MANDATORY ASSIGNMENT MAT4215 - SPRING 2022

The assignment must be submitted electronically by 14:30, Thursday May 12th.

You need at least 50% to pass. If you have any questions or comments about the problems, feel free to email me at johnco@math.uio.no.

Feel free to use whatever results from Commutative Algebra you want.

Problem 1. [10%]

Give an example of a scheme X, a field K and a morphism of ringed spaces $\text{Spec } K \to X$ which is not a morphism of schemes.

Problem 2. [10%] For each of the following rings A, decide whether the corresponding morphism Spec $A \to \text{Spec } \mathbb{Z}$ is finite or finite type:

- (1) $\mathbb{Z}[i]$
- (2) $\mathbb{Z}[\frac{1}{p}]$
- (3) $\mathbb{Z}_{(p)}$
- (4) $\mathbb{Z} \times \mathbb{Z}$
- (5) $\mathbb{Z}[x]$

Problem 3. [30%]

Describe the scheme theoretic fibers in all points of the following morphisms.

(1) $f : \operatorname{Spec} \mathbb{C}[x, y]/(xy - 1) \to \operatorname{Spec} \mathbb{C}[x]$

(2) $f: \operatorname{Spec} \mathbb{C}[x, y]/(x^2 - y^2) \to \operatorname{Spec} \mathbb{C}[x]$

(3) $f: \operatorname{Spec} \mathbb{C}[x, y]/(xy) \to \operatorname{Spec} \mathbb{C}[x]$

(4) $f: \operatorname{Spec} \mathbb{Z}[x, y]/(xy^2 - m) \to \operatorname{Spec} \mathbb{Z}$, where m is a non-zero integer.

Which fibers are irreducible? Which are reduced?

Problem 4. [25%]

Show the following:

(i) The skyscraper sheaf of \mathbb{C} on $\mathbb{A}^1_{\mathbb{C}}$ at the origin 0 is quasi-coherent.

(ii)* The skyscraper sheaf of $\mathbb{C}(T)$ at the origin $p \in \mathbb{A}^{\mathbb{C}}_{\mathbb{C}}$ is an abelian sheaf on X. Show that this can be made into an \mathscr{O}_X -module by viewing it as $i_*(\mathbb{C}(T))$, where $i: p \to X$ is the inclusion, and p is given the locally ringed space structure $(p, \mathscr{O}_{X,p})$. Show then that this sheaf is *not* quasi-coherent.

(iii) If X is variety over an algebraically closed field k, then the skyscraper sheaf of k at any closed point $x \in X$ is quasi-coherent.

Problem 5. [25%] Let $\mathbb{A}_k^3 = \operatorname{Spec} k[x, y, z]$ and consider the *twisted cubic curve* C given by the ideal $I = (y - x^2, z - x^3)$

Let $\pi: C \to \mathbb{A}^1_k = \operatorname{Spec} k[z]$ be the projection from the line L = V(x, y). (i) Show that π is a finite morphism.

(ii) Compute $\pi_* \mathscr{O}_C$, $\pi^* \mathscr{O}_{\mathbb{A}^1_k}$ and $\pi^* \mathcal{J}$ where \mathcal{J} is the ideal sheaf of the closed point $0 \in \mathbb{A}^1_k$.

Date: May 10, 2022.