Chapter 6

Geometric properties of schemes

6.1 Decomposition into irreducible subsets

6.1 Let A be a ring and consider a primary decomposition of the ideal a:

$$\mathfrak{a} = \mathfrak{q}_1 \cap \mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_r$$
.

Putting $Y_i = V(\sqrt{\mathfrak{q}_i})$, we find $V(\mathfrak{a}) = Y_1 \cup Y_2 \cup \cdots \cup Y_r$, where each Y_i is an irreducible closed set in \mathbb{A}^n . If the prime $\sqrt{\mathfrak{q}_i}$ is not minimal among the associated primes, say $\sqrt{\mathfrak{q}_j} \subset \sqrt{\mathfrak{q}_i}$, it holds that $Y_i \subset Y_j$, and the component Y_i contributes nothing to intersection and can be discarded.

6.2 In a more general context, a decomposition $Y = Y_1 \cup \cdots \cup Y_r$ of any topological space is said to be *redundant* if one can discard one or more of the Y_i 's without changing the union. That a component Y_j can be omitted is equivalent to Y_j being contained in the union of rest; that is, $Y_j \subset \bigcup_{i \neq j} Y_i$. A decomposition that is not redundant, is said to be *irredudant*. Translating the Noether–Lasker theorem into geometry we arrive at the following:

PROPOSITION 6.3 If A is a noetherian ring, any closed subset $Y \subset \operatorname{Spec} A$ can be written as an irredundant union

$$Y = Y_1 \cup \cdots \cup Y_r$$

where the Y_i 's are irreducible closed algebraic subsets. The union is unique up to the order of the Y_i 's.

Notice that since embedded components do not show up for radical ideals, we get a clear and clean uniqueness statement.

EXAMPLE 6.5 Consider the closed set $Y = V(I) \subset \mathbb{A}^3$ given by the ideal

$$I = (x^2 - y, xz - y^2, x^3 - xz)$$

Note first that if x = 0, then y = 0, so $V(x, y) \subset X$. If $x \neq 0$, the third equation gives $z = x^2$, and so by the first and second equations we get $xz - y^2 = x^3 - x^4$, giving x = 1, y = 1 and z = 1. Hence

$$X = V(x, y) > V(x-1, y-1, z-1)$$

That is, X is the union of the z-axis, and the point (1,1,1). In fact, a primary decomposition of I is given by $I = \mathfrak{q}_1 \cap \mathfrak{q}_2 \cap \mathfrak{q}_3$, where

$$q_1 = (x, y), \quad q_2 = (x - 1, y - 1, z - 1), \quad q_3 = (x^2 - y, xy, y^2, z).$$

Taking radicals, we find that the primes associated to *I* are

$$\mathfrak{p}_1 = (x, y), \quad \mathfrak{p}_2 = (x - 1, y - 1, z - 1), \quad \mathfrak{p}_3 = (x, y, z).$$

Note that $\mathfrak{p}_1 \subset \mathfrak{p}_3$, so \mathfrak{p}_3 is an embedded component, so it does not show up in the decomposition above.

6.7 A decomposition result as in Proposition 6.3 above holds for a much broader class of topological spaces than the closed sets. The class in question is the class of the so-called *Noetherian topological spaces*; these comply to the requirement that every descending chain of closed subsets is eventually stable. That is; if $\{X_i\}$ is a collection of closed subsets forming a chain

$$\ldots X_{i+1} \subset X_i \subset \ldots \subset X_2 \subset X_1$$

it holds true that for some index r one has $X_i = X_r$ for $i \ge r$.

6.8 The Noether–Lasker decomposition of closed subsets in affine space as a union of irreducibles can be generalized to any Noetherian topological space:

THEOREM 6.9 Every closed subset Y of a Noetherian topological space X has an irredundant decomposition $Y = Y_1 \cup \cdots \cup Y_r$ where each is Y_i is a closed and irreducible subset of X. Furthermore, the decomposition is unique up to order.

6.2 Noetherian schemes

By the correspondence between irreducible subsets of Spec A and prime ideals of A, we immediately see that if A is a Noetherian ring, the prime spectrum Spec A is a Noetherian topological space.

$$Y_1 \supset Y_2 \supset Y_3 \supset - V(a_1) \supset V(a_2) \supset V(a_3) \supset - V(a_2) \supset V(a_3) \supset - V(a_3) \supset - V(a_4) \supset V(a_5) \supset - V(a_5) \supset V(a_5) \supset - V(a_5) \supset - V(a_5) \supset V(a_5) \supset - V(a_5)$$

The converse fails:

$$A = \frac{b[t_{1}, t_{2}, ...]}{(t_{1}t_{2}, t_{1}t_{3}, ...)}$$

EXAMPLE 6.10 Consider the polynomial ring $k[t_1, t_2, ...]$ in countably many variables t_i and mod out by the square \mathfrak{m}^2 of the maximal ideal generated by the variables, $\mathfrak{m} = (t_1, t_2, ...)$. The resulting ring A has just one prime ideal, the one generated by the t_i 's. So Spec A has just one point, and hence is noetherian. The ring A, however, is clearly not Noetherian; the sole prime ideal requires infinitely many generators, namely all the t_i 's.

Spec
$$(M) = V(I) \subseteq Spec A$$

 $V(m) = V(m) = g(m)g$

In light of this example, we take a different route to define noetherianness for schemes:

DEFINITION 6.11 i) A scheme is locally Noetherian if it can be covered by open affine subsets Spec A_i where each A_i is a Noetherian ring ii) A scheme is Noetherian if it is both locally Noetherian and quasi-compact.

Recall from Chapter 3 that a scheme X is *quasi-compact* if every open cover of X has a finite subcover. We also showed that affine schemes were quasi-compact: Any open covering can be refined to a covering by distinguished open sets $D(f_i)$, and when Spec $A = \bigcup_i D(f_i)$, the ideal generated by the f_i 's contains 1, and the finitely many $D(f_i)$'s with f_i occurring in an expansion of 1, will do.

From the definition, it follows that a general scheme is Noetherian if and only if it can be covered by finitely many open affines Spec A_i where each A_i is Noetherian.

In fact, with the new definition, we now have

PROPOSITION 6.12 Spec A is Noetherian (as a scheme) if and only if A is Noetherian.

You should think of this as a purely algebraic fact: Refining the cover, we may assume that each $A_i = A_{f_i}$. By a theorem in commutative algebra, a ring A is Noetherian provided that each localization A_{f_i} is Noetherian and $1 \in (f_1, \ldots, f_r)$.

EXAMPLE 6.13 Let *k* be a field. The following schemes are not Noetherian:

- i) $\coprod_{i=1}^{\infty} \mathbb{A}_k^1$;
- *ii*) Spec $\bigoplus_{i=1}^{\infty} k[x]$;
- iii) Spec $\prod_{i=1}^{\infty} k[x]$.

where the union is the disjoint union. We also remark that these are different: the disjoint union $\coprod_{i=1}^{\infty} \mathbb{A}^1_k$ is not quasi-compact (thus not affine). The latter two are affine (thus quasi-compact), but non-isomorphic, since their rings of global sections are non-isomorphic.

Proposition 6.14 If X is a Noetherian scheme, then its underlying topological space is Noetherian.

PROOF: Since X is quasi-compact it may be covered by a finite number of open affine subsets, and since a descending chain stabilizes if the intersection with each of those open sets stabilizes, it suffices to show the proposition for $X = \operatorname{Spec} A$ with A a Noetherian ring. In that case a descending chain of closed subsets is of the form $V(\mathfrak{a}_1) \supset V(\mathfrak{a}_2) \supset \cdots$, where we may assume that the ideals \mathfrak{a}_n are radical. Then the condition that $V(\mathfrak{a}_n)$ is decreasing, corresponds to the sequence (\mathfrak{a}_n) being increasing, and so it has to be stationary because A is Noetherian .

PROPOSITION 6.15 Let X be a (locally) Noetherian scheme. Then any closed or open subscheme of X is also (locally) Noetherian.

EXAMPLE 5.2 (Semi-local rings) The rings $\mathbb{Z}_{(2)}$ and $\mathbb{Z}_{(3)}$ are both discrete valuation rings whose maximal ideals are (2) and (3) respectively. Their fraction fields are both equal to \mathbb{Q} . Let $X_1 = \operatorname{Spec} \mathbb{Z}_{(2)}$ and $X_2 = \operatorname{Spec} \mathbb{Z}_{(3)}$. Both have a generic point that is open, so there is a canonical open immersion $\operatorname{Spec} \mathbb{Q} \to X_i$ for i = 1, 2. Hence we can glue the two along their generic points and thus obtain a scheme X with one open point η and two closed points.

$$X_1 = \operatorname{Spec} \mathcal{U}_{(2)}$$

$$X_2 = \operatorname{Spec} \mathcal{U}_{(3)}$$

Let us compute the

global sections of \mathcal{O}_X using the now classical sequence for the open covering $\{X_1, X_2\}$:

The map ρ sends a pair (an^{-1},bm^{-1}) to the difference $an^{-1}-bm^{-1}$, hence the kernel consists of the diagonal, so to speak, in $\mathbb{Z}_{(2)} \times \mathbb{Z}_{(3)}$, which is isomorphic to the intersection $\mathbb{Z}_{(2)} \cap \mathbb{Z}_{(3)}$. This is a semi-local ring with the two maximal ideals (2) and (3). Hence there is a map $X \to \operatorname{Spec} \mathbb{Z}_{(2)} \cap \mathbb{Z}_{(3)}$ and it is left as an exercise to show this is an isomorphism.

EXAMPLE 5.3 (*More semi-local rings*) More generally, if $P = \{p_1, ..., p_r\}$ is a finite set of distinct prime numbers, one may let $X_p = \operatorname{Spec} \mathbb{Z}_{(p)}$ for $p \in P$. There is, as in the previous case, canonical open embedding $\operatorname{Spec} \mathbb{Q} \to X_p$. Let the image be $\{\eta_p\}$. Obviously the gluing conditions are all satisfied (the transition maps are all equal to $\operatorname{id}_{\operatorname{Spec}\mathbb{Q}}$ and $X_{pq} = \{\eta_p\}$ for all p). We do the gluing and obtain a scheme X.

$$T(X_i O_X) = \bigcap_{P \in P} Z_{(P_i)}$$
 Semilocal ring D med wen P_i $X \sim Spec T(X_i O_X)$

EXAMPLE 6.16 In Example 5.3, we worked with a finite set of primes, but the hypothesises of the gluing theorem impose no restrictions on the number of schemes to be glued together, and we are free to take \mathcal{P} infinite, for example we can use the set \mathcal{P} of all primes! The glued scheme $X_{\mathcal{P}}$ is a peculiar animal: it is neither affine nor Noetherian, but it is locally Noetherian.

In this case, we have
$$\bigcap_{P \in P} \mathbb{Z}_{(P)} = \mathbb{Z}_{p}$$
, so

[(X,0x) = 2

There is a map

 $\phi: X_{\mathcal{P}} \to \operatorname{Spec} \mathbb{Z}$ which is bijective and continuous, but not a homeomorphism,

and it has the property that for all open subsets $U \subset \operatorname{Spec} \mathbb{Z}$ the map induced on sections $\phi^{\sharp} \colon \Gamma(U, \mathcal{O}_{\operatorname{Spec} \mathbb{Z}}) \to \Gamma(\phi^{-1}U, \mathcal{O}_{X_{\mathcal{P}}})$ is an isomorphism, in other words,

 $\phi^{\sharp} \colon \mathcal{O}_{\operatorname{Spec} \mathbb{Z}} \to \phi_{*}(\mathcal{O}_{X_{\mathcal{D}}})$ is an isomorphism!

As before we construct the scheme $X_{\mathcal{P}}$ by gluing the different $\operatorname{Spec} \mathbb{Z}_{(p)}$'s together along the generic points. However, when computing the global sections, we see things changing. The kernel of ρ is still $\bigcap_{p\in\mathcal{P}}\mathbb{Z}_{(p)}$, but now this intersection equals \mathbb{Z} : indeed, a rational number $\alpha=a/b$ lies in $\mathbb{Z}_{(p)}$ precisely when the denominator b does not have p as factor, so lying in all $\mathbb{Z}_{(p)}$, means

that *b* has no non-trivial prime-factor. That is, $b = \pm 1$, and hence $\alpha \in \mathbb{Z}$.

There is a morphism $X_{\mathcal{P}} \to \operatorname{Spec} \mathbb{Z}$ which one may think about as follows. Each of the schemes $\operatorname{Spec} \mathbb{Z}_{(p)}$ maps in a natural way into $\operatorname{Spec} \mathbb{Z}$, the mapping being induced by the inclusions $\mathbb{Z} \subset \mathbb{Z}_{(p)}$. The generic points of the $\operatorname{Spec} \mathbb{Z}_{p}$'s are all being mapped to the generic point of $\operatorname{Spec} \mathbb{Z}$. Hence they patch together to give a map $X_{\mathcal{P}} \to \operatorname{Spec} \mathbb{Z}$. This is a continuous bijection by construction, but it is not a homeomorphism: indeed, the subsets $\operatorname{Spec} \mathbb{Z}_{(p)}$ are open in $X_{\mathcal{P}}$ by the gluing construction, but they are not open in $\operatorname{Spec} \mathbb{Z}$, since their complements are infinite, and the closed sets in $\operatorname{Spec} \mathbb{Z}$ are just the finite sets of maximal ideals.

The topology of the scheme $X_{\mathcal{P}}$ is not Noetherian since the subschemes Spec $\mathbb{Z}_{(p)}$ form an open cover that obviously can not be reduced to a finite cover. However, it is locally Noetherian, as the open subschemes $\operatorname{Spec} \mathbb{Z}_{(p)}$ are

Noetherian. The sets $U_p = X_p \setminus \{(p)\}$ map bijectively to $D(p) \subset \operatorname{Spec} \mathbb{Z}$ and $\Gamma(U_p, \mathcal{O}_{X_p}) = \mathbb{Z}_p$, but U_p and D(p) are not isomorphic.

*

6.3 Other finiteness properties

Noetherian rings mostly behave well, but they can be elusive and there are specimens among them that show a weird behaviour. There are stronger finiteness conditions that makes schemes have many of the agreeable properties of varieties.

Recall that giving a morphism $f: X \to S$ between two affine schemes $S = \operatorname{Spec} A$ and $X = \operatorname{Spec} B$, is equivalent to giving the ring homomorphism $f^{\sharp}: A \to B$, or said differently giving B the structure of an A-algebra.

DEFINITION 6.17 Let $f: X \to Y$ be a morphism of schemes. One says that:

- i) f is of locally finite type if Y has a cover consisting of open affine subsets $V_i = \operatorname{Spec} B_i$ such that each $f^{-1}(V_i)$ can be covered by affine subsets of the form $\operatorname{Spec} A_{ij}$, where each A_{ij} is finitely generated as a B_i -algebra.
- *ii)* f *is of* finite type if, in i), one can do with a finite number of Spec A_{ij} .

In case $S = \operatorname{Spec} A$, one says that a scheme over A is of locally finite type (respectively of finite type) over A, if the morphism $X \to \operatorname{Spec} A$ is locally of finite type (respectively of finite type).

Again, when $X = \operatorname{Spec} B$ and $Y = \operatorname{Spec} A$, the scheme X is of finite type over A precisely when $B = A[x_1, \dots, x_n]/\mathfrak{a}$ for an ideal \mathfrak{a} . One easily checks that both closed and open immersions are of finite type.

There is another related, but much stronger finiteness property a morphism can have:

DEFINITION 6.18 A morphism $f: X \to Y$ is finite if there is a covering $V_i = \operatorname{Spec} A_i$ such that each inverse image $f^{-1}(V_i)$ is affine, an if $f^{-1}(V_i) = \operatorname{Spec} B_i$, the A_i -algebra B_i is a finite A_i -module.

To underline the huge difference between the two notions, note that a scheme X which is finite over a field k, in particular has a finite and discrete underlying topological space, whereas X being of finite type, merely means it is covered by affine schemes of the form $\operatorname{Spec} k[x_1, \ldots, x_r]/\mathfrak{a}$. This generalizes in the following way:

Proposition 6.19 A finite morphism has scheme-theoretical finite fibres. In particular, the fibres are finite discrete topological spaces.

PROOF: We may certainly assume that both X and Y are affine; say $X = \operatorname{Spec} B$ and $Y = \operatorname{Spec} A$. Any generator set of B as an A-module, persists being a generator set of $B \otimes_A K(A/\mathfrak{p})$ as a vector space over $K(A/\mathfrak{p})$, where $\mathfrak{p} \in \operatorname{Spec} A$ is any point.

Be aware that the converse is far from being true. One easily finds so-called *quasi-finite* morphisms; that is, morphisms with all fibres finite, that are not

Spec k[x,y] (xy-1) k[x,y] (xy-1) (xy-1)

finite: every injective morphism is evidently quasi-finite, so for instance open immersions will be, and open immersions are not finite except in trivial cases. The arch-type is the inclusion $\iota: D(x) \hookrightarrow \mathbb{A}^1_k$ which on the ring level corresponds to the inclusion $k[x] \hookrightarrow k[x,x^{-1}]$; and $k[x,x^{-1}]$ is not a finite module over k[x]. We'll come back to the relation between quasi-finite and finite morphism when having introduced proper morphism (in Section 16.2).

Examples

6.20 For $n \ge 1$, the structure morphisms $\mathbb{A}^n_k \to \operatorname{Spec} k$ and $\mathbb{P}^1_k \to \operatorname{Spec} k$ are of finite type, but not finite.

k[x,--xn] er lek en endelig k-malul.

6.21 The morphism $\coprod_{i=1}^{\infty} \mathbb{A}_k^1 \to \mathbb{A}_k^1$ (identity on each component) is locally of finite type, but not of finite type.

6.22 Consider the blow-up morphism $\pi: X \to \mathbb{A}^2$ from Example 5.2. In the local charts, π is given by $\operatorname{Spec} \mathbb{Z}[x,t] \to \operatorname{Spec} \mathbb{Z}[x,y]$ induced by $y \mapsto xt$, making $\mathbb{Z}[x,t]$ into a finitely generated $\mathbb{Z}[x,y]$ -algebra. However, it is not finite, since $\pi^{-1}(V)$ contains a copy of \mathbb{P}^1 for any neighbourhood V of the closed point $o \in \mathbb{A}^2$, which is not possible for affine schemes.

6.23 Let us revisit the example of a hyperelliptic curve X from Section 5.1. In the notation from that section, the curve X has an open covering consisting of two affine schemes $U = \operatorname{Spec} A$ and $V = \operatorname{Spec} B$ and there is a 'double cover' morphism $f: X \to \mathbb{P}^1_k$. This is a finite morphism: Over U it is induced by the inclusion

$$k[x] \subset \frac{k[x,y]}{(y^2 - a_{2g+1}x^{2g+1} - \cdots - a_1x)},$$

and the algebra on the right is isomorphic to $k[x] \oplus k[x]y$ as a k[x]-module. A similar statement holds for the morphism $f|_V: V \to \mathbb{A}^1_k$, so f is a finite morphism.

6.4 The dimension of a scheme

Recall that the *Krull dimension* of a ring *A* is defined as the suprenum of the length of all chains of prime ideals in *A*. For a scheme, we make the following similar definition:

DEFINITION 6.24 Let X be a scheme. The dimension of X is the suprenum of all integers n such that there exists a chain

$$Y_0 \subset Y_1 \subset \cdots \subset Y_n$$

of distinct closed irreducible closed subsets of X.

Note that this suprenum might not be a finite number, in which case we say that dim $X = \infty$. Note also that the dimension of X only depends on the underlying

topological space. In particular, dim $X = \dim X_{red}$.

In the case where $X = \operatorname{Spec} A$ is affine, we know that the closed irreducible subsets are of the form $V(\mathfrak{p})$ where \mathfrak{p} is a prime ideal. Using this observation we find

Proposition 6.25 The dimension of $X = \operatorname{Spec} A$ equals the Krull dimension of A.

Example 6.26

- *i*) The dimension of $\mathbb{A}_A^n = \operatorname{Spec} A[x_1, \dots, x_n]$ is $n + \dim A$ when A is a Noetherian ring (for general rings $\dim \mathbb{A}_A^n$ is comprised between $\dim A + n$ and $\dim A + 2n$, and all values are possible) In particular, when A = k is a field, \mathbb{A}_k^n has dimension n. A maximal chain is $V(x_1) \supset V(x_1, x_2) \supset \cdots \supset V(x_1, \dots, x_n)$.
- ii) dim Spec \mathbb{Z} is 1. All maximal chains have the form $V(p) \subset V(0) = \operatorname{Spec} \mathbb{Z}$.
- iii) dim Spec $(k[\epsilon]/\epsilon^2)$ = dim Spec k = 0.

REMARK 6.27 Having finite dimension does not guarantee that the scheme is Noetherian. The quotient of $\mathbb{Q}[x_1, x_2, ...]$ by the ideal generated by all products $x_i x_j$ with $1 \le i \le j < \infty$ is an example. Here there is only one prime ideal (generated by all the variables), but the scheme is clearly not Noetherian.

There are even Noetherian rings whose Krull dimension is infinite.

DEFINITION 6.28 Let $Y \subset X$ be a closed subset of X. We define the codimension of Y as the supremum of all integers n such that there exists a chain

$$Y = Y_0 \subset Y_1 \subset \cdots \subset Y_n$$

of distinct irreducible closed subsets of X.

The codimension of $V(\mathfrak{p})$ in Spec A is the height of the prime \mathfrak{p} in A.

One should have in mind that that codimension can be contra-intuitive even for Noetherian schemes; for instance, there are Noetherian affine schemes of any dimension with closed points being of codimension one; we shall see a two-dimensional one in Proposition 23.22.

For integral schemes of finite type over fields, we can study the dimension in terms of the fraction field:

THEOREM 6.29 Let X be an integral scheme of finite type over a field k, with function field K. Then

- i) The dimension dim X equals the trancendence degree of K over k (in particular, dim $X < \infty$);
- *ii)* For each $U \subset X$ open, dim $U = \dim X$;
- iii) If $Y \subset X$ is a closed subset, then $\operatorname{codim} Y = \inf\{\dim \mathcal{O}_{X,p} | p \in Y\}$ and $\dim Y + \operatorname{codim} Y = \dim X$.

In particular, for a closed point $p \in X$, dim $X = \dim \mathcal{O}_{X,p}$.

Examples

6.30 The scheme \mathbb{P}^n_k satisfies the conditions of the theorem. It's dimension is n, which follows because \mathbb{P}^n_k contains \mathbb{A}^n_k as an open dense subset, and \mathbb{A}^n_k has dimension n.

6.31 The quadric cone $Q = \operatorname{Spec} k[x,y,z]/(x^2-yz)$ of Section 5.2 has dimension 2. This follows as the function field K(Q) = k(y,z) has transcendence degree

2 over k. Alternatively, we can use the morphisms $f_i: \mathbb{A}^2_k \to \mathcal{Q}$ which are isomorphisms over an open set $U \subset \mathbb{A}^2_k$ (which thus also has dimension 2).

6.32 Its important to note that the formula dim $Y + \operatorname{codim} Y = \dim X$ does not always hold, even if X is the spectrum of a very nice ring. Indeed, let

 $X = \operatorname{Spec} R[t]$ where R is any DVR with generator t of the maximal ideal, for instance, the localization $R = k[t]_{(t)}$. The prime $\mathfrak{p} = (tu - 1)$ has height one,

but $A/\mathfrak{p} \simeq R[1/t]$ is a field, hence of dimension zero. However, dim A= $\dim R + 1 = 2$. * For schemes which aren't integral but still of finite type, we still have a good control over its dimension. First of all, the dimension of X is the same as of X_{red} , so we may assume that X is reduced. Then, if $X = \bigcup X_i$ is the decomposition into irreducible components, we have that X_i is integral, and dim X is the supremum of all dim X_i .

EXAMPLE 6.33 Consider $X = \mathbb{A}^3_k = \operatorname{Spec} k[x,y,z]$ and $Y = V(\mathfrak{a})$ where \mathfrak{a} is the ideal

$$\mathfrak{a} = (xy - x, x^2, y^2z - z, y^3 - y, xy^2 - xy) = (z, y, x) \cap (y - 1, x^2) \cap (y + 1, x)$$

The associated primes of \mathfrak{a} are $\mathfrak{p}_1 = (x, y+1)$, $\mathfrak{p}_2 = (x, y-1)$ and $\mathfrak{p}_3 = (x, y, z)$. So Y has three components: L = V(x, y+1), M = V(x, y-1) (two lines), and p = V(x, y, z) (the origin). The dimension of Y equals to the largest of the dimension of each component, and dim L = 1, dim M = 1, dim P = 0, so

dim Y = 1. The codimension of Y in X equals the maximum of the heights of the associated primes of \mathfrak{a} , *i.e.* $ht(\mathfrak{p}_1) = 2$. So the codimension of Y equals 2. \bigstar

6.5 Normal schemes and normalization

DEFINITION 6.34 Let X be an integral scheme with fraction field K. We say that X is normal at a point $x \in X$ if the ring $\mathcal{O}_{X,x}$ is integrally closed (viewed as a subring of K).

EXAMPLE 6.35 \mathbb{A}^n_k and \mathbb{P}^n_k are normal schemes.

EXAMPLE 6.36 More generally, a scheme which is locally factorial (meaning that all stalks $\mathcal{O}_{X,x}$ are UFD's), is also normal. [CA notes chapter 7].

*

For an integral scheme X, we will define a new scheme \overline{X} which is a normal scheme, and a morphism $\pi:\overline{X}\to X$. There are many schemes with this property (take Spec $K\to X$ for instance), so to get something more canonical,

we want \overline{X} and π to satisfy a certain universal property.

We say that a morphism $f: X \to Y$ is *dominant* if the image of f is dense in Y. When X and Y are integral, this is equivalent to saying that the generic point of X maps to the generic point of Y. This means the f^{\sharp} induces a map between the stalks $f^{\sharp} \colon \mathcal{O}_{Y,\epsilon} \to \mathcal{O}_{X,\eta}$ where η and ϵ are the generic points in X and Y. But the stalks at the generic points are the function fields K(X) and K(Y); hence we obtain a map $\phi^{\sharp} \colon K(Y) \to K(X)$, which is injective as any ring map between fields is.

Lemma 6.37 Let $f: X \to Y$ be a morphism of integral schemes. Then the following are equivalent:

- *i) f is dominant*;
- ii) For all affine open sets $U \subset X$, $V \subset Y$ with $f(U) \subset V$, the ring map $\mathcal{O}_Y(V) \to \mathcal{O}_X(U)$ is injective
- iii) For one affine open set $U \subset X$, $V \subset Y$ with $f(U) \subset V$, the ring map $\mathcal{O}_Y(V) \to \mathcal{O}_X(U)$ is injective
- iv) For all $x \in X$, the local homomorphism $f_x^{\sharp}: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is injective.
- v) For one $x \in X$, the local homomorphism $f_x^{\sharp}: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is injective.

THEOREM 6.38 Let X be an integral scheme, then there is a normal scheme \overline{X} , and a morphism $\pi: \overline{X} \to X$ satisfying the following universal property: For any dominant

morphism $g: Y \to X$ from a normal scheme Y, there is a unique morphism $h: Y \to X$ such that $g = \pi \circ h$.

PROOF: The uniqueness part follows from the universal property. We therefore only need to check the existence.

Suppose first that $X = \operatorname{Spec} A$ is affine. Let A' be the normalization of A in the fraction field K.

Let Y be a normal scheme and let $B = \mathcal{O}_Y(Y)$. For a dominant morphism $g: Y \to X$, the map $g^{\sharp}(X): A \to B$ is injective, so it factors through a unique morphism $A \to A' \to B$, by the universal property of normalization of rings. Hence g factors via a unique morphism $g': Y \to \operatorname{Spec} A'$. In particular, the canonical map $\pi: \operatorname{Spec} A' \to \operatorname{Spec} A$ satisfies the universal property in the theorem.

Now let X be an arbitrary integral scheme, and let $U_i = \operatorname{Spec} A_i$ be an affine cover. Note that there are normalization morphisms $\pi_i : U_i' \to U_i$ defined by the inclusions $A_i \subset A_i'$. Consider the open set $U_{ij} = U_i \cap U_j$, which is an open set in both U_i and U_j . As $\pi_i|_{\pi^{-1}(U_{ij})} : \pi^{-1}(U_{ij}) \to U_{ij}$ and $\pi_j|_{\pi^{-1}(U_{ij})} : \pi^{-1}(U_{ij}) \to U_{ij}$

are both normalizations of U_{ij} , they must coincide by the uniqueness. Hence by the Gluing lemma for morphisms, the morphisms π_i glue, so we obtain a scheme X' and a morphism $\pi: X' \to X$.

The *X*-scheme \overline{X} is called the *normalization* of *X*.

COROLLARY 6.39 The normalization \overline{X} has the following properties:

- *i*) $\pi : \overline{X} \to X$ *is surjective.*
- ii) There is an open subset $U \subset X$ so that π restricted to $\pi^{-1}(U)$ is an isomorphism.
- iii) \overline{X} and X have the same dimension.
- iv) If X is of finite type over a field, then $\pi : \overline{X} \to X$ is a finite morphism.

PROOF: The proof relies on some of the basic properties of the integral closure. Statement i) follows from the Going-Up theorem (or the Lying-Over theorem). Statement ii) holds true because being normal is a generic property; that is, for a finitely generated integral domain A, the localization $A_{\mathfrak{p}}$ is normal for all $\mathfrak{p} \in U$ in a non-empty open subset U.

Statement *iii*) ensues from the Going-Up theorem.

Finally, statement iv) follows from the fact that if A is integral domain which is a finitely generated over a field, then the normalization \widetilde{A} in the fraction field K of A is a finite A-module. (This statement is essentially a consequence of the Noether normalization lemma.)

In general, the normalization map $\pi : \overline{X} \to X$ need not be finite in the sense of Section 6.2: Nagata found an example of a local noetherian integral domain A such that the integral closure is not Noetherian (in particular not finite over A).

See also Exercise 12.10 in [CA].

Examples

EXAMPLE 6.40 (*Cuspidal cubic*) Let k be a field, and let $X = \operatorname{Spec} A$ where $A = k[x,y]/(y^2-x^3)$. This is the *cuspidal cubic curve* in \mathbb{A}^2_k . There is an isomorphism of k-algebras $A \xrightarrow{\simeq} k[t^2,t^3]$ given by sending $x \mapsto t^2$ and $y \mapsto t^3$. It is clear that $k[t^2,t^3]$ is an integral domain with fraction field K=k(t). Moreover, the normalization of A equals $\overline{A}=k[t]$. The inclusion $A \subset \overline{A}$ induces the normalization morphism $\pi: \mathbb{A}^1_k \to X$, and this is an isomorphism over the open set $D(t) \subset \mathbb{A}^1_k$ where t is inverible.

EXAMPLE 6.41 (*Nodal cubic*) Let now $X = \operatorname{Spec} A$ with A being the ring $A = k[x,y]/(y^2-x^3-x^2)$, where k now is a field whose characteristic is not two (if the characteristic is two, we are back in previous cuspidal case). This is the *nodal cubic curve* in \mathbb{A}^2_k . Here it is a little bit tricker to find the normalization, but it helps to think about it geometrically.

If we think of the corresponding affine variety $\{(x,y) \mid y^2 = x^3 + x^2\} \subset \mathbb{A}^2(k)$, we see that the origin (0,0) is a special point: a line $l \subset \mathbb{A}^2_k$ through the closed point $(0,0) \in X$ (with equation y = tx) will intersect X at (0,0) and at one more point (with $x = t^2 - 1$), and this gives a parameterization of the curve, which is generically one-to-one.

Back in the scheme world, we imitate this by introducing the parameter $t = yx^{-1}$ in the function field K of X, the equation $y^2 = x^3 - x^2$ then reduces to

 $t^2 = 1 + x$ after being divided by x^2 . Moreover, the element t is integral, since it satisfies the monic equation $T^2 - x - 1 = 0$ (which has coefficients in A). Since

 $x = t^2 - 1$ and $y = x \cdot y/x = t^3 - t$, we see that

$$A = k[t^2 - 1, t^3 - t] \subset k[t] \subset K = k(t)$$

and since k[t] is integrally closed, any element in K which is integral over A, can be written as a polynomial in t. So $\overline{A} = k[t]$ is the integral closure of A in k(t). The normalization map $\pi : \operatorname{Spec} \overline{A} \to \operatorname{Spec} A$ is an isomorphism outside

k(t). The normalization map $\pi : \operatorname{Spec} \overline{A} \to \operatorname{Spec} A$ is an isomorphism outside the origin $(0,0) \in X$. Geometrically the map π identifies two points (t+1) and (t-1) in \mathbb{A}^1_k to the origin in X.

EXAMPLE 6.42 (*The quadratic cone*) Consider the affine scheme $X = \operatorname{Spec} A$ where $A = \mathbb{C}[x,y,z]/(xy-z^2)$. Note that this is not a factorial scheme (A is not a UFD as $xy=z^2$), so we cannot immediately conclude that A is normal. However, there are a few ways to see that it is in fact so:

☐ There is an isomorphism of rings

$$\phi: A \to \mathbb{C}[u^2, uv, v^2]$$

and the latter algebra is normal in K = k(u, v).

Let $B = \mathbb{C}[x,y]$, so that $A = B[z]/(z^2 - xy)$. Then $B \subset A$ is a ring extension making A into a finite B-module. We get an inclusion of fields $K(B) = \mathbb{C}(x,y) \subset K(A)$ obtained by adjoining the element $z = \sqrt{xy}$. Write an element of K(A) as w = u + v where $u, v \in K(B) = \mathbb{C}(x,y)$. If this is integral over A, it is also integral over B. In fact, w satisfies the minimal polynomial

$$T^2 - 2uT - (x^2 + y^2)v^2 = 0$$

If this is integral over B, we must have $2u \in \mathbb{C}[x,y]$ and hence $u \in \mathbb{C}[x,y]$. Moreover $u^2 - (x^2 + y^2)v^2 \in \mathbb{C}[x,y]$, so also $(x^2 + y^2)v^2 \in k[x,y]$. Note that $(x^2 + y^2) = (x - iy)(x + iy)$ is a product of coprime, and irreducible elements, so we must have also $v^2 \in k[x,y]$, and for the same reason $v \in k[x,y]$. Hence $u + vz \in B[z]$.