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Fibre products of sets.

As a warming up we use some lines on recalling the fibre product in the category
Sets of sets. The points of departure is two sets X; and X, both equipped with a
map to a third set S; i.e. we are given a diagram

X, X,
N
S

The fibre product X; xs X, is the subset of the cartesian product X; x X»
consisting of the pairs whose two components have the same image in S; that is,
we have

Xy x5 Xo = { (%1, x2) | P1(x1) = Pa(x2) }-



Clearly the diagram below where 711 and 71, denote the restrictions of the two
projections to the fibre product; in other words, 77;(x1, x2) = x;, is commutative,

X1 x5 X3
>N,
X1 X2
S
And more is true: the fibre product enjoys a universal property. Given any two
maps ¢1: Z — X; and ¢: Z — X5 such that 11 o ¢1 = 35 o ¢, there is a unique
map ¢: Z — X; xg Xj satisfying 711 0 ¢ = ¢1 and 7, 0 ¢ = ¢,. To lay your hands

on such a ¢, we just use the map whose two components are ¢; and ¢, and
observe that it takes values in X; x g X since the relation ¥; o ¢ = 9, o ¢ holds.

(7.1)
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The fibre product in general categories

The notion of a fibre product—formulated as the solution to a universal problem
as above—is mutatis mutandis meaningful in any category C. Given any two
arrows §;: X; — S in the category C, an object—that we shall denote by X; xg
Xp,—is said to be the fibre product (fiberproduktet) of the objects X;, or more
precisely of the two arrows ¢;: X; — S, if the following two conditions are
fulfilled:

O There are two arrows 77;: X1 xg Xp — X; in C such that ¢, o 71y = 0 715
(called the projections).

0O For any two arrows ¢;: Z — X; in C such that ¢ o 91 = ¢ o ¢, there is a
unique arrow ¢: Z — Xj xg X satisfying mjo¢p = ¢; fori =1,2.



The two arrows 711 0 ¢ and 71 o ¢ that determine the arrow ¢: Z — X1 x5 X»,
are called the components (komponentene) of ¢, and the notation ¢ = (¢, ¢») is
sometimes used. If ¢1: Y1 — Xj and ¢,: Yo — X; are two arrows over S, there is
a unique arrow denoted ¢; x ¢, from Y; xgY> to X; xg X2 whose components
are ¢ o 7ty, and ¢, o Ty,



It is not so hard to come up with examples of categories where fibre products
do not exist. For instance, consider the category C where the objects are subsets
X of the integers with an even number of elements, and the morphisms given
by inclusions Y c X. In this category, the fibre productof Y ¢ X and Z c X
over X would be Y n Z < X. However, Y n Z does not necessarily have an even
number of elements!



THEOREM 7.1 (EXISTENCE OF FIBRE PRODUCTS) Let X — S and Y — S be two
schemes over the scheme S. Then their fibre product X xg Y exists.



The projections onto X and Y will frequently be denoted by respectively rx and
rty. We will see several examples later which show that the underlying set of a
product can be very different from the product of the underlying sets of X and
Y. However, the ‘scheme-valued points” behave well; that is, for any S-scheme
T — S, there is a canonical isomorphism of sets of T-points

Homsch/s(T,X Xs Y) >~ Hom5ch/S(T, X) X Homsch/s(T, Y),

which is just another way of formulating the universal property of a product.



7.2 Products of affine schemes

The category AffSch of affine schemes is, more or less by definition, equivalent
to the category of rings, and in the category of rings we have the tensor product.
The tensor product enjoys a universal property dual to the one of the fibre
product. To be precise, assume A; and A; are B-algebras, i.e. we have two maps



of rings «;



(7.2)

1 « 1 . 1 kal

because a1(b) ® 1 = 1® ay(b) by the definition of the tensor product A; ®p A

fa1 . «1



Moreover, the tensor product is universal in this respect. Indeed, assume
that ;: A; — C are B-algebra homomorphisms, i.e. ;o0& = 9, oay; or said
differently, they fit into the commutative diagram analogous to (7.2) with the
Bi’s replaced by the 9;’s. The association a1 ® a; — 71(a1)7y(a2) is B-bilinear,
and hence it extends to a B-algebra homomorphism y: A; ®p A2 — C, which
obviously has the property 7y o B; = ;.



Sree C

Applying the Spec-functor to all this, we get the diagram

Spec(A1 B Az)

/ ey Y

Spec A A 0 \ Spec Aj (73)

\ /

Spec B

and the affine scheme Spec(A; ®p Az) enjoys the property of being universal
among affine schemes sitting in a diagram like (7.3). Hence Spec(A; ®3p A3)
equipped with the two projections 711 and 73 is the fibre product in the category
AffSch of affine schemes. One even has the stronger statement; it is the fibre



PROPOSITION 7.2 Given ¢;: Spec A; — Spec B. Then Spec(A1 ®p A2) with the two
projection 111 and 1, defined as above, is the fibre product of the Spec A;’s in the
category of schemes. That is, if Z is a scheme and ;: Z — Spec A; are morphisms with
$1 011 = ¢o o Yo, there exists a unique morphism P : Z — Spec(A1 ®p A2) such that
miop =; fori =1,2.



<— 7

9 e 0] !
O \%ﬂ@l%\ J

g(’(/ 4&1 6F€C A\L

1 \) . J

Proor: We know that the proposition is true whenever Z is an affine scheme;
so the salient point is that Z is not necessarily affine. For short, we let X =
Spec(A; ®p A2). The proof is just an application of the gluing lemma for
morphisms. One covers Z by open affines U, and covers the intersections
Uy = Uy n Ug by open affine subsets U,g, as well. By the affine case of the
proposition, for each U, we get a map 9,: U, — X, such that ;0o ¢, = ¢;|y,. By
the uniqueness part of the affine case, these maps coincide on the open affines
U,p,, and therefore on the intersections U,g. They can thus be patched together
to amap ¢: Z — X, which is is unique since the 1,’s are unique. EI



A useful lemma

Recall that any open subset U of a scheme Y has a canonically defined scheme
structure as an open subscheme; the structure sheaf equals Oy |y;. Hence, if f is
any morphism f: X — Y, the inverse image f~*(U) is in a natural way an open
subscheme of X. The following lemma will turn out to useful:



LEMMA 7.3 If X xg Y exists and U < X is an open subscheme, then U xgY exists and

is (canonically isomorphic to) an open subset of X x s Y, moreover projections restrict
Y -1 . .

to p.ro](?ctzo?s. Indfeed, 1ty (U) with the two restrictions 7ry|n§1 W) and ”X|n;1(u) as

projections is the fibre product U xs Y.

Urg ¥ =T (0) C XxV
&/\\/v
X !

\QS



Proor: Displayed the situation appears like

7 Y
\7TY
— X XY
@ Tx
U<—>)é,

and we are to verify that 7' (U) together with the restriction of the two projec-
tions to 713! (U) satisfy the universal property. If Z is a scheme and ¢y;: Z — U



tions to 713" (U) satisfy the universal property. If Z is a scheme and ¢y;: Z — U
and ¢y: Z — Y are two morphisms over S we may consider ¢; as a map into X,
and therefore they induce a map of schemes ¢: Z — X xg Y with ¢x = tx o ¢
and ¢y = 7ty o ¢. Clearly 7tx o ¢ = ¢y takes values in U and therefore ¢ takes
values in 715! (U). It follows immediately that ¢ is unique (see the exercise
below), and we are through. EI



When identifying 73! (U) with U xs Y, the inclusion map 715 (U) c X x5Y
will correspond to the map ¢ x idy where 1: U — X is the inclusion, so a

reformulation of the lemma is that open immersions stay open immersions
under change of basis.



The following proposition will be basis for all gluing necessary for the construc-
tion:

PROPOSITION 7.4 Let Px: X — S and ¢y: Y — S be two maps of schemes, and
assume that there is an open covering {U;}ic; of X such that U; xgY exist for all

i€ l. Then X xgY exists. The products U; xgY form an open covering of X xgY and
projections restrict to projections.



An immediate consequence of the gluing proposition 7.4 is that fibre products
exist over an affine base S.

LEMMA 7.5 Assume that S is affine, then X xgY exists.

Proor: First if Y as well is affine, we are done. Indeed, cover X by open affine
sets U;. Then U; xg Y exists by the affine case, and we are in the position to
apply proposition 7.4 above. We then cover Y by affine open sets V;. As we just
verified, the products X xg V; all exist, and applying proposition 7.4 once more,
we can conclude that X xg Y exists. a



7.4  The final reduction

Let {S;} be an open affine covering of S and let U; = tp;(l(Si) and V; = 1[7;1(51-).
By Lemma 7.5 the products U; x5 V; all exist. Using the following Lemma and,
for the third time, the gluing Proposition 7.4 we are through with a proof of the
existence of fibre products (Theorem 7.1 on page 127).

LEMMA 7.6 With current notation, we have the equality U; xs. V; = U; xg Y. That is,
U; xgY exists and the projections are 1ty and rty|y,.



LEMMA 7.6 With current notation, we have the equality U; x5, V; = U; xg Y. That is,
U; xgsY exists and the projections are 7y, and my|y..

Proor: We contend that U; x g, V; satisfies the universal product property of
U; xs Y. The key diagram is

/ ~
m/

where f and g are two given maps. If one follows the left path in the diagram,
one ends up in S;, and hence the same must hold following the right path.
But then, V; being equal to the inverse image ;' (S;), it follows that g factors
through V;, and by the universal property of U; xs. V; there is a morphism
Z — U; xg, V; with the requested properties. K

+— V;



Diagrams arising from fibre products are frequently called Cartesian diagram
(kartesiske diagrammer); that is, the diagram

US ¢

/Z — X
I

nyl

YTS

is said to be a Cartesian diagram if there is an isomorphism Z ~ X xgY with mx
and 7ty corresponding to the two projections.
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7.7 A simple but illustrative example is the product Spec C X gpecr SpecC. This

scheme has two distinct closed points, and it is not integral—it is not even
connected!

Examples



The tensor product C @R C is in fact isomorphic to the direct product C x C
of two copies of the complex field C; indeed, we compute using that C =

R[t]/(#*+ 1) and find
CRRC =R[t]/(#*+1)@rC =C[t]/(t*+1) =C[t]/(t —i)(t+i) =C x C

where for the last equation we use the Chinese remainder theorem and that the
rings C|[t] /(¢ £+ i) both are isomorphic to C.



The example also shows that the underlying set of the fibre product is not
necessarily equal to the fibre product of the underlying sets, although this was
true for varieties over an algebraically closed field. In the present case the three
schemes involved all have just one element and the their fibre product has just
one point. So we issue warnings: The product of integral schemes is in general
not necessarily integral! The underlying set of the fibre product is not always
the fibre product of the underlying sets.
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7.9 Let k be a field and x and y two variables. Consider the tensor product
A = k(x) ®k(y). We can regard this as a localization of k[x, y] where we invert
everythingin the multiplicative set S = {p(x)q(y)|p(x),q(y) # 0}. Let us show
that A has infinitely many maximal ideals. Suppose that m — A is a maximal
ideal; it has the form S~1p for some prime ideal p < k[x,y] which is maximal
among the primes that do not intersect S. In this case we must have p N k[x] = 0,
since otherwise there would be a non-zero p(x) € p n S. Similarly p nk[y] =0,



which implies that p has height at most 1. Hence either p = (0), of p = (f) for

some irreducible polynomial f € k[x, y] not a product of a polynomial from kx|
and one from kly|. If follows that A has dimension 1, and A has infinitely many
maximal ideals—in fact uncountably many if e.g. k = C.



This example shows how strange the fibre product really is— Spec A is an
infinite set, even though it is the fibre product of two schemes with one-point
underlying sets. We will see more examples like this in the end of this chapter.
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7.7 Scheme theoretic fibres

In most parts of mathematics, when one studies a map of some sort, a knowledge

of what the fibres of the map are, is of great help. This is also true in the theory
of schemes.



Suppose that ¢: X — Y is a map of schemes and that y € Y is a point. On
the level of topological spaces, we are interested in the preimage ¢~!(y), and
we aim at giving a scheme theoretic definition of the fibre ¢~ (y). Having the



4 X%
¢~ (y) = X xy Speck(y) —— X
| K
> Y.

Speck(y)




As the next lemma will show, the underlying topological space of ¢! (y) is the
topological fibre, but additionally it is endowed with a scheme structure. In
many cases it will not be reduced, and this a mostly a good thing since it makes
certain continuity results true. One often writes X, for the fibre ¢~ (y).



PROPOSITION 7.13 Let X and Y be a schemes and ¢: X — Y a morphism. Let y €
be a point.

i) The inclusion X, — X of the scheme theoretic fibre is a homeomorphism onto
the topological fibre ¢ (y);
ii) If X = Spec A and Y = Spec B, it holds that X, = Spec(A/pyA)y,;
ii1) If X = Spec A and Y = SpecB and y is a closed point, one has X, =
Spec A/myA.



ExaMPLE 7.14 We take a look at a simple but classic example: the map
¢: Speck[x,y]/(x —y*) — Speck|x]

induced by the injection B = k[x] — k[x,y]/(x —y?) = A. Geometrically one
would say it is just the projection of the parabola onto the x-axis.



If a € k, computing the fibre over m, = (x — a) yields, that ¢~1(m,) is the
spectrum of the ring

k[x,y]/ (x —y*) @k k(a) ~ kly]/ (y* - a).

where k(a) denotes the field k(a) = k[t]/(t — a) (which of course is just a copy of
k), and where we are using the isomorphism R/a®4 M ~ M/aM for an ideal a
in an A-module M.



Several cases can occur, apart from the characteristic two case which is
special.

i) If a does not have a square root in k, the fiber is Speck(+/a) where
k(+/a) is a quadratic field extension of k.

ii) In case a has a square root in K, way b* = a, the polynomial y? —a
factors as (y —b)(y + b), and the fibre becomes the product

Speckly]/(y — b) x Speck[y]/(y +b),

which is the disjoint union of two copies of Speck

iii) The final case appears when a = 0. The the fibre is not reduced, but

equals Speck[y]/y>.
Vo bl 1Rhe - redupk



We also notice that the generic fibre of ¢ is the quadratic extension k(x)(1/x) of
the function field k(x).

Over perfect fields k of characteristic two, the picture is completely different.
Then 4 is a square, say a = b* and as (y* — b*) = (y — b)? non of the fibers are
reduced, they equal Speck[y]/(y — b)?, except the generic one which is k(x) (1/x).
One observes interestingly enough, that all the non-reduced fibres deform into
a field! *
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ExXAMPLE 7.15 A similar example can be obtained from the map

f : Spec A — Spec B

where A = Specklx,y,z]/(xy —z) and B = k(z] and f is induced from the
obvious inclusion k[z] — k[x,y,z|/(xy — z). As before, we assume k algebraically
closed, pick a closed point a € Spec B, and consider the fibre

X, = Spec (A®p k(a)) = Speck|x,y]/ (xy — a)
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Again, two cases occur. If a # 0, in which case xy — a is an irreducible polynomial,
and so X, is an integral scheme. This is intuitive, since it corresponds to the
hyperbola {xy = a}. If a = 0, we are left with Xy = Speck[x,y]/(xy), which is

not irreducible; it has two components corresponding to V(x) and V(y). (X is
reduced however).



For good measure, we also consider the fibre over the generic point 7 of
Spec B. This corresponds to

klx,y,2]/ (xy — 2) @z k(2) = k(2)[x,y]/ (xy — 2)

which is an integral domain. Hence X;, is integral. *



