
inclusions of the X;’s in the disjoint union [ [; X;. They are clearly injective
since a point x € X; is never equivalent to another point in X;. Now, X has the
quotient topology so a subset U of X is open if and only if 77=!(U) is open, and
this holds if and only if ¢; }(U) = X; n 7~ }(U) is open for all i. In view of the
formula

! (i(U)) = U Ti; (U N Xjj) Ti ¥ open
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we conclude that each ; is a homeomorphism onto its image.
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On X;;, we have the iéomorphisms . OX].|X1.], — Ox|| X the sheaf maps of

the scheme isomorphisms 7j;: X;; — X In view of the third gluing condition

Tri = Tij © Tji, valid on X, we obv1ously have T,B =1ho T,f].. The two first gluing
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conditions translate into T = id and T (’1'5-)_1. '



gluing properties needed to apply Proposition 4.2 are satisfied, and we are
allowed to glue the different Ox,’s together and thus to equip X with a sheaf of
rings. This sheaf of rings restricts to Ox, on each of the open subsets X;, and
therefore its stalks are local rings. So (X, Ox) is a locally ringed space that is
locally affine, hence a scheme.
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4.4 Gluing morphisms of schemes

Suppose we are given schemes X and Y and an open covering {U};c; of X.
Assume further that there is given a family of morphisms ¢;: U; — Y which
match on the intersections U;; = U; n U;. The aim of this paragraph is to show
that the ¢;’s can be glued together to give a morphism X — Y:



PROPOSITION 4.4 (GLUING MORPHISMS OF SCHEMES) Given gluing data ¢; as above,
there exists a unique map of schemes ¢: X — Y such that ¢|u, = ¢;.

Proor: Clearly the map on topological spaces is well defined and continuous,
so if UcY is an open set, we have to define ¢*: T'(U,Oy) — I'(U, $.O0x) =
I'(¢p~U,Ox). So take any section s € Oy(U) over U. This gives sections
t; = cpf(s) of Ox(U;). But since c[)i.i and c[)}i restrict to the same map on Uj;, we
have ti|lli]- = tjluij' The t; therefore patch together to a section ¢t € Ox(U), which

is the section we are aiming at: We define ¢*(s) to be ¢. |
Q
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4.5 The category of affine schemes

We saw in Chapter 2, that the assignments A — Spec A and ¢ — Spec(¢) gives
a contravariant functor from the category Rings of rings to the category AffSch
of affine schemes. There is also a contravariant functor going the other way:
taking the global sections of the structure sheaf Ogpec 4 gives us the ring A back.



Furthermore, a map of affine schemes f : Spec B — Spec A, comes with a map
of sheaves f*: Ospeca = f+Ospec - Taking global sections gives a ring map

A =T(SpecA, Ospec 4) — I'(Spec A, ¢4 OspecB) = B.



Let X,Y be two schemes and let Homg, (X, Y) denote the set of morphisms
f : X — Y between them. We can define a canonical map

® : Homsch (X, Y) — Homgings (Oy(Y), Ox(X)) (4-3)

which sends (f, f*) to the map f*(Y) : Oy(Y) — Ox(X).



D HomSch(X/ Y) - HomRings(OY(Y)l OX(X))

vhich sends (f, f*) to the map f*(Y) : Oy(Y) — Ox(X).

PROPOSITION 4.5 If X and Y are affine, the map ® is bijective.

Proor: Write X = Spec B and Y = Spec A. By construction, we have A = Oy (Y)
and B = Ox(X).

Given a morphism f : X — Y, we let ¢ = ®(f) = f*(Y) : A — B be the
corresponding ring map. As we already know, any ring homomorphism induces
a morphism of the corresponding ring spectra, so we obtain a morphism of
affine schemes Spec¢ : X — Y. To prove the proposition, we need only prove
that this gives an inverse to P, i.e., that Spec¢ = f.



Let x € X be a point, corresponding to the prime ideal ¢ © B, and letp < A
be the prime ideal corresponding to f(x) € Y. We have a commutative diagram
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where the vertical maps are the localization maps and the lower map is fE. We
have ¢(A\p) = B\g, so ¢1(q) = p. Now f} is a local homomorphism, so in
fact 1(q) = p. This means that Spec ¢ induces the same map as f on the
underlying topological spaces. Moreover, for each x, the two maps fﬁ and
(Spec ¢)* coincide with the map A, — B, above, so also f* = (Spec¢)* as maps
of sheaves. a



We have established the following important theorem:

THEOREM 4.6 The two functors Spec and I' are mutually inverse and define an equiva-
lence between the categories Rings and AffSch.



In summary, affine schemes X are completely characterized by their rings of
global sections I'(X, Ox), and morphisms between affine schemes X — Y are in
bijective correspondence with ring homomorphisms I'(Y, Oy) — I'(X, Ox). In
particular, a map f between two affine schemes is an isomorphism if and only if
the corresponding ring map f* is an isomorphism.



PROPOSITION 4.7 Let X be any scheme. Then there is a canonical map of schemes
P : X — SpecI'(X, Ox) inducing the identity on global sections of the structure
sheaves.
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THEOREM 4.8 (MAPS INTO AFFINE SCHEMES) For any scheme X, the canonical map
q)X : HOmsch (X, Spec A) —> HomRings(A, F(X, Ox) ),

given by (f, f*) — f#(X), is bijective.



Proor: Let {U;} be an affine covering of X. By the affine schemes case (Theorem
4.6), we know that each @, is bijective. In particular, from the uniqueness part
of Proposition 4.4 we see that ®yx is injective.



To show that ®y is surjective, let B : A — I'(X, Ox) be a ring homomorphism.
By restriction, it induces maps maps B; : A — I'(X, Ox) — I'(U;, Ox), and hence
morphisms of schemes f; : U; — Spec A. We claim that the f;’s may be glued

together to a map f : X — Spec A. This is a consequence of the fact that the
following diagram commutes:
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Indeed, note that for V < U; n U; affine, the diagram implies that the restrictions
filv and fj|y induce the same element in Homgings(A,I'(V, Ox)), and so they
are equal on V (using Theorem 4.6). Since this is true for any V, they are equal
on all of U; n U;. So by gluing the f;, we obtain a morphism f : X — Spec A. We
must have ®x(f) = B by injectivity of ®x and since f maps to [, B; via [ [; Pu;-
This completes the proof. Q



COROLLARY 4.9 The canonical map : X — SpecI'(X, Ox) is universal among the
maps from X to affine schemes; i.e. any map a: X — Spec A factors as « = &’ o for a
unique map &' : SpecI'(X, Ox) — Spec A.

Proor: In the theorem above, i corresponds to the identity map idrx,0,)
on the right hand side. The morphism «’ is the map of Spec’s induced by
the ring map af: A — I'(X,Ox). We check that it factors a: The morphism
(&' o) : X — Spec A satisfies (' o p)* = ¢* o a* = a* and hence it coincides
with « by the above theorem. I:I



4.6  The functor from varieties to schemes



Let k be an algebraically closed field and let V be an algebraic variety over k.
We first consider the case where V is affine. Each affine variety has a coordinate
ring A = A(V); itis canonically attached to V being the ring of regular functions
on V. From A(V) we can build V* = Spec A, which is an affine scheme whose
closed points are in bijection with the points of V (that is, V*(k) = V) according

to the Nullstellensatz. Thus the ‘new points” correspond to the non-maximal
ideals of A.



Moreover, the fundamental theorem of affine varieties tells us that maps
¢: V — W between two affine varieties are in one-one-correspondence with
ring maps ¢*: A(W) — A(V), which exactly parallels our Theorem 4.8. Hence
putting ¢° = Spec¢*, we obtain a morphism ¢° : V¥ — W* which extends ¢.
As ¢! is a map of k-algebras, we see that the morphism ¢° is a morphism of
schemes over Speck.



Summing up, we have defined a functor ¢ : AffVar/k — Sch/k. As morphisms
of k-varieties V — W and affine k-schemes V* — W? are both in canonical bijec-
tion with k-algebra homomorphisms A(W) — A(V), the functor ¢ is therefore
fully faithful, in the sense that

HomVa,/k(V, W) = Homsch/k(Vs, WS).



In the general case a variety V has an open cover by affine varieties V;, and
gluing can be performed in both the category of varieties as well as in the
categories of schemes, and it is a matter of straightforward checking that this
gives a well-defined scheme V* containing each V? as an open subscheme. The
gluing works equally well for morphisms, so we again obtain a functor, which
we denote

t: Var/k — Sch/k.



Once again this functor is fully faithful, in the sense that the induced maps
between Homy,,/x(V, W) and Homs, /x(V*, W9) are bijective. So two varieties
give rise to isomorphic schemes if and only if they are isomorphic as varieties,
and the scheme isomorphisms is unambiguously determined by the variety
isomorphism. In particular, this tells us that the category of varieties Var/k is
equivalent to a full subcategory of Sch/k. We have already seen that ¢ is far
from being surjective (Speck|x]/x?, or: varieties are irreducible), and we shall
identify the type of schemes that correspond to its image in Chapter 10.



