Chapter 6
Geometric properties of schemes



6.1 Decomposition into irreducible subsets



6.1 Let A be a ring and consider a primary decomposition of the ideal a:
a=qNgnN-- NG

Putting ¥; = V(,/4i), we find V(a) = Y7 U Y, u--- U Y,, where each Y; is an
irreducible closed set in A”". If the prime,/q; is not minimal among the associated
primes, say ,/q; < 4/4;, it holds that Y; Y}, and the component Y; contributes
nothing to intersection and can be discarded.



6.2 In a more general context, a decomposition ¥ = Y; u--- U Y, of any
topological space is said to be redundant if one can discard one or more of
the Y;’s without changing the union. That a component Y; can be omitted is
equivalent to Y; being contained in the union of rest; that is, Yj< (J;; Yi. A
decomposition that is not redundant, is said to be irredudant. Translating the
Noether-Lasker theorem into geometry we arrive at the following:



PROPOSITION 6.3 If A is a noetherian ring, any closed subset Y — Spec A can be
written as an irredundant union

Y=Yiu---UY,

where the Y;’s are irreducible closed algebraic subsets. The union is unique up to the
order of the Y;’s.

Notice that since embedded components do not show up for radical ideals, we
get a clear and clean uniqueness statement.



ExaMmpLE 6.5 Consider the closed set Y = V(I) = A3 given by the ideal

3

I=(x*-y,xz—y% x> —x2)

Note first that if x =0, then y =0, so V(x,y) < \J[f If x # 0, the third equation
gives z = x2, and so by the first and second equations we get xz — y? = x> — x4,
givingx =1,y =1and z = 1. Hence

X=V(xy)V(x-1,y—1,2z-1)



That is, X is the union of the z-axis, and the point (1,1,1). In fact, a primary
decomposition of I is given by I = q1 N q2 N q3, where

n=(xy), @=r-Ly-L,z-1), g="-yxyy"2).
Taking radicals, we find that the primes associated to I are
p=xy), p=x-Ly-Lz-1), p=(xy2).

Note that p; < p3, so p3 is an embedded component, so it does not show up in
the decomposition above. *



6.7 A decomposition result as in Proposition 6.3 above holds for a much broader
class of topological spaces than the closed sets. The class in question is the class
of the so-called Noetherian topological spaces; these comply to the requirement
that every descending chain of closed subsets is eventually stable. That is; if
{Xi} is a collection of closed subsets forming a chain

L XipcXic...c XXy,

it holds true that for some index r one has X; = X, for i > r.



6.8 The Noether-Lasker decomposition of closed subsets in affine space as a
union of irreducibles can be generalized to any Noetherian topological space:

THEOREM 6.9 Every closed subset Y of a Noetherian topological space X has an irre-
dundant decomposition Y = Y1 U - -- U Y, where each is Y; is a closed and irreducible
subset of X. Furthermore, the decomposition is unique up to order.



6.2 Noetherian schemes

By the correspondence between irreducible subsets of Spec A and prime ideals
of A, we immediately see that if A is a Noetherian ring, the prime spectrum
Spec A is a Noetherian topological space.
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ExamrLE 6.10 Consider the polynomial ring k[t, f5,...] in countably many
variables ¢; and mod out by the square m? of the maximal ideal generated by
the variables, m = (1, fy,...). The resulting ring A has just one prime ideal, the
one generated by the t;’s. So Spec A has just one point, and hence is noetherian.
The ring A, however, is clearly not Noetherian; the sole prime ideal requires
infinitely many generators, namely all the ¢;’s. *
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In light of this example, we take a different route to define noetherianness
for schemes:

DEFINITION 6.11 i) A scheme is locally Noetherian if it can be covered by
open affine subsets Spec A; where each A; is a Noetherian ring

i) A scheme is Noetherian if it is both locally Noetherian and quasi-compact.



Recall from Chapter 3 that a scheme X is quasi-compact if every open cover of
X has a finite subcover. We also showed that affine schemes were quasi-compact:
Any open covering can be refined to a covering by distinguished open sets D(f;),
and when Spec A = | J; D(f;), the ideal generated by the f;’s contains 1, and the
finitely many D(f;)’s with f; occurring in an expansion of 1, will do.



From the definition, it follows that a general scheme is Noetherian if and
only if it can be covered by finitely many open affines Spec A; where each A; is
Noetherian.



In fact, with the new definition, we now have

PROPOSITION 6.12 Spec A is Noetherian (as a scheme) if and only if A is Noetherian.

You should think of this as a purely algebraic fact: Refining the cover, we may
assume that each A; = Ay,. By a theorem in commutative algebra, a ring A is
Noetherian provided that each localization Ay, is Noetherian and 1€ (fi, ..., fr).



ExaMPLE 6.13 Let k be a field. The following schemes are not Noetherian:
i) 121 Aj
ii) Spec @2 k[x];
iii) Spec |2, k[x].

where the union is the disjoint union. We also remark that these are different:
the disjoint union [ [{°; A} is not quasi-compact (thus not affine). The latter two

are affine (thus quasi-compact), but non-isomorphic, since their rings of global
sections are non-isomorphic.



PROPOSITION 6.14 If X is a Noetherian scheme, then its underlying topological space
is Noetherian.

Proor: Since X is quasi-compact it may be covered by a finite number of
open affine subsets, and since a descending chain stabilizes if the intersection
with each of those open sets stabilizes, it suffices to show the proposition for
X = Spec A with A a Noetherian ring. In that case a descending chain of closed
subsets is of the form V(a;) > V(az) o ---, where we may assume that the
ideals a,, are radical. Then the condition that V(a,) is decreasing, corresponds
to the sequence (a,) being increasing, and so it has to be stationary because A
is Noetherian . EI



ProOPOSITION 6.15 Let X be a (locally) Noetherian scheme. Then any closed or open
subscheme of X is also (locally) Noetherian.
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ExXAMPLE 5.2 (Semi-local rings) The rings Z. ;) and Z 3) are both discrete valuation
rings whose maximal ideals are (2) and (3) respectively. Their fraction fields are
both equal to Q. Let X; = SpecZ ;) and X; = SpecZ 3). Both have a generic
point that is open, so there is a canonical open immersion SpecQ — X; for
i = 1,2. Hence we can glue the two along their generic points and thus obtain
a scheme X with one open point 77 and two closed points.




Xl - Sfaz&)

X’I/ - gféc YKC%) Let us compute the

global sections of Ox using the now classical sequence for the open covering
{X1, Xa}:

I['(X,0x) ——T(X1,0x) xI'(X;,0x) —T(X1 n X3,0x)

| J

Z(Z) X Z(3) 0 )Q.

The map p sends a pair (an~!,bm™1) to the difference an~! — bm~!, hence the

kernel consists of the diagonal, so to speak, in Zpy x Z3), which is isomorphic
to the intersection Z ;) N Z 3. This is a semi-local ring with the two maximal
ideals (2) and (3). Hence there is a map X — SpecZ ;) n Z3) and it is left as
an exercise to show this is an isomorphism.



ExaMPLE 5.3 (More semi-local rings) More generally, if P = {p1, ..., p+} is a finite
set of distinct prime numbers, one may let X, = SpecZ,) for p € P. There is,
as in the previous case, canonical open embedding SpecQ — X,. Let the image
be {7,}. Obviously the gluing conditions are all satisfied (the transition maps
are all equal to idspecq and Xp; = {7} for all p). We do the gluing and obtain a

scheme X.
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ExaMrLE 6.16 In Example 5.3, we worked with a finite set of primes, but the
hypothesises of the gluing theorem impose no restrictions on the number of
schemes to be glued together, and we are free to take P infinite, for example
we can use the set P of all primes! The glued scheme Xp is a peculiar animal:
it is neither affine nor Noetherian, but it is locally Noetherian.
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There is a map
¢: Xp — Spec Z which is bijective and continuous, but not a homeomorphism,
and it has the property that for all open subsets U = Spec Z the map induced on
sections ¢*: T (U, Ogpecz) — (971U, Ox,,) is an isomorphism, in other words,
¢*: Ospecz — ¢+(Ox,) is an isomorphism!



As before we construct the scheme Xp by gluing the different SpecZ,’s
together along the generic points. However, when computing the global sec-
tions, we see things changing. The kernel of p is still (,ep Z(;), but now this
intersection equals Z: indeed, a rational number « = 4/b lies in Z,,) precisely
when the denominator b does not have p as factor, so lying in all Z,), means
that b has no non-trivial prime-factor. That is, b = +1, and hence « € Z.



There is a morphism Xp — Spec Z which one may think about as follows.
Each of the schemes Spec Z,) maps in a natural way into Spec Z, the mapping
being induced by the inclusions Z c Z ;). The generic points of the SpecZ,’s
are all being mapped to the generic point of Spec Z. Hence they patch together
to give a map Xp — SpecZ. This is a continuous bijection by construction, but
it is not a homeomorphism: indeed, the subsets SpecZ ;) are open in Xp by the
gluing construction, but they are not open in Spec Z, since their complements
are infinite, and the closed sets in SpecZ are just the finite sets of maximal
ideals.



The topology of the scheme Xp is not Noetherian since the subschemes
SpecZ ;) form an open cover that obviously can not be reduced to a finite
cover. However, it is locally Noetherian, as the open subschemes SpecZ,,) are
Noetherian. The sets U, = Xp\{(p)} map bijectively to D(p) = SpecZ and
I'(Uy, Ox,) = Zy, but U, and D(p) are not isomorphic. *



6.3 Other finiteness properties

Noetherian rings mostly behave well, but they can be elusive and there are
specimens among them that show a weird behaviour. There are stronger finite-
ness conditions that makes schemes have many of the agreeable properties of

varieties.



Recall that giving a morphism f: X — S between two affine schemes S =
Spec A and X = Spec B, is equivalent to giving the ring homomorphism f*: A —
B, or said differentl)s giving B the structure of an A-algebra.



B- by,

DEFINITION 6.17 Let f: X — Y be a morphism of schemes. One says that:

i) f is of locally finite type if Y has a cover consisting of open affine subsets
V; = Spec B; such that each f~1(V;) can be covered by affine subsets of the
form Spec Aj;j, where each Aj;; is finitely generated as a B;-algebra.

it) f is of finite type if, in i), one can do with a finite number of Spec A;;.
In case S = Spec A, one says that a scheme over A is of locally finite type (respectively
of finite type) over A, if the morphism X — Spec A is locally of finite type (respectively

of finite type).
o\ g: A‘\l‘b\ — dec h 1QD{3 enol. }Z—HQ%/

e

N
o BFp ) Spet T edip



)

Again, when X = SpecB and Y = Spec A, the scheme X is of finite type over A
precisely when B = Alxy,...,x,]/a for an ideal a. One easily checks that both
closed and open immersions are of finite type.



There is another related, but much stronger finiteness property a morphism
can have:

DEFINITION 6.18 A morphism f: X — Y is finite if there is a covering V; = Spec A;
such that each inverse image f~1(V;) is affine, an if f~1(V;) = Spec B;, the A;-algebra
B; is a finite Ai—mO@e.




To underline the huge difference between the the two notions, note that a
scheme X which is finite over a field k, in particular has a finite and discrete
underlying topological space, whereas X being of finite type, merely means it is
covered by affine schemes of the form Speck|x, ..., x;|/a. This generalizes in
the following way:
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PROPOSITION 6.19 A finite morphism has scheme-theoretical finite fibres. In particular,
the fibres are finite discrete topological spaces.

ProOF: We may certainly assume that both X and Y are affine; say X = SpecB
and Y = Spec A. Any generator set of B as an A-module, persists being a
generator set of B®4 K(A/p) as a vector space over K(A/p), where p € Spec A
is any point. u



Be aware that the converse is far from being true. One easily finds so-called
quasi-finite morphisms; that is, morphisms with all fibres finite, that are not
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finite: every injective morphism is evidently quasi-finite, so for instance open
immersions will be, and open immersions are not finite except in trivial cases.
The arch-type is the inclusion 1: D(x) % A} which on the ring level corresponds
to the inclusion k[x] < k[x,x~!]; and k[x, x~!] is not a finite module over k|[x].
We’ll come back to the relation between quasi-finite and finite morphism when

having introduced proper morphism (in Section 16.2).



Examples

6.20 For n > 1, the structure morphisms A? — Speck and IP; — Speck are of

finite type, but not finite.
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6.21 The morphism [ [°; A; — A; (identity on each component) is locally of
finite type, but not of finite type.
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6.22 Consider the blow-up morphism 7 : X — A? from Example 5.2. In the local
charts, 7t is given by SpecZ[x,t] — SpecZ|x,y| induced by y — xt, making
Z|x,t] into a finitely generated Z|x, y] -algebra. However, it is not finite, since
71=1(V) contains a copy of P! for any neighbourhood V of the closed point
0 € A?, which is not possible for affine schemes.
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6.23 Let us revisit the example of a hyperelliptic curve X from Section 5.1. In
the notation from that section, the curve X has an open covering consisting of
two affine schemes U = Spec A and V = Spec B and there is a ‘double cover’
morphism f : X — P{. This is a finite morphism: Over U it is induced by the
inclusion

k[x,y]
k

and the algebra on the right is isomorphic to k[x] @ k[x]y as a k[x]-module.
A similar statement holds for the m rphism f|y: V — A}, so f is a finite
morphism. *



6.4 The dimension of a scheme

Recall that the Krull dimension of a ring A is defined as the suprenum of the
length of all chains of prime ideals in A. For a scheme, we make the following
similar definition:

DEFINITION 6.24 Let X be a scheme. The dimension of X is the suprenum of all integers
n such that there exists a chain

Y0CY1C~--CYn

of distinct closed irreducible closed subsets of X.



Note that this suprenum might not be a finite number, in which case we say that
dim X = oo. Note also that the dimension of X only depends on the underlying
topological space. In particular, dim X = dim X,g.



In the case where X = Spec A is affine, we know that the closed irreducible
subsets are of the form V(p) where p is a prime ideal. Using this observation
we find

PROPOSITION 6.25 The dimension of X = Spec A equals the Krull dimension of A.



EXAMPLE 6.26

i) The dimension of A", = Spec A[xy,...,x,] is n +dim A when A is
a Noetherian ring (for general rings dim A’ is comprised between
dim A + n and dim A 4+ 2n, and all values are possible) In particular,
when A = k is a field, A} has dimension n. A maximal chain is
V(x1) o V(x1,x2) o2 V(x1,...,%n).

i) dim SpecZ is 1. All maximal chains have the form V(p) < V(0) =
SpecZ.

iif) dim Spec(k[e]/€*) = dim Speck = 0.



REMARK 6.27 Having finite dimension does not guarantee that the scheme is Noetherian.
The quotient of Q[x1, X2, .. .| by the ideal generated by all products x;x; with 1 < i <
j < oo is an example. Here there is only one prime ideal (generated by all the variables),
but the scheme is clearly not Noetherian.

There are even Noetherian rings whose Krull dimension is infinite.



DEFINITION 6.28 Let Y < X be a closed subset of X. We define the codimension of Y
as the supremum of all integers n such that there exists a chain

Y:YOCY1C---CYn
of distinct irreducible closed subsets of X.

The codimension of V(p) in Spec A is the height of the prime p in A.



One should have in mind that that codimension can be contra-intuitive even
for Noetherian schemes; for instance, there are Noetherian affine schemes of
any dimension with closed points being of codimension one; we shall see a
two-dimensional one in Proposition 23.22.



For integral schemes of finite type over fields, we can study the dimension in
terms of the fraction field:

THEOREM 6.29 Let X be an integral scheme of finite type over a field k, with function
field K. Then

i) The dimension dim X equals the trancendence degree of K over k (in particu-
lar, dim X < o0);

ii) For each U < X open, dim U = dim X;
iii) If Y < X is a closed subset, then codimY = inf{dim Ox ,|p € Y} and

dimY + codimY = dim X.

In particular, for a closed point p € X, dim X = dim Oy,



Examples

6.30 The scheme IP} satisfies the conditions of the theorem. It’s dimension is 7,
which follows because P} contains A} as an open dense subset, and A} has
dimension 7.



6.31 The quadric cone Q = Speck|x,v, z]/ (x*> — yz) of Section 5.2 has dimension
2. This follows as the function field K(Q) = k(y, z) has transcendence degree
2 over k. Alternatively, we can use the morphisms f; : A2 — Q which are
isomorphisms over an open set U < A2 (which thus also has dimension 2).



6.32 Its important to note that the formula dim Y + codimY = dim X does
not always hold, even if X is the spectrum of a very nice ring. Indeed, let
X = Spec R[t] where R is any DVR with generator ¢ of the maximal ideal, for
instance, the localization R = kf[t];). The prime p = (tu — 1) has height one,
but A/p ~ R[1/t] is a field, hence of dimension zero. However, dim A =
dimR+1=2. *



For schemes which aren’t integral but still of finite type, we still have a
good control over its dimension. First of all, the dimension of X is the same
as of Xieq, SO we may assume that X is reduced. Then, if X = [JX; is the
decomposition into irreducible components, we have that X; is integral, and
dim X is the supremum of all dim X;.



ExamrLE 6.33 Consider X = A} = Speck(x,y,z] and Y = V(a) where a is the
ideal

a=(xy—xxyz-zy —yxy’ —xy) = (zy,x)n (y—12*) n (y +1,x)

The associated primes of a are p1 = (x,y+ 1), p2 = (x,y — 1) and p3 = (x,y, 2).
So Y has three components: L = V(x,y+1),M = V(x,y —1) (two lines),
and p = V(x,y,z) (the origin). The dimension of Y equals to the largest of
the dimension of each component, and dimL = 1,dim M = 1,dimp = 0, so



dim Y = 1. The codimension of Y in X equals the maximum of the heights of
the associated primes of a, i.e. ht(p;) = 2. So the codimension of Y equals 2. %



6.5 Normal schemes and normalization

DEFINITION 6.34 Let X be an integral scheme with fraction field K. We say that X is
normal at a point x € X if the ring Ox » is integrally closed (viewed as a subring of K).



ExAaMPLE 6.35 A} and [P} are normal schemes. ¥*

ExaMPLE 6.36 More generally, a scheme which is locally factorial (meaning that
all stalks Ox , are UFD’s), is also normal. [CA notes chapter 7]. *



For an integral scheme X, we will define a new scheme X which is a normal
scheme, and a morphism 7 : X — X. There are many schemes with this
property (take Spec K — X for instance), so to get something more canonical,
we want X and 7t to satisfy a certain universal property.



We say that a morphism f : X — Y is dominant if the image of f is dense in
Y. When X and Y are integral, this is equivalent to saying that the generic point
of X maps to the generic point of Y. This means the f* induces a map between
the stalks f*: Oy — Ox, where ;7 and € are the generic points in X and Y. But
the stalks at the generic points are the function fields K(X) and K(Y); hence
we obtain a map ¢*: K(Y) — K(X), which is injective as any ring map between
fields is.



LEMMA 6.37 Let f : X — Y be a morphism of integral schemes. Then the following are
equivalent:
i) f is dominant;
ii) For all affine open sets U < X, V < Y with f(U) < V, the ring map
Oy(V) — Ox(U) is injective
iii) For one affine open set U c X, V < Y with f(U) < V, the ring map
Oy (V) — Ox(U) is injective
iv) For all x € X, the local homomorphism fﬁ : Oy f(x) = Oxx 18 injective.

v) For one x € X, the local homomorphism f}g : (’)Y,f(x) — Ox » is injective.



THEOREM 6.38 Let X be an integral scheme, then there is a normal scheme X, and a
morphism 7t : X — X satisfying the following universal property: For any dominant

" X
s

v — X

morphism g : Y — X from a normal scheme Y, there is a unique morphismh : Y — X
such that g = rtoh.
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Proor: The uniqueness part follows from the universal property. We therefore
only need to check the existence.

Suppose first that X = Spec A is affine. Let A’ be the normalization of A in
the fraction field K.

Let Y be a normal scheme and let B = Oy(Y). For a dominant morphism
¢:Y — X, the map ¢*(X) : A — B is injective, so it factors through a unique
morphism A — A’ — B, by the universal property of normalization of rings.
Hence g factors via a unique morphism g’ : Y — Spec A’. In particular, the
canonical map 7t : Spec A’ — Spec A satisfies the universal property in the
theorem.



Now let X be an arbitrary integral scheme, and let U; = Spec A; be an affine
cover. Note that there are normalization morphisms 7; : U] — U; defined by the
inclusions A; ¢ Al. Consider the open set U;; = U; n Uj, which is an open set
in both U; and u]’. As 7Ti|7r—1(u,~,- : ﬂ_l(ui]') — ui]' and 7Tj|n—1(u,-]- : ﬂ_l(ui]') — U;;
are both normalizations of U;;, they must coincide by the uniqueness. Hence
by the Gluing lemma for morphisms, the morphisms 7; glue, so we obtain a
scheme X’ and a morphism 7 : X’ — X. Q



The X-scheme X is called the normalization of X.



COROLLARY 6.39 The normalization X has the following properties:
i) m: X — X is surjective.
ii) There is an open subset U — X so that 7 restricted to 7= (U) is an isomor-
phism. — T lﬂ'.\rae]
i11) X and X have the same dimension.
iv) If X is of finite type over a field, then 7t : X — X is a finite morphism.



Proor: The proof relies on some of the basic properties of the integral closure.
Statement i) follows from the Going-Up theorem (or the Lying-Over theorem).
Statement ii) holds true because being normal is a generic property; that is, for a

finitely generated integral domain A, the localization Ay is normal for all p € U

in a non-empty open subset U.

Statement iii) ensues from the Going-Up theorem.
Finally, statement iv) follows from the fact that if A is integral domain which
is a finitely generated over a field, then the normalization A in the fraction field

K of A is a finite A-module. (This statement is essentially a consequence of the
Noether normalization lemma.) Qa



In general, the normalization map 77 : X — X need not be finite in the sense of
Section 6.2: Nagata found an example of a local noetherian integral domain A

such that the integral closure is not Noetherian (in particular not finite over A).
See also Exercise 12.10 in [CA].



Examples

ExaMmPrLE 6.40 (Cuspidal cubic) Let k be a field, and let X = Spec A where A =
k[x,y]/ (y*> — x°). This is the cuspidal cubic curve in AZ2. There is an isomorphism

of k-algebras A —~» k[t?,#°] given by sending x > t? and y — #°. It is clear

that k[t?,%] is an integral domain with fraction field K = k(t). Moreover,
the normalization of A equals A = k[t]. The inclusion A — A induces the
normalization morphism 7t : A} — X, and this is an isomorphism over the open
set D(t) ¢ A} where t is inverible. *



ExamPLE 6.41 (Nodal cubic) Let now X = Spec A with A being the ring A =
k[x,y]/ (y*> — x> — x?), where k now is a field whose characteristic is not two (if
the characteristic is two, we are back in previous cuspidal case). This is the nodal
cubic curve in A% . Here it is a little bit tricker to find the normalization, but it
helps to think about it geometrically.



If we think of the cvorrespondir—\g affine variety { (x,y) | y* = x> + %%} c
A?(k), we see that the origin (0,0) is a special point: a line I = A? through the
closed point (0,0) € X (with equation y = tx) will intersect X at (0,0) and at

one more point (with x = t* — 1), and this gives a parameterization of the curve,
which is generically one-to-one.



Back in the scheme world, we imitate this by introducing the parameter
t = yx~! in the function field K of X, the equation y?> = x> — x? then reduces to
t> = 1 + x after being divided by x2. Moreover, the element ¢ is integral, since it
satisfies the monic equation T? — x — 1 = 0 (which has coefficients in A). Since
x=t’—1landy=x-y/x = t3 — t, we see that

A=k[t? -1, —t]ck[t]c K = k(t),



and since k[t] is integrally closed, any element in K which is integral over A,
can be written as a polynomial in . So A = k|[t] is the integral closure of A in
k(t). The normalization map 7t : Spec A — Spec A is an isomorphism outside
the origin (0,0) € X. Geometrically the map 7 identifies two points (¢t + 1) and
(t—1) in A} to the origin in X.






ExAMPLE 6.42 (The quadratic cone) Consider the affine scheme X = Spec A where
A = C[x,y,z]/(xy — z?). Note that this is not a factorial scheme (A is not a UFD
as xy = zz), so we cannot immediately conclude that A is normal. However,
there are a few ways to see that it is in fact so:



Q There is an isomorphism of rings
¢ : A — Clu?, uv, v*]

and the latter algebra is normal in K = k(u, v).



0 Let B = C[x,y], so that A = B[z]/(z> —xy). Then B < A is a ring
extension making A into a finite B-module. We get an inclusion of fields
K(B) = C(x,y) < K(A) obtained by adjoining the element z (= ,/x¥).
Write an element of K(A) as w = u + v where u,v € K(B) = C(x, y). If this
is integral over A, it is also integral over B. In fact, w satisfies the minimal
polynomial

T? —2uT — (x* +y*)v* =0

If this is integral over B, we must have 2u € C|x,y| and hence u € C|x, y].
Moreover u? — (x? +y?)v* € C[x,y], so also (x> + y?)v* € k[x,y]. Note
that (x2 + y?) = (x —iy) (x + iy) is a product of coprime, and irreducible
elements, so we must have also v> € k[x,y], and for the same reason
v € k[x,y]. Hence u + vz € B|z].



