Chapter 5
More examples



5.1 Gluing two schemes together X

X, X,

We start out with two schemes X; and X5, with respective open subsets
X12 © Xj, X21 € Xj; they are open subschemes so have their canonical induced
scheme structures. We also assume that we have an isomorphism 7 : X1 — Xj».
These data allow us to glue together X; and X, along Xj, and Xj5;, and thus
construct the glued scheme X = X; u; Xo.



On the level of topological spaces, X is obtained from the disjoint union
X1]] Xz by taking the quotient modulo the equivalence relation x ~ 7(x) for
x € Xp1 < Xp, and giving X the quotient topology. Moreover, each morphism
X; — X is an open immersion, allowing us to view X; as an open subset of X.



The sheaf Oy is determined by the following exact sequence, where U is any
open subset of X.

0 —— Ox(U) E— (’)Xl(LIle)GL)(’)XZ(Usz) B (’)XZ(LImX1 ﬂXz).

The components of first map are just the restrictions, and the second sends
(r,5) to t — T¥(s) (with the appropriate identifications arising from the gluing
process).



The main example to keep in mind is when X; and X are both affine, say
X; = SpecR and X; = Spec S, and 7 is constructed from a ring isomorphism
between localizations

$:R,— Sy

for some u € R, v € 5. Applying Spec, we get a diagram of schemes

SpecR, = D(u) +—~— D(v) = Spec S,

— T

SpecR Spec S



In this case, the global sections of Ox can be identified with Ker p in the exact

sequence

O—>(’)X(X)—>R><SL>SZ,, (5.1)

where p(7,s) = 1(s — ¢(r)), with 1: S — S, being the localization map. In other
words, elements in Ox(X) correspond to pairs (7,s) € R x S such that s = ¢(r)
in the ring S,.



on \0

A scheme that/is not affine

Let k be a field, and A2 = Spec A where A = k[u,v], and consider U =
A2 —V(u,v); this is the affine plane with the closed point corresponding to
the origin removed. Since U is an open set of A2, there is a canonical scheme
structure on U as described in Section 3.5 in Chapter 3. We claim that U can
not be isomorphic to an affine scheme.

o A\1— V) = STFQ Q@@: Vh\ & affnt.
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“ The key point is that the restriction map
I'(AZ,0 A%) — I'(U, Oy) is an isomorphism, which shows that U can not be
an affine scheme; indeed, if that were the case, by Theorem 4.6, the inclusion
map U — AZ2 would be an isomorphism, which obviously is not true as it is not
surjective.



\)—; D(LAJ U D(V)

Let us check that the restriction map really is an isomorphism. The two
distinguished open sets D(u) = Spec A, and D(v) = Spec A, form an open
affine covering of U, and the exact sequence (5.1) takes the following form:

0——T(U,Ou) — Ay x Ay —— Ay

iﬂ/[ @b b

A v
A W v
where p is the difference between the two localization maps; that is, it maps a
pair (au=™,bv™") to au~™ — bv~". We have included the restriction map i* in the
diagram, which is the just the map coming from the inclusion map i: U — AZ.
It sends an element a € A to the pair (a/1,a/1).



Elements of I'(U, Oy) correspond to a pairs (au~—",bv™™") in the kernel of p.
For such a pair we have a relation in A = ku, v]
av” = bu™,

which (since A is a UFD) implies that there is an element c € A with a = g™
and b = cy"; that is, au™™ = bv~". This shows that it is surjective, and hence an
isomorphism since it obviously is injective.



The projective line
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The construction of CIP! can be vastly generahzed, and works in fact over
any ring A. Let u be a variable (‘the coordinate function at the origin’) and let
U; = Spec A[u]. The inverse u~! is a variable as good as u (‘the coordinate at
infinity’), and we let U, = Spec A[u~1]. Both are copies of the affine line Al,
over A.



T Al Spec Al
V¢ J
S plw'd = Spec Al

Inside U; we have the open set Ujp = D(u) which is canonically isomorphic
to the prime spectrum Spec A[u, u~!], the isomorphism coming from the inclu-
sion A[u] < A[u,u~1]. In the same way, inside U, there is the open set U,; =
D(u~1). This is also canonically isomorphic to the spectrum Spec A[u~1,u], the
isomorphism being induced by the inclusion A[u~!] = A[u~!,u]. Hence U;, and
Uy; are isomorphic schemes (even canonically), and we may glue U; to U, along
Uyp. The result is called the projective line over A and is denoted by P,.

N~ Hy‘ B 9(22( Afbbj \)T S(gzc AGL’)J,
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Gluing two affine lines to get P}



PROPOSITION 5.1 We have T'(PL,, Opt ) = A.

Proor: Since PP} is covered by the two open affines U; and U,, the exact
sequence (5.1) above gives us

I'(IP!, Op,) — [(U1, Op1) x T(Uz, Op1) —— T(Ur2, Op1)

] )

Alu] x Alu™1] y Alu,u™l],

glay WG] — g0 - h(e)

~~ 4, heh



where the map p sends a pair (f(u),g(u')) of polynomials with coefficients
in A, one in the variable u and one in u™}, to g(u~! — f(u). We claim that the
kernel of p equals A; i.e. the polynomials f and g must both be constants.



So assume that f(u) = g(u=1), and let f(u) = au™ + lower terms in u, and in
a similar way, let g(u~!) = bu=™ + lower terms in u~!, where both a # 0 and
b # 0, and without loss of generality we may assume that m > n. Now, assume
that m > 1. Upon multiplication by u™ we obtain b + uh(u) = u™ f(u) for some



polynomial #(u), and putting u = 0 we get b = 0, which is a contradiction.
Hence m = n = 0 and we are done. .



In particular, the global sections of Ox of X = P{. is just C.

“ L\“Q \NU&\; egsu "



The quotient morphism

In fact, the two examples we have constructed are closely related. In particular,
there is a morphism between them:

m: A2 —V(u,v) - P}

dﬁﬁ%@o 0 @&g) —  (xy)
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m: A2 —V(u,v) - P}

This morphism is constructed by gluing the two morphisms ¢; : Speck[u, v], —
Speck[u~'v] and ¢, : Speck[u,v], — Speck[uv—!] induced by the inclusions
klu=lv] < k[u,v], and k[uv~!] < k[u,v],. The gluing condition is satisfied
because of the following diagram:



klu,v], +—— k[u='0]

ST

klu,v]yp +— klu=to,uv™!]

e

k[u,v], +—— k[uv™!]
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The affine line with a doubled origin

Keeping the notation from the previous example, we now glue together two
copies of the affine line A, = Spec A[u] along their common open subset
X12 = Spec A[u, u~1]. In the notation of the beginning of the chapter, we put
R = S = Alu] and use the identity morphism ¢ : Alu,u=1] — A[u,u~!] over the
intersection. The resulting scheme contains two Al’s which overlap outside the
origin. But since the gluing does nothing over the origins of each A!, there are
two points in X that replace the origin: X is sometimes called the affine line with
two origins.



> AN\{0}

This scheme is not affine either: using the sheaf axiom sequence as before, we
find that I'(X, Ox) ~ I'(X;, Ox) = Alu] by the restriction map. However, the
map X; = Spec A[u] — X is not an isomorphism (it is not surjective, since its
image misses one of the two origins).



Hyperelliptic curves
Let k be a field and consider the two affine schemes X; = Spec A and X, =
Spec B, where

k[x, y] k[u, v]
A = and B =
(¥? — agg1x28t1 — ... —a1x) (02 — aggpatt — - - —agu+1)

with scalars a4y, ..., 4441 € k. The two distinguished open sets D(x) = Spec A,



with scalars ay, ..., 42441 € k. The two distinguished open sets D(x) = Spec Ay
and D(u) = Spec B, are isomorphic: the assignments ¢(u) = x~! and ¢(v) =
x~8~1y give an isomorphism ¢: B, — A,. It is well defined as the little calcula-
tion

2 290+1 __ . ,2..—29-2 -1 —29+1
0 —a2g+1u—---—a1ug —yx g —azg+1x — =M X g

2¢+1

= x 287 2(y? - A2g+1% ce—mx),

shows that the defining ideal for B, maps into the one defining A,, and one
verifies effortlessly that the inverse homomorphism is given as x — u~! and
y — vu~8~1. We can thus glue X; and X, together along the open subsets D(x)
and D(u).



2
%ZLX + X

The resulting scherie X is what is called a hyperelliptic curve or a double cover of
IP}. In the case ¢ = 1, X is an example of an elliptic curve. Here is an illustration
of the real points of one of the affine charts for g = 2:

OE®

.
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The term ‘double cover” comes from the fact that X admits a morphism
f : X — P; whose general fibre f~!(g) consists of two points, when k is
algebraically closed and of characteristic different from two. That there is such
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a map, follows from the Gluingmnorphisms (Proposition 4.4 on

page 84): we have two natural inclusions k[x] — A and k[u] c B, and the “gluing
diagram”

K[u] “255 k[x]

Lo

BuLAx

commutes, so the inclusions match on the overlap and patch together to the
desired map X — IP;. Note that the correspondence u — x~1 gives the standard
construction of P} by gluing together the two affine lines Speck[x] and Spec k[u].



The blow-up of the affine plane

In this section, we will construct the blow-up of A? at the origin, by gluing together
two affine schemes. We begin by recalling the classical construction for varieties.
To be precise, we write A?(k) for the variety, and A? for the scheme, etc.



THE BLOW-UP As A VARIETY: Let k be an algebraically closed field, and consider
the affine plane A?(k). There is a rational map f : A%(k) --» P}(k) that sends
a point (x,y) to the point (x : y) (in homogeneous coordinates on IP}). This
map is not defined at the origin p = (0,0), but we can still associate with it the
closure X in A2%(k) x P (k) of its graph (which lies in A2(k) — (0,0) x P1(k)).



When describing the graph in detail, it is better to use homogenous coordinates
(s : t) on P!(k). If the coordinate t # 0, it holds that (s : t) = (st~!,1), so the
part of the graph where y # 0, is given by the equation xy—! = st~; in other
words, by xt —ys = 0, and the same relation gives the part where x # 0. Hence
X is defined in A (k)? x IP1(k) by the single equation

X = V(xt —ys) c A%(k) x PL(k).



We also have two projection maps p : X — A?(k) and g : X — P!(k). The
situation is depicted in Figure 5.1.






Let us analyze the fibres of these two maps. The fibres of p are easy to
describe. If (x,y) € A?%(k) is not the origin, then p~!(x,y) consists of a single
point; the equation xt = ys allows us to determine the point (s : t) uniquely
since either x # 0 or y # 0. However, when (x,y) = (0,0), any choices of s
and t satisfy the equation, so p~1(0,0) = {(0,0)} x P!(k). In particular, this
inverse image is one-dimensional; it is called the exceptional divisor of X, and is
frequently denoted by E.



Similarly, if (s : t) € P!(k) is a point, the the fibre
g (s:t)={(x,y) x (s:t) |xt =ys} = A(k)> x {(s: 1)}

is a line in A?(k). The map g is an example of a line bundle; all of its fibres are
affine lines A'(k)’s. We will see these again later on in the book.



The standard covering of IP!(k) as a union of two Al(k)’s gives an affine
cover of X: If U c P!(k) is the open set where s # 0, we can normalize so
that s = 1, and the equation xt = sy gives y = tx. Hence x and ¢ may serve
as affine coordinates on g~!(U), and g~ 1(U) ~ A2?(k). In these coordinates,
the morphism p : X — A? restricts to the map A%(k) — AZ?(k) given by
(x,t) — (x,xt). Similarly, g~}(V) = A2(k) with affine coordinates y and s, and
the map p is given here as (y,s) — (sy,y).



THE BLOW-UP AS A SCHEME: From the above discussion, we can define the
scheme-analogue of the blow-up of A? at a point. We will define this as a
scheme over Z, rather than over a field k (we get a blow-up of A for any ring
A by tenzoring everything below by A). Also, in addition to the scheme X, we
also want a morphisms of schemes p : X — A? and g: X — P! having similar
properties to the morphisms in the example above.



Consider the affine plane A% = Spec Z[x,y]. The prime ideal p = (x,y) <
Zx,y] corresponds to the closed point p corresponding to the origin A? in the



analogy with situation above. Consider the diagram

X X
xz(/ﬂ Ziyl Yo

>~ , ¥
Z[x,f;&w{Wc C> NZW]
S ey

R=2Z[x,y,s,t]/(xt—y,st—1)

Here the diagonal maps on the top are given by x — x and y — xt respectively
y+—yand x — ys.



Note that the ring R is isomorphic to Z[x,s,t|/(st — 1) = Z[x,t,t71], as
well as to Z[y,s,t]/(st — 1) = Zy,s,s!]. Since this ring is a localization of
both Z|x, t] and Z]y, s|, we can identity its spectrum both as an open subset of
Spec Z[x, t] and as an open subset ofSpec Z[y, s]. This gives a diagram



A\L
[
Spec Z|x,y|

/L\

U = SpecZ|x, t] /’d SpecZly,s| =V /HI

\/

Spec R
where the bottom diagonal maps are the two open immersions. Hence we

Z 2
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where the bottom diagonal maps are the two open immersions. Hence we
can glue these two affine spaces together along Spec R to obtain a new scheme
X. By construction, the restriction of the maps SpecZ[x,t] — SpecZ|x,y]
and SpecZl|y,s| — SpecZ|x,y] to SpecR coincide with the map SpecR —

Spec Z[x,y]| which is induced by Z[x,y] — R. Therefore they glue together to a
morphism

p: X — A% =SpecZ|x,y|.



To complete the discussion, we should define the corresponding morphism
g : X — Pl. Again we work locally. On the affine open U = Spec Z|x, t], we have
a map U — A'! = SpecZ|t] induced by the inclusion Z[t| = Z][x,t]. Similarly,
on V = SpecZ][y, s|, we have a map V — Al = SpecZ]|s|. To check if they can
be glued together, we have to see what happens on the overlap U n V = SpecR.
However, on Spec R it holds that ¢t = s~}, so using the standard description of
P! as glued together of two affine lines, we see that the maps Z[t] — R and
Z[s] — R induce the desired morphism 4 : X — Pl



& £ X
Xt = fz /

Let k be a field, and consider the following diagram of inclusions of subrings of

k[x=%, y=7]. o N JQ.[?Q/%%J
/k Y xzy_1< (X%~ y2)

klx~'y, x*y~] klxy=,y]
/3(\7' \ / A Z

klxy=!, x7 1y, y]

Resolution of a quadric cone

8[\7/(? -
J



Note that there is an isomorphism of k-algebras k[x, y, z] / (x* — yz) — k[x,y, x*y~1],
sending z to x?y~1. Thus applying Spec, we obtain a diagram of schemes

Q = Speck[x,y,z]/ (x* — yz)
U = Speck[xy~!, x1y,v]

A'\Z 9, A\’Z
U

\

PN X



Note that k[xy—1,x~1y,vy] is a localization of both k[x~1y, x?y~!] and k[xy !, y]
(we invert x 'y and xy~! respectively). Thus U lies naturally as a distinguished
open set in both A?’s. The lower part of the diagram then allows us to glue the
two copies of A? over the open set U to a new scheme X. The top part of the
diagram shows that the two morphisms f; : A2 > Qand f,: A7 > Qgluetoa
morphism f : X — Q.



5.2 Projective space

We now give examples of more involved gluings. Let A be a ring, and consider
the subrings of A[x3’,...x%!] given by

R =A [?’;—} N+
i i \ > ,7
S/DCC PC @A}Xé}

fori =0,...,n. Note that we have equalities

&)

— R;

R; j
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Xi
for each 7 and j. Thus we can glue the affine spaces X; = SpecR; ~ A together
to a scheme which we will denote by IP’;. This is the projective n-space over A.




Note that each Spec R; come with a canonical map Spec R; — Spec A, induced



by the inclusion A c R;. Moreover, the isomorphisms above are all ‘over A’,
thus compatible with these inclusions, and we see that we may glue to form a
morphism P’ — Spec A.



Note in particular, that for n = 1 we obtain the P}, constructed earlier. An
argument similar to that in Proposition 5.1 gives

ProrosITIiON 5.2 T'(P%, Opr ) = A
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ExaMmrLE 5.3 The projective plane P is the scheme glued together by the 3 affine

planes AZ:

Uy = Speck|x,y], U; = Speck[x™1,yx1],

U, = Speck[y™!, xy1].



Consider the 3 ideals
Ip = (y* — x°) < k[x,y]
L= (x"yx)?—1) cklx!yx]
L=@y"'=(y ")) ckly ™ xy™].



Each ideal I; defines a closed subscheme of the corresponding U; = A2, and
it is readily checked that they agree on the overlaps U; n U;. For instance, in
Uy n U; = Speck[xt1,y], we have

(G D@2 -1) = (P2 - 2) = (P -,

since x is invertible. Thus the three glue to a closed subscheme Z c IP%.



In Chapter 7, we will see that there is a much more economic way of speci-

fying subschemes of IP”, using graded ideals. In fact, the above subscheme is

defined by a single homogeneous polynomial, F = xpx3 — x3.



Double covers of P,

We may similarly generalize the example of hyperelliptic curves to higher dimen-
sions: Let A be a ring and let R = A[xo,...,x,]. Let f € R be a homogeneous
polynomial of degree 2d, and let

2
*o n Y YY) _¢(X Xn
2] )

It is straightforward to verify that Spec S; glue to a scheme X. Moreover, keeping
the notation R; from the previous section, the morphisms Spec S; — Spec Ry,
glue to a morphism 77 : X — IP7}.

Si=A







EXAMPLE 5.4 (A Del Pezzo surface) Let us consider the case f(xp,x1,%2) =
xF + x3%1 + x5 (x2 — x0)?. Note that

So ~ k[u,v,y]/ (y* — u® — u + v*(v* - 1))

via the identifications u = £, v = 22. So the scheme X is a surface glued out of
three open sets, each isomorphic to a quartic surface in A2. The ‘double cover’
morphism is given by 7 : Spec Sy — Specklu, v].



The closed subset V(u) is interesting: Note that
(v —ut —u+0*(v-1)%u) = (y+o(v—1),u) n (y—v(v-1),u)

So the preimage 77~!(V(u)) consists of two components, each mapping isomor-
phically to V(u). *



Hirzebruch surfaces

Let 7 > 0 be an integer and consider the scheme X which is glued together by
the four affine scheme charts

Upo = Speck(x,y] Uop; = Speck|x, y_l]

2
Uyp = Speck[x™!,x"y] Ui = Speck[x™!, x "y ] 2



The inclusions
k[x] < k[x,y] k[x] < k[x,y™"]

Kx™l c k[x!, 2"yl k[x7Y] < klx~L,x Ty (5-3)

induce morphisms U;; — A}(. Moreover, these agree over the various intersec-
tions Uj; n Uj;, and so we obtain a morphism X — IP}.



