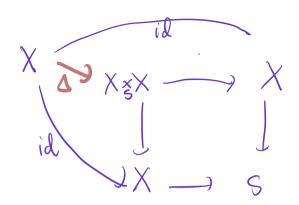
Chapter 8

Separated schemes

Handorff aknomet fra Alg. geo 1. The topology on schemes behaves very differently from the usual Euclidean topology. In particular, schemes are not Hausdorff, except in trivial cases – the open sets in the Zariski topology are simply too large. Still we would like to find an analogous property that can serve as a satisfactory substitute for this property. The route we take is to impose that the diagonal should be closed; closed in the Zariski topology of the product, of course.



## 8.1 The diagonal

Let X/S be a scheme over S. There is a canonical map  $\Delta_{X/S} \colon X \to X \times_S X$  of schemes over S called the *diagonal map* or the *diagonal morphism*. The two component maps of  $\Delta_{X/S}$  are both equal to the identity  $\mathrm{id}_X$ ; that is, the defining properties of  $\Delta_{X/S}$  are  $\pi_i \circ \Delta_{X/S} = \mathrm{id}_X$  for i = 1, 2 where the  $\pi_i$ 's denote the two projections.

In the case that *X* and *S* are affine schemes, the diagonal has a simple and natural interpretation in terms of algebras; it corresponds to the most natural map, namely the multiplication map:

$$\mu \colon A \otimes_B A \to A.$$

$$\alpha \otimes \alpha' \longmapsto \alpha \alpha'$$

$$\longrightarrow \text{Spec } A \longrightarrow \text{Spec } \left(A \otimes A\right) \text{ er en luthet immersion}$$

The multiplication map sends  $a \otimes a'$  to the product aa' and then extends to  $A \otimes_B A$  by linearity. The projections correspond to the two algebra homomorphisms  $\iota_i \colon A \to A \otimes_B A$  sending a to  $a \otimes 1$  respectively to  $1 \otimes a$ . Clearly it holds that  $\mu \circ \iota_i = \mathrm{id}_A$ , and on the level of schemes this translates into the defining relations for the diagonal map. Moreover,  $\mu$  is clearly surjective, so we have established the following:

**PROPOSITION 8.1** If X an affine scheme over the affine scheme S, then the diagonal  $\Delta_{X/S} \colon X \to X \times_S X$  is a closed immersion.

The conclusion here is not generally true for schemes, and shortly we shall give counterexamples. However from the proposition we just proved, it follows readily that the image  $\Delta_{X/S}(X)$  is always *locally closed*, *i.e.* the diagonal is locally a closed immersion:

## **Proposition 8.2** The diagonal $\Delta_{X/S}$ is locally a closed immersion.

PROOF: Begin with covering S by open affine subsets and subsequently cover each of their inverse images in X by open affines as well. In this way one obtains a covering of X by affine open subsets  $U_i$  whose images in S are contained in affine open subsets  $S_i$ . The products  $U_i \times_{S_i} U_i = U_i \times_{S} U_i$  are open and affine, and their union is an open subset containing the image of the diagonal. By Proposition 8.1 above the diagonal restricts to a closed immersion of  $U_i$  in  $U_i \times_{S_i} U_i$ .

## 8.2 Separated schemes

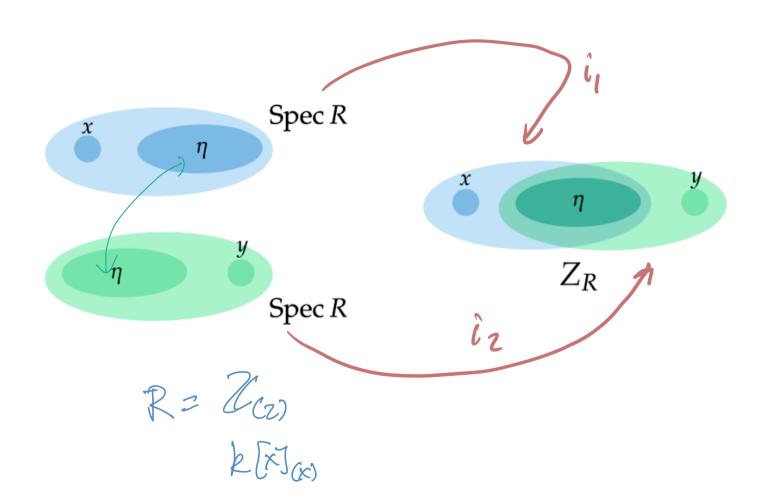
We have now come to the definition of the property that will play the role of the Hausdorff property for schemes.

**DEFINITION 8.3** One says that the scheme X/S is separated over S, or that the structure map  $X \to S$  is separated, if the diagonal map  $\Delta_{X/S} : X \to X \times_S X$  is a closed immersion. One says for short that X is separated if it is separated over Spec  $\mathbb{Z}$ .

## **Examples**

8.4 Any morphism Spec  $B \to \operatorname{Spec} A$  of affine schemes is separated (by Proposition 8.1)

| The simplest example of a scheme that is not separated, is obtained by glueing the prime spectrum of a discrete valuation ring to itself along the generic point. |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                   |  |



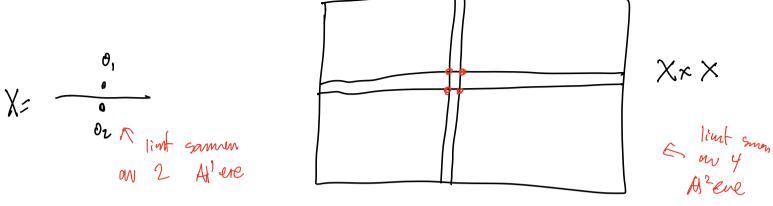
$$T^{-1}(\Delta) = \begin{cases} \times \in Spec \ | i_1(x) = i_2(x) \end{cases}$$

In this manner we construct a scheme  $Z_R$  together with two open immersions  $\iota_i$ : Spec  $R \to Z_R$ . They send the generic point  $\eta$  to the same point, which is an open point in  $Z_R$ , but they differ on the closed point x.



8.6 The affine line X with two origins constructed on page 96 in Chapter 5 is not separated over  $S = \operatorname{Spec} A$ . It was constructed as the union of two affine lines  $U_i = \operatorname{Spec} A[u]$  glued together along their common open subset  $U_{12} = \operatorname{Spec} A[u, u^{-1}]$ . Hence there are two open immersions  $\operatorname{Spec} A[u] \to X$  which agree on  $U_{12}$  which is not closed, and according to Proposition 8.14 below, it can not be separated.

 $\pi'(\Delta(x)) = \begin{cases} x \in A \\ i(x) = i_{z}(x) \end{cases} \Rightarrow Spect$ 



It is also instructive to examine the diagonal in detail. Denote the two origins by  $O_1$  and  $O_2$ . Then the scheme  $X \times_A X$  is an affine plane with double coordinate axes, and four origins  $(O_1, O_1), (O_1, O_2), (O_2, O_1), (O_2, O_2)$ . However, the image of the diagonal morphism only contains the two origins  $(O_1, O_1)$  and  $(O_2, O_2)$  while the closure of  $\Delta_{X/S}(X)$  contains all four origins.

**Proposition 8.9** The following hold true:

- *i)* Locally closed immersions are separated, in particular open and closed immersions are;
- ii) A composition of two separated morphisms is again separated;
- iii) Separatedness is stable under base change: if  $f: X \to S$  is separated, and  $T \to S$  is any morphism, then  $f_T: X \times_S T \to T$  is separated.

$$\times \times_{S} T \longrightarrow X$$

$$\Rightarrow \text{ separat} \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \text{ separat}$$

$$T \longrightarrow S$$

By the immense freedom we have for gluing schemes together, there are lots of non-separated schemes in the world of schemes. On the other hand, the examples above are obviously a bit peculiar, and one doesn't frequently encounter non-separated schemes in practice. In fact, the first edition of EGA reserved the word *preschema* for what we today call schemes, and *schema* for a separated scheme.

More importantly, some very nice properties hold only for separated schemes, and this legitimates the notion. Of course, one needs good criteria to be sure we have a large class of separated schemes. We have already seen that all affine schemes are separated, and we will see in Chapter 9 that the same is true for projective schemes also.

One of the nice properties separated schemes enjoy, is the following:

**PROPOSITION 8.10** Assume that X is separated and that U and V are two affine open sets. Then the intersection  $U \cap V$  is also affine and the natural product map  $\Gamma(U, \mathcal{O}_U) \otimes \Gamma(V, \mathcal{O}_V) \to \Gamma(U \cap V, \mathcal{O}_X)$  is surjective

PROOF: The product  $U \times V$  is an open and affine subset of  $X \times V$ , and  $U \cap V = \Delta_X(X) \cap (U \times V)$ . So if the diagonal is closed,  $U \cap V$  is a closed subset of the

affine set  $U \times V$  hence affine (Proposition 3.19). By the construction of the fiber

product of affine schemes that one has

$$\Gamma(U \times V, \mathcal{O}_{U \times V}) = \Gamma(U, \mathcal{O}_U) \otimes \Gamma(V, \mathcal{O}_V),$$

and as  $U \cap V$  is a closed subscheme of  $U \times V$ , the restriction map

$$\Gamma(U \times V, \mathcal{O}_{U \times V}) \to \Gamma(U \cap V, \mathcal{O}_{U \cap V})$$

is surjective, as we wanted to show.

Conversely, we have

**PROPOSITION 8.11** Let X be a scheme, and let  $\mathcal{U} = \{U_i\}_{i \in I}$  be an affine cover such that

- *i)* all intersections  $U_i \cap U_j$  are affine;
- i) an intersections  $\alpha_1 \cap \alpha_j$  are affine,

*ii*)  $\Gamma(U_i, \mathcal{O}_X) \otimes \Gamma(U_j, \mathcal{O}_X) \to \Gamma(U_i \cap U_j, \mathcal{O}_X)$  is surjective for each  $i, j \in I$ .

Then X is separated.

PROOF: Let  $\pi_1, \pi_2 : X \times X \to X$  be the two projections and let  $\Delta : X \to X \times X$  denote the diagonal morphism. Let  $U_i = \operatorname{Spec} B_i$  and  $U_j = \operatorname{Spec} B_j$  be two open sets in the covering  $\mathcal{U}$ . We have

$$\Delta^{-1}(\pi_1^{-1}(U_i) \cap \pi_2^{-1}(U_j)) = \Delta^{-1}(\pi_1^{-1}(U_i)) \cap \Delta^{-1}(\pi_2^{-1}(U_j))) = U_i \cap U_j \quad (8.2)$$

Also, from the universal property of the fibre product, we get that  $\pi_1^{-1}(U_i) \cap \pi^{-1}(U_j) = U_i \times U_j \subset X \times X$ . From this we deduce that  $\Delta$  is a closed immersion if each of the restrictions of  $\Delta$ 

$$\Delta_{ij}: U_i \cap U_j \to U_i \times U_j$$

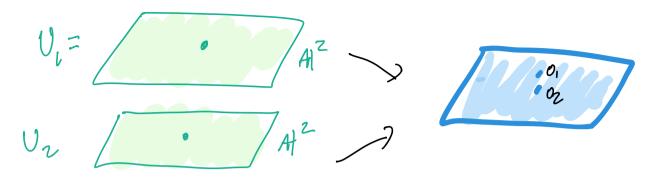
is a closed immersion. But this follows from the assumptions: by i), the intersection  $U_i \cap U_j$  is affine, say  $U_i \cap U_j = \operatorname{Spec} C_{ij}$ , and by ii), the ring homomorphism  $B_i \otimes_A B_j \to C_{ij}$  is surjective. Hence  $\Delta_{ij}$  is a closed immersion for each i, j, and the proof is complete.

**EXAMPLE 8.12** The projective line  $\mathbb{P}^1_k$  is separated.  $\mathbb{P}^1_k$  is covered by the two affine subsets  $U_1 = \operatorname{Spec} k[x]$  and  $U_2 = \operatorname{Spec} k[x^{-1}]$ , which have affine intersection  $\operatorname{Spec} k[x, x^{-1}]$ . To conclude, we need only check that the map

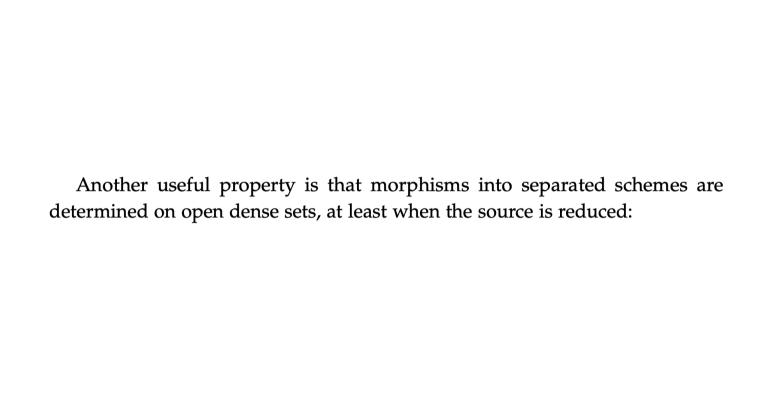
$$k[x] \otimes k[x^{-1}] \rightarrow k[x, x^{-1}]$$

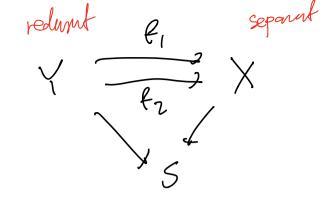
is surjective, and it is.



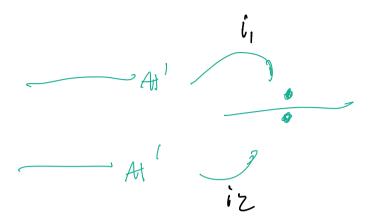


**EXAMPLE 8.13** Here is a non-separated scheme where two affine open sets have non-affine intersection. We glue two copies of the affine plane  $\mathbb{A}^2_k$  together along the complement  $U_{12} = \mathbb{A}^2_k - V(x,y)$  of the origin. If  $U_1$  and  $U_2$  denote the two open immersions of the affine plane, then  $U_1 \cap U_2 = U_{12}$ , but the open set  $U_{12}$  is not affine (see the example in Section 5.1 on page 94).





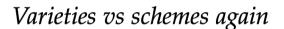
**PROPOSITION 8.14** Let X and Y be two schemes over S and  $f_1, f_2 \colon Y \to X$  two morphisms over S. Assume that Y is a reduced scheme and X is separated over S. Moreover assume there is an open immersion  $\iota \colon U \to Y$  with dense image such that  $f_1 \circ \iota = f_2 \circ \iota$ . Then  $f_1 = f_2$ .



**EXAMPLE 8.15** The above proposition fails when X is not separated. For instance, if X is the affine line with two origins, then there are two morphisms  $i_i : \mathbb{A}^1_k \to X$  for i = 1, 2 which agree on a dense open set, but they are not equal.



**EXAMPLE 8.16** Likewise, if Y is non-reduced: Let  $Y = \operatorname{Spec} k[x,y]/(y^2,xy)$  and consider the two maps  $f_i: Y \to \operatorname{Spec} k[u]$  i=1,2 defined by  $u \mapsto x$  and  $u \mapsto x+y$  respectively. These agree over the distinguished open set D(x), but they are different.



With the notion of separatedness, we can finally state the definition of a variety:

**DEFINITION 8.17** A variety X is an integral, separated scheme of finite type over an algebraically closed field.

This definition should be compared with the definition from Chapter 4. There we defined a variety to be a scheme in the image of the functor

 $Var/k \rightarrow Sch/k$ 

which associates a k-variety V to a scheme  $V^s$  over k. As varieties satisfy the Hausdorff axiom, it is immediate that the corresponding scheme  $V^s$  is separated. Thus the two notions agree.

From now on a "variety" will always refer to a scheme satisfying Definition 8.17. Basically any theorem from the "classical setting" regarding varieties carry over to varieties in the new sense. This is justified by the following theorem:

**THEOREM 8.18** The functor  $V \to V^s$  is fully faithful, and gives and equivalence between the category of varieties Var/k and the subcategory of Sch/k of schemes satisfying Definition 8.17.