* 1.1 Let X be the set with two elements with the discrete topology. Find a presheaf on X which is not a sheaf.

1.2 In the notation of Example 1.6, the differential operator gives a map of sheaves $D: \mathscr{O}_X \to \mathscr{O}_X$, where as previously $X \subseteq \mathbb{C}$ is an open set. Show that the assignment

 $\mathscr{A}(U) = \{ f \in \mathcal{O}_X(U) \mid Df = 0 \}$

defines a subsheaf \mathscr{A} of \mathscr{O}_X . Show that if U is a connected open subset of X, one has $\mathscr{A}(U) = \mathbb{C}$. In general for a not necessarily connected set U, show that $\mathscr{A}(U) = \prod_{\pi_0 U} \mathbb{C}$ where the product is taken over the set $\pi_0 U$ of connected components of U.

$$U \subseteq X \text{ converbed open}$$

$$Df = 0 \implies f \text{ has zero derivative}$$

$$\implies f \text{ is locally constant}$$

$$\implies f \text{ is constant} (U \text{ converbed})$$

$$\implies A(U) = C.$$

$$If U \text{ has components } \{V_i\}, \text{ thun compatible with information maps}$$

$$We \text{ can define } A(U) \implies TT C \text{ information maps}$$

$$(f_iU = C) \mapsto (f(x_i))_i$$

$$(f(x_i))_i$$

1.3 Consider the sheaf $C(X, \mathbb{R})$ from Example 1.5 and the subpresheaf \mathcal{F} , defined by setting $\mathcal{F}(U) = C_b(U, \mathbb{R})$, the group of *bounded* continuous functions. Show that \mathcal{F} is not a sheaf. What is the saturation of \mathcal{F} in $C(X, \mathbb{R})$?

1.5 Let $G_{ii\in I}$ be a directed system of abelian groups with maps f_{ij} . The projective limit of $\{G_i\}_{i \in I}$ has an explicit construction as the subset of the product $\prod_{i \in I} G_i$ consisting of 'sequences' (x_i) such that $x_j = f_{ij}(x_i)$ for all pairs $i, j \in I$. In other words,

$$\varprojlim G_i = \{ (\mathbf{x}_i)_{i \in I} \mid x_j = f_{ij}(x_i) \forall i, j \in I \} \subseteq \prod_{i \in I} G_i$$

Show this.

universal property G_{i} G_{j} G_{i} G_{i} che de flu universal property: ! We ìħj bi et 1 3! factur Zation 5; E E G Xi is deterned by Xi which is "further out". 5.6 $G_{i} = \begin{cases} (x_{i})_{i \in I} \mid x_{i} = f_{ij}(x_{i}) \end{cases} \leq f_{ij}(x_{i}) \end{cases}$ G: C H fij L L hj Gj Given Define $h: H \longrightarrow G$ $y \longrightarrow (h_i(y))_{i \in I}$ $f_{ij}(h_i(y)) = h_i(y)$ by the diagrams we have $(n; ly) \in G$ $\sim 0k$

1.10 Exhibit a directed system in the category sets of finite sets that does not have a direct limit in sets.

 \star

$$\begin{aligned} G_{i} &= \left\{ \begin{array}{ccc} 0_{1} & 1_{1} & \cdots & 1_{n} \end{array} \right\} \\ &i \leq j & \longrightarrow & fij: G_{i} & \rightarrow G_{j} & \text{inclusion} \\ & \implies & \lim_{n \to \infty} G_{i} & \text{is not a finite set.} \\ &l f & G_{i} & = \lim_{n \to \infty} G_{i} & \text{is finite}, \quad flun \quad we \quad get \quad a \\ & \text{contradiction by applying the universal property to} \\ & H &= G_{d} \quad fw \quad > 70: \\ & G_{i} & \longrightarrow G_{d} \quad \begin{cases} 0 & \cdots & i_{n} & \rightarrow \begin{cases} 0 & \cdots & 0_{n} \\ 0 & \cdots & 0_{n} \\ 0 & \cdots & 0_{n} \end{cases} \end{aligned}$$

EXERCISE 1.11 Check that $(\text{Ker }\phi)_x = \text{Ker}(\phi_x)$ for a morphism of abelian sheaves $\phi : \mathcal{F} \to \mathcal{G}$.

DEFINITION 1.47 A \mathscr{B} -presheaf \mathcal{F} consists of the following data:

- *i)* For each $U \in \mathcal{B}$, an abelian group $\mathcal{F}(U)$;
- *ii)* For all $U \subset V$, with $U, V \in \mathcal{B}$, a restriction map $\rho_{UV} \colon \mathcal{F}(U) \to \mathcal{F}(V)$.

As before, these are required to satisfy the relations $\rho_{UU} = id_{\mathcal{F}(U)}$ and $\rho_{WU} = \rho_{VU} \circ \rho_{WV}$. A \mathscr{B} -sheaf is a \mathscr{B} -presheaf satisfying the Locality and Gluing axioms for open sets in \mathscr{B} .

B basis

Since the intersections $V \cap V'$ of two sets $V, V' \in \mathscr{B}$ need not lie in \mathscr{B} , we need to clarify what we mean in the Gluing axiom. Given a covering of $U \in \mathscr{B}$ by subsets $U_i \in \mathscr{B}$ and a covering $\{U_{ijk}\}$ of $U_i \cap U_j$: If $s_i \in \mathcal{F}_0(U_i)$ are sections such that $s_i|_{U_{iik}} = s_j|_{U_{iik}}$, then the s_i should glue to an element in $s \in \mathcal{F}_0(U)$.

PROPOSITION 1.52 Let X be a topological space and let \mathscr{B} be a basis for the topology on X. Then

- *i)* Every \mathscr{B} -sheaf \mathcal{F}_0 extends uniquely to a sheaf \mathcal{F} on X.
- *ii)* If $\phi : \mathcal{F}_0 \to \mathcal{G}_0$ is a morphism of \mathscr{B} -sheaves, then ϕ extends uniquely to a morphism $\phi : \mathcal{F} \to \mathcal{G}$ between the corresponding sheaves.
- *iii)* The stalk of the extended sheaf \mathcal{F} at a point x equals $\varinjlim_{x \in U, U \in \mathscr{B}} \mathcal{F}_0(U)$.

Inverse limits

We can similarly define the *inverse limit* (also called the *projective limit* or just the *limit*) of a directed system $\{M_i\}$. The definition is the same as above, just with the arrows reversed. More precisely, we are given a collection of *A*-modules M_i , indexed by a directed ordered set *I*. Moreover, for every pair *i*, *j* from *I* with $i \leq j$, we are given an *A*-linear map $\phi_{ij}: M_j \rightarrow M_i$ which satisfy the conditions:

$$\Box \phi_{ij} \circ \phi_{jk} = \phi_{ik};$$

F. 3 kuppe

$$\Box \phi_{ii} = \mathrm{id}_{M_i}.$$

The inverse limit $\varprojlim M_i$ is then a module together with universal maps $\phi_i : \varprojlim M_i \rightarrow M_i$ satisfying $\phi_j = \phi_i \circ \phi_{ij}$. That is, for any other module N together with maps $\psi_i : N \rightarrow M_i$ such that $\psi_i = \phi_{ij} \circ \psi_i$ there is a unique A-linear map $\eta : N \rightarrow \varprojlim M_i$ such that $\psi_i = \phi_i \circ \eta$.

PROPOSITION 1.20 Every directed inverse system of modules has a limit.

PROOF: Consider the product $\prod_i M_i$ and define a submodule by

 $L = \{ (x_i) \mid x_i = \phi_{ij}(x_j) \text{ for all pairs } i, j \text{ with } i \leq j \},\$

The projections induce maps to $\phi_i: L \to M_i$, and we claim that L together with these maps constitute the inverse image of the system. A family of maps $\psi_i: N \to M_i$ defines map $\eta: N \to \prod_i M_i$ by $x \mapsto (\psi_i(x))$ which takes values in L when the ψ_i 's satisfying the compatibility constraints $\psi_i = \phi_{ij} \circ \psi_j$. It is clearly unique, and that gives the desired universal property.

F(V) VEB

PROOF: For clarity, let us denote $\rho_{VV'}^0 : \mathcal{F}_0(U) \to \mathcal{F}_0(V)$ the restriction map over subsets $V, V' \in \mathscr{B}$ with $V \supset V'$.

For any open set $U \subset X$, we define $\mathcal{F}(U)$ to be the inverse limit of the $\mathcal{F}_0(V)$, where *V* runs over the basis of open subsets contained in *U*. More precisely,

Note that when $U \supset V$ and $V \in \mathcal{B}$, we have a canonical map

$$\pi_{UV}: \mathcal{F}(U) \to \mathcal{F}_0(V)$$

induced by the projection $\prod_{W \subset U, W \in \mathscr{B}} \mathcal{F}_0(W) \to \mathcal{F}_0(V)$ onto the 'V-th' factor. These commute with the restriction maps $\rho_{VV'}^0$ for $V, V' \in \mathscr{B}$ in the sense that $\rho_{VV'}^0 \circ \pi_{UV} = \pi_{UV'}$ for all $V' \subset V \subset U$ with $V, V' \in \mathscr{B}$. In particular, we see that there is a canonical isomorphism $\pi_{VV} : \mathcal{F}(V) \to \mathcal{F}_0(V)$ for every $V \in \mathscr{B}$.

The projections $\prod_{\mathscr{B}\ni V\subset U} \mathcal{F}_0(V) \to \prod_{\mathscr{B}\ni V\subset U'} \mathcal{F}_0(V)$ furthermore induce, for each $U \supset U'$, a morphism

$$\rho_{UU'}: \mathcal{F}(U) \to \mathcal{F}(U').$$

By construction, this has the property that $\rho_{UU''} = \rho_{U'U''} \circ \rho_{UU'}$ for each chain of opens $U \supset U' \supset U''$. This means that \mathcal{F} is a presheaf on X which extends \mathcal{F}_0 . We note that *iii*) follows immediately, since we may compute the inverse limit using subsets of \mathscr{B} . Checking that the sheaf axioms and that \mathcal{F} is unique is left as exercises (Exercises 1.18 and 1.19).

For *ii*): $\phi_0 : \mathcal{F}_0 \to \mathcal{G}_0$ being a map of \mathscr{B} -sheaves, amounts to saying that the following diagram commutes for each $V \supset V'$ in \mathscr{B} :

$$\begin{array}{ccc} \mathcal{F}(V) & & \stackrel{\phi_{V}}{\longrightarrow} & \mathcal{G}(V) \\ & & & \downarrow \\ \mathcal{F}(V') & \stackrel{\phi_{V'}}{\longrightarrow} & \mathcal{G}(V') \end{array}$$

Taking the inverse limit over all subsets V contained in U, we obtain a natural map

$$\mathcal{F}(U) = \lim_{V \in \mathscr{B}, V \subset U} \mathcal{F}_0(V) \to \lim_{V \in \mathscr{B}, V \subset U} \mathcal{G}_0(V) = \mathcal{G}(U)$$

which extends ϕ_0 . Again this must be unique, as it is completely determined by ϕ_0 on stalks.

EXERCISE 1.18 Prove that the extension sheaf \mathcal{F} constructed above satisfies the two sheaf axioms.

*** EXERCISE 1.19** Prove that the extended sheaf \mathcal{F} is unique.

EXERCISE 1.19 Verify the point (iii) above, that is, show that $\mathcal{F}_x \simeq \varinjlim_{x \in U, U \in \mathscr{B}} \mathcal{F}(U)$.

EXERCISE 1.20 Verify the point (ii) above, that is, show that a morphism of \mathscr{B} -sheaves $\phi : \mathcal{F} \to \mathcal{G}$ has a unique extension to a map of sheaves.