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Separated schemes



The topology on schemes behaves very differently from the usual Euclidean
topology. In particular, schemes are not Hausdorff, except in trivial cases — the
open sets in the Zariski topology are simply too large. Still we would like to
find an analogous property that can serve as a satisfactory substitute for this
property. The route we take is to impose that the diagonal should be closed;
closed in the Zariski topology of the product, of course.
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8.1 The diagonal

Let X/S be a scheme over S. There is a canonical map Ax/s: X — X xg X
of schemes over S called the diagonal map or the diagonal morphism. The two
component maps of Ax,s are both equal to the identity idx; that is, the defining
properties of Ay /s are 71; 0 Ax /s = idx for i = 1,2 where the 71;’s denote the two

projections.
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In the case that X and S are affine schemes, the diagonal has a simple and
natural interpretation in terms of algebras; it corresponds to the most natural
map, namely the multiplication map:

u: AQp A — A.
a@al 3 aa’
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The multiplication map sends a®a’ to the product aa’ and then extends to
A ®p A by linearity. The projections correspond to the two algebra homomor-
phisms ¢;: A - A®p A sending a to a ® 1 respectively to 1 ® a. Clearly it holds
that y oy, = id4, and on the level of schemes this translates into the defining
relations for the diagonal map. Moreover, u is clearly surjective, so we have
established the following:



ProrosITION 8.1 If X an affine scheme over the affine scheme S, then the diagonal
Ax/s: X — X xg X is a closed immersion.

The conclusion here is not generally true for schemes, and shortly we shall
give counterexamples. However from the proposition we just proved, it follows
readily that the image Ax,s(X) is always locally closed, i.e. the diagonal is locally
a closed immersion:



PROPOSITION 8.2 The diagonal Ay s is locally a closed immersion.

Proor: Begin with covering S by open affine subsets and subsequently cover
each of their inverse images in X by open affines as well. In this way one obtains
a covering of X by affine open subsets U; whose images in S are contained
in affine open subsets S;. The products U; x5, U; = U; xs U; are open and
affine, and their union is an open subset containing the image of the diagonal.
By Proposition 8.1 above the diagonal restricts to a closed immersion of U; in
Ui XS; U,'. Q



8.2 Separated schemes

We have now come to the definition of the property that will play the role of the
Hausdorff property for schemes.

DEFINITION 8.3 One says that the scheme X/S is separated over S, or that the
structure map X — S is separated, if the diagonal map Ay, s : X — X xg X is a closed
immersion. One says for short that X is separated if it is separated over Spec Z.



Examples

8.4 Any morphism Spec B — Spec A of affine schemes is separated (by Proposi-
tion 8.1)



8.5 The simplest example of a scheme that is not separated, is obtained by
glueing the prime spectrum of a discrete valuation ring to itself along the generic
point.






‘Wp'/l\) - 5)(@ I g ' (] :?Z(@}

- A)

In this manner we construct a scheme Zp together with two open immersions
ti: SpecR — Zg. They send the generic point 7 to the same point, which is an
open point in Zg, but they differ on the closed point x.
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It follows that the diagonal is not closed. Indeed, the subspace of Spec R where
the two maps ; agree is the preimage of the diagonal. But this subspace has
exactly one point, the open point, which is not closed.



8.6 The affine line X with two origins constructed on page 96 in Chapter 5
is not separated over S = Spec A. It was constructed as the union of two
affine lines U; = Spec A[u] glued together along their common open subset
Up = Spec Au,u~1]. Hence there are two open immersions Spec A[u] — X
which agree on Uj,; which is not closed, and according to Proposition 8.14 below,
it can not be separated.
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It is also instructive to examine the diagonal in detail. Denote the two origins
by O; and O,. Then the scheme X x 4 X is an affine plane with double coordinate
axes, and four origins (O1,01), (01,03), (02,01), (02, 0,). However, the image
of the diagonal morphism only contains the two origins (O1,0;) and (O, O;)
while the closure of Ax,s(X) contains all four origins. *
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PROPOSITION 8.9 The following hold true:

i) Locally closed immersions are separated, in particular open and closed immer-
sions are;

ii) A composition of two separated morphisms is again separated;

iii) Separatedness is stable under base change: if f : X — S is separated, and
T — S is any morphism, then fr : X xg T — T is separated.
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By the immense freedom we have for gluing schemes together, there are
lots of non-separated schemes in the world of schemes. On the other hand,
the examples above are obviously a bit peculiar, and one doesn’t frequently
encounter non-separated schemes in practice. In fact, the first edition of EGA
reserved the word preschema for what we today call schemes, and schema for a
separated scheme.



More importantly, some very nice properties hold only for separated schemes,
and this legitimates the notion. Of course, one needs good criteria to be sure
we have a large class of separated schemes. We have already seen that all affine
schemes are separated, and we will see in Chapter 9 that the same is true for

projective schemes also.



One of the nice properties separated schemes enjoy;, is the following:

PROPOSITION 8.10 Assume that X is separated and that U and V are two affine
open sets. Then the intersection U NV is also affine and the natural product map
I'(U,0yu)®I(V,0y) - T(UnV,0Ox) is surjective



ProoF: The product U x V is an open and affine subset of X x V,and U NV =
Ax(X) n (U x V). So if the diagonal is closed, U n V is a closed subset of the
affine set U x V hence affine (Proposition 3.19). By the construction of the fiber



product of affine schemes that one has
T'(UxV,0uxy) =T(U,0u)QT(V,0y),
and as U n V is a closed subscheme of U x V, the restriction map
T(UxV,0uxw) > TUNV,0u~v)

is surjective, as we wanted to show.



Conversely, we have

PROPOSITION 8.11 Let X be a scheme, and let U = {U,};c1 be an affine cover such that
i) all intersections U; N U; are affine;
i) T'(U;, Ox) ®T(Uj, Ox) — I'(U; n U, Ox) is surjective for each i, j € I.

Then X is separated.



ProoF: Let 711,12 : X x X — X be the two projections and let A : X — X x X
denote the diagonal morphism. Let U; = Spec B; and U; = Spec B; be two open
sets in the covering U/. We have

AN (W) noy H(U) = AN (W) 0 AT N(U)) = Uin Uj - (8.2)

Also, from the universal property of the fibre product, we get that 7; *(U;) n
=1 (U;) = U; x Uj X x X. From this we deduce that A is a closed immersion
if each of the restrictions of A

Aij:UiHUj—)UiXUj
is a closed immersion. But this follows from the assumptions: by i), the intersec-
tion U; n Uj is affine, say U; n U; = Spec Cj;, and by ii), the ring homomorphism

B; ®4 B; — C;j is surjective. Hence A;; is a closed immersion for each i,j, and
the proof is complete. -



ExamrLE 8.12 The projective line IP; is separated. IP; is covered by the two affine
subsets U; = Speck[x] and U, = Speck[x~!], which have affine intersection
Speck[x, x7!]. To conclude, we need only check that the map

k[x] @ k[x71] — k[x, x71]

is surjective, and it is. *
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ExaMrLE 8.13 Here is a non-separated scheme where two affine open sets have
non-affine intersection. We glue two copies of the affine plane A? together along
the complement Uy = A% — V(x,y) of the origin. If U; and U, denote the two
open immersions of the affine plane, then U; n Uy = Uy, but the open set Uj;
is not affine (see the example in Section 5.1 on page 94). *




Another useful property is that morphisms into separated schemes are
determined on open dense sets, at least when the source is reduced:



PROPOSITION 8.14 Let X and Y be two schemes over S and fi,fo: Y — X two
morphisms over S. Assume that Y is a reduced scheme and X is separated over S.
Moreover assume there is an open immersion 1: U — Y with dense image such that

fiot= frou Then f1 = fo.
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ExamrLE 8.15 The above proposition fails when X is not separated. For instance,
if X is the affine line with two origins, then there are two morphisms i; : A; — X
for i = 1,2 which agree on a dense open set, but they are not equal. *
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ExaMPpLE 8.16 Likewise, if Y is non-reduced: Let Y = Speck[x,y]/ (y?, xy) and
consider the two maps f; : Y — Speck[u] i = 1,2 defined by u — x and
u — x + y respectively. These agree over the distinguished open set D(x), but
they are different. *



Varieties vs schemes again

With the notion of separatedness, we can finally state the definition of a variety:

DEFINITION 8.17 A variety X is an integral, separated scheme of finite type over an
algebraically closed field.



This definition should be compared with the definition from Chapter 4. There
we defined a variety to be a scheme in the image of the functor

Var/k — Sch/k

which associates a k-variety V to a scheme V* over k. As varieties satisfy the
Hausdorff axiom, it is immediate that the corresponding scheme V?* is separated.
Thus the two notions agree.



From now on a "variety" will always refer to a scheme satisfying Definition
8.17. Basically any theorem from the "classical setting" regarding varieties carry
over to varieties in the new sense. This is justified by the following theorem:

THEOREM 8.18 The functor V. — V*® is fully faithful, and gives and equivalence
between the category of varieties Var/k and the subcategory of Sch/k of schemes
satisfying Definition 8.17.



