Chapter 9
Projective schemes
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Let us consider the usual construction of complex projective space: As a topo-
logical space, CIP" is the quotient space

CP" = (C"“ —0) /C*

where C* acts on C"*! by scaling the coordinates. Of course the orbits of
C* in C"*1\{0} are just the lines through the origin, which is the traditional
“variety-way” of thinking about CIP".



We can translate this into algebra as follows: if f is a function on C"*! and
A € C* a complex number, we get a new function f* by defining f*(x) = f(Ax),
and this gives an action of C* on the polynomial ring C|[x, ..., Xx].
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Leaving the realm of complex manifolds and entring the world of schemes,
we want to take the quotient of AEH — 0 = SpecClxy,...,x4] — V(x0,..., %) by
this action. We write IP{. for the corresponding quotient space equipped with
the quotient topology. The notation IP¢, rather than CIP”, is used to emphasise
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We can try to put a scheme structure on IP¢. by looking for reasonable open
covers. Note that the open subsets of IP{. correspond to C*-invariant open
subsets of AL — 0. It is not too hard to see that D(f) c A% is C*-invariant
if and only if f is a homogeneous polynomial. We write D (f) < IP¢ for the
open subset corresponding to D(f) < ALt —0.



To define a structure sheaf on IP{: we must figure out what the spaces of
sections Opn (D+(f)) should be. While it is true that D(f), being an affine
scheme, has a structure sheaf, we have to take more care in deciding which
sections to take, to make things compatible with the C*-action: a function on
D (f) should be a function on D(f) that is invariant under the action of C*.



That is, we should have g* = ¢, which means precisely that ¢ has degree zero.
Thus we define

O]p?: (D+ (f)) = C[JCQ, ee ,xn,f_l]().

where the subscript means that we take the degree 0 part.



We can generalize the above for any affine C-scheme with an action of C*.
Such a scheme corresponds to a graded C-algebra R. To make a reasonably
good quotient, it is necessary remove the locus in Spec R that is fixed by C*, and
it is not too hard to prove the following:

LEMMA 9.1 The fixed locus of C* acting on SpecR is V(R ), where R, denotes the
ideal generated by element of positive degree.



We then proceed to consider the quotient space P of SpecR — V(R4 ) by C*.
Again, the C*-invariant distinguished open subsets in Spec R of the form D(f)
where f is homogeneous constitute a basis for the topology on SpecR — V(R4.),
and these correspond to open subsets D, (f) < P = (SpecR— V(R})) /C¥,
which form a basis for the quotient topology. Finally, we define a #-sheaf on P
by setting Op(D+(f)) = Ospecr(D(f))o, and check that we get a scheme P.



Beside of inducing a grading on R, the action of C* plays very little role here.
Realizing this, we can in fact build a scheme P from any graded ring R: We
construct the topological space of P from the set of homogeneous prime ideals of
R (with the induced Zariski topology), and define a structure sheaf on it by the
formula like the one above. This is essentially the ‘Proj’-construction.



9.2 Basic remarks on graded rings



A graded ring R is a ring with a decomposition

R= @ Ri=R®R 1 &
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as an abelian group such that R,, - R, € Ry for each m, n > 0. Note that Ry is
a subring of R and that each of the R,’s is an Rop-module. The elements in R,
are said to be homogeneous of degree n, and one writes deg x = n when x € Ry,.



Every element x € R can be expressed unambiguisely as a sum x = >, .\ Xu
with x, € R,. The non-zero terms in the sum are called the homogeneous
components of x.



An R-module M is graded if it has a similar decomposition M = @, ., M,
as an abelian group such that R, - M, € M, for all. A map of graded R-
modules is an R-linear map ¢ : M — N such that ¢(M,) < N, for all n € Z.
Note that contrary to what we required for maps between graded rings, degrees

are preserved.



As usual, a non-zero element x € M is homogeneous of degree n if it lies in
M,,. Just like ring elements, any member x € M may be expressed in a unique
way as x = ZneNo x, with each x, in M,,, and the non-zero terms are called the
homogeneous components of x.



An ideal a < R is homogeneous if the homogeneous components of each
element in a belongs to a. This is the case if and only if a is generated by
homogeneous elements. It is readily verified that intersections, sums and
products of homogeneous ideals are homogeneous.



We will write R for the sum @), _,
of R, which we call the irrelevant ideal.

R,; this is naturally a homogeneous ideal
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We let R() denote the subring of R given by D=0 Rud



Localization

Occasionally we shall meet graded rings having elements of negative degree;
they are defined as above except that they decompose as

R =@ Ry

neZ



Some authors refer to these as Z-graded rings. One way such rings appear
is as localizations of graded rings. Indeed, if T c R is a multiplicative system
all whose elements are homogeneous, one may define a grading on T~'R by



letting deg ¢/t = deg g — degt for t € T and g a homogeneous element from R.
In other words, one puts

(T7'R), ={f/te T"'R| fe R, teTand degf —degt =n}.



Then, as is easily verified, the localized ring TR decomposes as the direct
sum as T'R = @, .(T~'R),, which makes it a Z-graded ring. The same
construction also works very well for graded modules, so that T~'M is a graded
module whose homogeneous elements are of shape xt~! with x homogeneous
and deg xt~! = deg x — degt.



One example of multiplicative sets of the graded sort, are the sets T(p)
consisting of all homogeneous elements in R not lying in a given homogeneous
prime ideal p. Another example is the set S of non-negative powers of a
homogeneous element f.
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DEFINITION 9.2 For a homogeneous prime ideal p — R and a homogeneous element
f € R, we define for an R-module M

i) M) = (T(p)"'M)o; ﬁwk 0
i) M(s) = (My)o, <«
where the subscript indicates the degree O part.



ExaMPLE 9.3 For the polynomial ring R = Alxy, ..., x,| with standard grading,
the degree 0 part of Ry, is generated by the monomials XoxL,..., x]-_)i, SO

R(x].) = Alxox:%,..., xnx]-_l].
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9.3 The Proj construction

Motivated by the discussion in the introduction, we make the following defini-
tion:

DEFINITION 9.4 Let R be a graded ring. We denote by Proj R the set of homogeneous
prime ideals of R that do not contain the irrelevant ideal R .
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One endows Proj R with a topology by setting, for a homogeneous ideal b,
V(b) ={peProjR|p>b},

and just like in the case of Spec R, these sets comply to the axioms for the closed
sets of a topology, which is called the Zariski topology on ProjR. Indeed, the



) V(Zb) = NV(5);
i) V(ab) = V(a) u V(b);
iii) V(v/a) = V(a),

the pertinent remark being that sums, products and radicals persist being

homogeneous when the involved ideals are. Notice that this topology is nothing
but the one induced from the inclusion Proj R < SpecR.



D(g) = $ petR | £4F]
N CORAREY R

As with the affine case, we define distinguished open sets. For f € R
homogeneous of positive degree, we let D (f) be the collection of homogeneous
ideals (not containing R ) that do not contain f, or in other words, D (f) =
D(f) n Proj R. These are open sets with respect to the Zariski topology on Proj R
the complement of D (f) equals the closed set V(f).
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The relevance of the name the irrelevant ideal is that R, does not play any
role when it comes to forming closed sets in Proj R, neither do ideals whose
radical equals Ry. This is made clear by the following lemma. Note that
V(R4) = & by definition.



LEMMA 9.5 For any homogeneous ideal a it holds that V(a) = V(a n Ry.). In fact, if
J is an ideal such that /3 = Ry, it holds that V(a) = V(an J).

Proor: Since V(Ry) = ¢, condition iii) above implies that V(J) = &, and
condition ii) then gives V(anJ) = V(a) u V(J) = V(a). Q



The next result is important in understanding the local structure of ProjR. In
particular, it will be essential when defining the scheme structure on it.

PROPOSITION 9.6 We have D, (f) n D, (g) = D4 (fg). Also, the D, (f) form a

basis for the topology on Proj R when f runs through the homogeneous elements of R of
positive degree.
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Proor: The first part is evident, by the definition of a prime ideal. We prove the
second. Note that V(a) is the intersection of the V((f))’s for the homogeneous
f € an R4. Thus ProjR — V(a) is the union of these D (f). So every open set
is a union of sets of the form D (f). Q
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Dehomogenization and homogemzatzon

In the affine case there is a canonical homeomorphism between D(f) and
Spec Ry which associates pR ¢ with a prime p € D(f). In perfect analogy with this,
associating the degree zero part of pR¢ with p € D, (f) gives a homeomorphism
between D (f) and Spec R ).



ExampLE 9.7 To illustrate this correspondence in a simple case which hopefully
eases the digestion of the general case, let us consider the ring R = k[x,y, z],
and the distinguished open set D (z). The monomials of degree zero in R, are
products of xz~ and yz~! so that R(;) = k[xz~!,yz~!]. Consider a principal
ideal a = (f) in R generated by a homogeneous polynomial f of degree d.
Because z is invertible in R, and because of the identity

flez™hyz711) =27 f(x,y,2),

the ideal aR, becomes aR, = (z7%f), and since z~“f is of degree zero, it holds
true that (aR;), = aR; N Ro = (z7%f). So when we pass to R,), the generator f
is replaced by the dehomogenized polynomial z~4f.



There is also simple way of making a polynomial g in k[xz~1,yz~] homo-
geneous, one simply gives g a factor z% with d being the degree of g. This will
almost all the time be an inverse to the dehomogenization process; there is
just one fallacy, any factor of f which is a power of z, disappears when f is
dehomogenized, and there is no means of recovering it knowing only z7¢f. *



The general set up of the isomorphism D, (f) ~ Spec Ry follows the pattern
in the example, basically one dehomogenizes and homogenizes generators, but
expressed in a necessarily general formalism.
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PROPOSITION 9.8 Let f € R be homogeneous of degree d. There is a canonical homeo-
morphism ¢ : D (f) — Spec Ry given by

¢(p) = pPRf N Ryp),

that sends homogeneous prime ideals of R not containing f into primes of Rs). More-
over,

i) For any homogeneous § € R such that D, (g) < Dy(f), letting u =
g1f 483 ¢ R ), we have §(D.4(g)) = D(u);
it) For any graded R-module M, there is a canonical homomorphism M s —
M) which induces an isomorphism (M f))u ~ M(g); =] B- J2W'ﬂ>€.
iii) If a < R is a homogeneous ideal, then ¢(V (a) N D+ (f)) = V(aRs 0 R(y)).
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Proj R as a scheme

We shall now make X = Proj R into a locally ringed space. Let # be the base of
Proj R made up by the distinguished open subsets.

) D.(# < R
B 0 | Il
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For each D (f) we define / ) R!(. .

O(D+(f)) = Ry
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The previous proposition shows that this gives a well-defined %-presheaf O of
rings, and using the homeomorphism ¢ from D (f) to Spec R (), we see that it
actually is a #-sheaf. (Alternatively, we could modify the proof for the case of
Spec to see this directly). We will denote the unique sheaf extension by Ox.

o) < Ry
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It follows that X is has the structure/ of a ringed space. This is in fact a locally
ringed space, because the stalk Ox , is just Rip,), which is a local ring. Indeed,
the unique maximal ideal is generated by p. Moreover, the previous discussion
has shown that the basic open sets D (f) are each isomorphic as locally ringed
spaces to Spec R 5), which are affine schemes, and so ProjR is a scheme.



DEFINITION 9.9 For a graded ring R, we call the scheme (Proj R, Oproir) the projec-
tive spectrum of R.



In fact, the projective spectrum Proj R is naturally a scheme over Spec Ro: the
homomorphisms Ry — R s) induce maps Spec R(s) — Spec Ry, and these glue
together to a morphism

Proj R — Spec Ry,
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Moreover, if R is a finitely generated over R, the spectrum Proj R is of finite
type over Spec Ry. This follows by looking at the distinguished open sets D (f)
— each ring R ) is finitely generated as an Ro-algebra if R is.



DEFINITION 9.10 We define the projective n-space to be the scheme
P" = Proj ZIxo, - . ., Xn].
More generally, for a ring A, the projective n-space over A is the scheme

" = Proj Alxo, ..., Xn].
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Examples

~— P B — Speh
9.11 Let A be a ring and let R = A[t] with the grading given by degt = 1
and dega = 0 for all a € A. Then the structure map gives an isomorphism

Proj R ~ Spec A.
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9.12 (The projective line Py, once more) Let us study the case of a polynomial
ring in R = Als,t| where s and t have degree one. The scheme X = ProjR
coincides with P}, as defined in Chapter 5 (in Section 5.1 on page 94); indeed,
we shall see that it is glued together from affine schemes in precisely the same
manner as is P,. Note that X is covered by D (s) and D.(t) (since s and ¢
generate the irrelevant ideal). Write for simplicity U = D, (s) ~ Spec R5) and
V = D, (t) ~ SpecR;. It holds true that X is glued together from U, V along
UNnV = Dy(st) ~SpecRgy,.

Note first that the degree zero part R(5) of Ry ~ A[s,s™,t] equals A[s~'t],
and by symmetry we have R(;) = A[st™']. The intersection D (st) is the degree
zero part of Ry which is given as Ry = A[s™'t,st7']. In other words, if we
write u = s7't, it holds true that Ry = A[u], R;) = A[u™!] and that R(y) =
Alu,u=] = Alu],. Hence U ~ Spec A[u] = A, and V ~ Spec A[u=1] ~ A, are
glued together along Spec R,;), and this is exactly the glueing scheme used to
construct IP, in Section 5.1.



9.13 (Projective n-space) The case when R = k[xo,...,x,| is a polynomial ring
over a field k is the most interesting. In this case IP} is a scheme whose closed
k-points IP" (k) coincides with the variety of projective n-space.

Since IP} is covered by n + 1 copies of A}, IP} is integral of dimension n. We
also have k(IP}) = k(A}) = k(Xj, ..., X»). More intrinsically, we may also write

o [ 8(x0,. .., xn)
k(P )_{h(xo....,xn)

g, h homogeneous of the same degree}



rec R

L)

9.14 Let R = k[x,y]|/ (xy). SpecR is the union of the x- and y-axes. So SpecR —
V(x,vy) is the union of the axes with the origin excluded. On the other hand,
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Proj R consists of just two points: Proj R is obtained by gluing Spec(R,)) and
Spec(R(,)) together. Now,

R(x) - k[x/y](x)/xy = k[xly](x)/y = k[x](x) =k,
S

and the corresponding chart of Proj R is just Speck. Similarly, the other chart
Spec(R(,)) also equals Speck. We have R,,) = 0, so the overlap is empty, and it
ensues that Proj R consists of the two points.



PROPOSITION 9.16 (PROPERTIES OF Proj R) Let R be a graded ring.
i) Proj R is separated.
i) If R is noetherian, then Proj R is noetherian.
ii1) If R is finitely generated over Ry, then Proj R is of finite type over Spec Ry.

iv) If R is an integral domain, then Proj R is integral.

\
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Proor: We use the fact that X is covered by the affine open sets D (f) where
f runs over the elements of R*. These sets are clearly affine, and so is their
intersection: D (f) N D+(g) = D(s,). Thus to prove that ProjR is separated,

*Uaa%w“"’m“‘( S
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we need only check condition ii) above, namely that R(s) ® R(y) — R+(fg) is
surjective for any f,¢ € R™, but this is straightforward.

The remaining properties are properties which can be checked on an affine
covering. In our case ProjR is covered by the affines SpecR s which are
noetherian (resp. of finite type, integral) provided R is noetherian (resp. finitely
generated, an integral domain). -
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9.4 Functoriality

Unlike the case of affine schemes, a graded ring homomorphism ¢ : R — S does
not induce a morphism between the projective spectra ProjS and Proj R. The
reason is that some primes in S may pullback to R to contain the irrelevant ideal
R, . However, as we will see shortly, this is the only obstruction to defining a
morphism.



Given a homomorphism ¢ : R — S, we define the set G(¢) < Proj S to be the
set of homogeneous prime ideals p in S that do not contain ¢(R ), in particular
those prime ideals have their inverse images ¢—!(p) in Proj R. The assignment
p — ¢~ 1(p) then sets up a map

F: G(¢) — ProjR.

o ¢7'(y)
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The set G(¢) is an open subset of Proj S; indeed, let p — S be a homogeneous
prime ideal in G(¢). Then p does not contain ¢(R.), so (assuming ¢(R.) # 0)
there exists an r € R, such that s = ¢(r) ¢ p, and we may clearly assume that s
is homogeneous. It the holds that p € D, (s), but also D4 (s)  G(¢) since each
q € D4 (s) does not contain s. Hence G(¢) is open. That ¢(R;) = 0 implies that
G(p) = &, and G(¢) is open in that case also.



Being an open subset G(¢) has the canonical induced scheme structure as an
open subscheme of Proj S, and giving it that structure, we have:



PROPOSITION 9.18 Let ¢ : R — S be a homomorphism of graded rings. Then the map
F : G(¢) — Proj R is a morphism of schemes.

Proor: First of all, the map F is continuous because the Zariski topologies on
Proj R and Proj S are induced from those of SpecS and SpecR, and because F
is the restriction of the map between the two Spec’s induced by ¢. Or more
explicitly, the inverse image F~1(D(f)) equals G(¢) n D.(¢(f)), which is
open.



Write X = G(¢) and Y = ProjR. The rest of the job is to define the map F
on the level of sheaves, i.e. we desire a map

F# . Oy i f*OX

As usual, it suffices to define it on the basis of distinguished open subsets. To
define it on D (f) < ProjR we rely on the isomorphism between D, (f) and
Spec R sy from Proposition 9.8. Of course, only opens D (f) so that F~!(D4.(f))
are non empty matter; then ¢(f) ¢ R, and then the localization of ¢ induces
a map Ry — Sy(s) . Moreover, since F~'(D(f)) is open in Dy (¢(f)) =
Spec S4(f)), We get the desired map

Oy(D+(f)) = Rp) — Ox (F7'(D+(f)))
by restriction of I'(D, (f), Oy) — T'(D+(¢(f)), Oprojs)- Q
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ExaMmPLE 9.19 To see why restriction to the open set G(¢) is necessary, we
consider the case where R = k[xp, x1], S = k[xo, x1, x2] and ¢ is the inclusion
map. Note that the prime ideal a = (x¢, x1) defines an element in Proj S, but its
restriction to R is the whole irrelevant ideal of R. In fact, G(¢) = ProjS — V(a),
and the map
y:Pf—V(a) > Py

is nothing but the projection from the point (0 : 0 : 1) which sends a point with
homogeneous coordinates (xp : x1 : x2) to the one with coordinates (xp : x71). It
is a good exercise to prove that there can be no morphisms IP}" — P} for m > n
in general. (See Section 16). *



Closed immersions

The primary example of the above construction is considering the graded
quotient homomorphism ¢ : R — R/a, where a c R is a homogeneous ideal. In
this case ¢(R+) = (R/a)+ so G(¢) = Proj(R/a), and the corresponding map @
is defined everywhere; that is, we get a map

¢ : Proj(R/a) — ProjR.

ol = ()
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We claim that this is a closed immersion. As usual, homogeneous primes in
R/a not containing R pull back to homogeneous primes in R containing a but
not R . It follows that ¥ is injective with image the closed subset V(a) in Proj R.
Finally, ¢* is surjective on stalks (where it is just the map R,y — (R/a)(y), and
so ¢ is a closed immersion. We will see later that there is a converse to this
statement, under some mild assumptions on R.

Spc @/w\ (8



ExaMPLE 9.20 The most simple conceivable closed immersion is that of a closed
point in IP}. At least if k is algebraically closed, such points are given by their

homogeneous coordinates a = (ag : - - - : a,), the maximal ideal corresponding is
generated by the minors of the matrix
X0 X1 ... Xp
: 2
(ﬂ() al e e an> (9 )

L ma—

Ut/
A, --
[)C() | Xl 0{0} - x'\v[ am_xn O\M—-] ( '7/)



ExaMPLE 9.20 The most simple conceivable closed immersion is that of a closed
point in IP}. At least if k is algebraically closed, such points are given by their
homogeneous coordinates a = (ap : - - - : a,), the maximal ideal corresponding is
generated by the minors of the matrix

X0 X1 ... Xp (92)
ag a1 ... ap /]’ '

Indeed, the vanishing of those minors describes vectors in k"*!1 dependent on
(ao, . ..,an); or in other words, points lying on the line through (ay, ..., a,).



There is an analogue of this for projective spaces [P’ over an arbitrary ring

A that to an n-tuple a = (ay,...,a,) of elements from A gives an A-point of

", that is, a section of the structure map 7: P’} — Spec A. The appropriate

necessary condition on the 4;’s that generalize the condition familiar from the

theory of varieties that not all a; be zero, is that the 4;’s generate the unit ideal in

A. And two such tuples give the same section if and only if they are proportional
by a unit from A.



Let a be the ideal in A[xo, ..., x,] generated by the minors of the matrix (9.2);

in other words
a= (a;x;—ajx;|0 <i,j<n).

We claim that 7 induces an isomorphism between V(a) and Spec 4; its in-
verse will then be a closed embedding i,: SpecA — P’,. The open distin-
guished sets D(a;) cover Spec A, and it will suffice to see that the restriction
7| -1(p(a)): V(@) " t71(D(a;)) — D(a;) is an isomorphism for each i. So re-
placing Spec A by D(a;), we may well assume that one of the a;’s, say ap, is



invertible. Since agx; — a;xo belongs to a, we deduce that x; — a4, %0 € a, and
hence Alx,...,x,]/a = Alxy]. By Example 9.11, it follows that the structure
map restricts to an isomorphism on V(a). Clearly a simultaneous scaling does
not change a;a;", and if a;a," = alaj ', it holds that a! = ahay 'a;.



It is not true in general that all maps Spec A to IP" are of the “homogeneous
coordinate form” (a; : --- : a,), but if A is local (e.g., a field) it holds true.

LEMMA 9.21 Assume that A is a local ring. Then every section Spec A — P’ of the
structure map is given by (ay : - - - : a,) where at least one a; is a unit. Another such
tuple (ay : - -- : a),) gives the same map if and only if a. = wa; for a unit « € A.



One must remember that the lemma is relative to a fixed sequence of variables
X0y++-,Xn-

PROOF: Assume that a morphism f: Spec A — P given. Then the image
of the closed point lies in D (x,) for some v and f factors through D (x,).
This means that f* is a map k[xyx; %, ..., xnx; ], the image of a; = f¥(x;x;!) are
elementsin Aan (ap:---:1:---:a,) are appropriate homogeneous coordinates
giving the map f (where the 1 is in the v-th slot). EI
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Let S be a scheme and let X be a scheme over S. We say call X is projective over
S (or that the structure morphism f : X — S is projective) if f : X — S factors
as f = moi wherei : X — IPg is a closed immersion and 7t : IP{ — S is the
projection. X is quasi-projective over S if X — S factors via an open immersion
X — X and a projective S-mophism X — S.1

9.5 Projective schemes



The primary examples is of course X = P’} — Spec A for a ring A. More
generally, if X = Proj R where R is a graded Ry-algebra generated in degree 1
and S = Spec Ry, then X is projective over S. In this case, we can define the
projective immersion i by taking a surjection Ry[xo,...,x,] — R, which upon
taking Proj, gives a closed immersion X — PP .
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Note that projectivity is a relative notion: It is the morphism X — S which is
projective, not X itself. For instance, ]P}c[t] is projective over Speck[t], but it is not
over Speck. Still, if we are working in the category of schemes over, say, a field
k or Z, we still refer to a scheme X being “projective’ if it is projective over the
base scheme.



ExAMPLE 9.22 For A = C[t], the scheme X = Proj A[x,v,z]/ (zy? — x® — txz?) is

projective over A¢ = Spec A. The preimage of X — A over any closed point

a € A} is an integral projective subscheme of dimension one: V(zy? — x3 —

axz?) < PZ. ) *

7
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9.6 The Veronese embedding h 70

Let R be a graded ring and let d be a positive integer. The inclusion ¢ : R(Y) — R
induces a morphism
v4 : ProjR — ProjR@

Indeed, in this case G(¢) = Proj R, since any prime p such that p > R, n R
must also contain all of R, —if r € R, note that ¥* € Ry nR@ and so r € p as
well! This map is called the Veronese embedding, or d-uple embedding of X.



H:u,u,w} — \QD&’ X‘f, %Z:& - h&,gj

Q\/Z ~ wWwW >
PROPOSITION 9.23 The Veronese embedding v, is an isomorphism.

ProOOF: There are many things to check here, so we will sketch the proof, and
leave the remaining verifications for the reader.

v, is injective: If p,q € ProjR such that p n R@ = g~ R@. Then for a
homogeneous element x € R we have

xepoxicpeoxicqgexeq

and hence so p = q. To show that v, is surjective, let q € Proj R@, and define

the homogeneous ideal in R by

0

pz@{xeRn|xdeq}.

n=0

It is not too hard to check that p is prime, and that p n R@ =g, s0 v, is bijective.



The proof then proceeds to show that the maps v; and q — p are closed,
so that v; is a homeomorphism. Then one checks directly that v; induces an

isomorphism when restricted to the open affines D (f) as well, so we get an
isomorphism on the level of schemes as well. W



REMARK ON RINGS GENERATED IN DEGREE ONE We will frequently assume that
the ring R is generated in degree one, that is, R is generated as an Ry-algebra by
R;. The reason for this will become clear in the next section. Intuitively, it is
because we want Proj R to be covered by the ‘affine coordinate charts’ D (x)
where x should have degree 1.



We remark that this assumption is in fact not not too restrictive: Any pro-
jective spectrum of a finitely generated ring is isomorphic to the Proj of a ring
generated in degree 1. This is because of the basic algebraic fact that if R is
finitely generated, then some subring R(?) will have all of its generators in one

degree, and since Proj R() ~ Proj R, we don’t change the Proj by replacing R
with R(@),



EXAMPLE 9.24 (The weigthed projective space IP(p,q)) Let k be a field and p and g
two relatively prime natural numbers and let n = pg. Consider the polynomial
ring R = k|x,y|, but endow it with the non-standard grading with x having
degree p and y degree g. We claim that Proj R ~ P}, or more specifically that
R is isomorphic to the polynomial ring A = k[u, v] graded in the non-standard
but innocuous way that degu = degv = n. Clearly Proj A ~ IP;.



Observe that a homogeneous element in R(") is a linear combination of
monomials x*y? with pa + gB = yn; hence g divides a and p divides B and so
o'+ B’ = vy with « = ga’ and B = pp’. There is a homomorphism of graded
k-algebras A = k[u,v] — R™ that sends u — x7 and v — y”. This is clearly
injective, so to see it is an isomorphism, it suffices to check it is surjective on each
homogeneous component: now (R(),, has a basis consisting of the monomials
x1%yPP" with a’ + B’ = d; and for the same &’ and B’ the monomials u* v# form
a basis for A,. *



ExAMPLE 9.25 (The weighted projective space P(1,1,p)) Another example along
the same lines. Again we begin with a polynomial ring R = k[x, y, z] endowed
with a slightly exotic grading; we put deg x = degy = 1 and degz = p for some
natural number p. Then Projk[x, y, z] is a so-called weighted projective space and
one often sees it denoted by P(1,1, p).



The scheme X = Proj R has a covering of the three open affines D (x), D1 (y)
and D, (z). Both D (x) and D (y) are isomorphic to A?Z; it is a straightforward
exercise to verify that R(,y = k[yx~!,zx"?] and R,y = k[xy~!,zy 7], and that
these are polynomial rmgs However the third dlstmgmshed open affine D (z)
is not isomorphic to A2. In fact, it has a singularity! Clearly x?~'y'z~!, for
0 < i < p, are homogeneous elements of degree zero in R(,), and it is almost
trivial that they generate R,), so that R,y = k[x"z™",...,yPz""]. One recognizes
this ring as an isomorphic copy of the p** Veronese ring A(P) of the polynomial
ring A = k[u,v]. And anticipating parts of the story, this is the cone over a
so-called projective normal curve of degree p, whose apex is a singular point. *



EXAMPLE 9.26 (The Blow-up as a Proj) Consider the ring A = k|x, y| and the ideal

I = (x,y). We can form a new graded ring by introducing a new formal variable

t and setting
R= @I
k=0
where I° = A. In R, the new variable ¢ has degree 1, and the other variables

x and y have degree 0. One may think about R as the subring of A[t] of
polynomials shaped like ), a,t" where the coefficient a, belongs to I".



The map p — p n A, induces a morphism
7 : Proj R — Spec A = A%

The irrelevant ideal R is generated by xt and yt so that Proj R is glued together
by the two open affine subschemes Spec R,y and SpecR ). These are both
isomorphic to AZ2. Note that there is a map of graded rings



¢:Aluv] — R
u — xt
u — yt

This is clearly surjective, since I is generated by x and y. Note also that the
kernel contains the element xv — yu. In fact, by Exercise 9.12 below, we have



LEMMA 9.27 R ~ Alu,v]/(xv — yu).

From this description we see that ProjR is covered by the two distinguished
open sets D4 (u) = SpecR(,) and D (v) = Spec R(,. Here

R ~ (Alu,2lu/ (x0 — yu))o = klx,ou]
and
Ry =~ (Alu,v],/ (xv —yu))o = kly, uv=1].
These are glued along R ,,) ~ (A[#, v]uy/ (xv —yu))o, and one finds

1

(Alu, 9o/ (xv — yu))o = klx,y,uv ™, ou™/ (x - ou™t —y) ~ k[x, uv™, ou=1]

In particular, we see that Proj R coincides with the previous blow-up description.
*



