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Preface

This book constitutes the extended version of lectures notes for an
advanced course on algebraic stacks and moduli of vector bundles de-
livered by the author at the 27◦ Colóquio Brasileiro de Matemática
at IMPA in Rio de Janeiro in July 2009. The aim of the course was to
give an introduction to algebraic stacks with a particular emphasis
on moduli stacks of vector bundles on algebraic curves. The main
goal was to present recent joint work with Ulrich Stuhler on the ac-
tions of the various Frobenius morphisms on the l-adic cohomology
of the moduli stack of vector bundles of fixed rank and degree on an
algebraic curve in positive characteristic [NS05], [NS].

Let us describe briefly the content of these lecture notes. Every
chapter basically corresponds to the content of one of the five lec-
tures of the advanced course. In the first chapter we will recall some
background material from the theory of vector bundles and principal
bundles followed by an informal introduction into moduli problems
and a justification for the use of stacks. In the final section we will
introduce Grothendieck topologies and sheaves as much as it is nec-
essary for the material presented here. The second chapter gives an
overview of the theory of stacks in general and of algebraic stacks in
particular. We will discuss the main features and examples. From
the third chapter on we shift our attention to the cohomology of al-
gebraic stacks. After giving a quick overview of how to define sheaf
cohomology of algebraic stacks and l-adic cohomology, we will out-
line in the fourth chapter how to determine the l-adic cohomology
of the moduli stack of vector bundles of fixed rank and degree on a
given algebraic curve. This “stackifies” and unifies previous calcula-
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4

tions of Betti numbers for the moduli spaces of stable vector bundles
by Harder and Narasimhan [HN75] in positive characteristic and by
Atiyah and Bott [AB83] in the complex analytic case of stable holo-
morphic vector bundles over compact Riemann surfaces. In the last
chapter, after setting the stage by briefly discussing the classical Weil
Conjectures for complex projective varieties we determine the actions
of the various geometric and arithmetic Frobenius morphisms on the
l-adic cohomology ring of the moduli stack of vector bundles on an
algebraic curve and finally indicate how to prove an analogue of the
Weil Conjectures.

These lecture notes can only be a very brief encounter with the theory
of algebraic stacks and its applications to moduli of vector bundles on
algebraic curves. We tried to give as many references from the liter-
ature as necessary to help making these notes more transparent and
to indicate to the interested reader where more details can be found.
For the theory of algebraic stacks the main source we used here is the
monograph by Laumon and Moret-Bailly [LMB00] and the overview
article by Gómez [Góm01], which also discusses algebraic stacks in
connection with moduli of vector bundles. Our discussion of sheaf co-
homology and especially l-adic cohomology can only be very modest
and brief here. It would be beyond the scope of these lecture notes
to give a complete account. For a full-blown treatment we refer the
reader to the recent articles of Laszlo and Olsson [LO08a], [LO08b]
and in particular for the general theory of l-adic cohomology to the
work of Behrend [Beh93], [Beh03]. Some of the material presented
here can also be found in the Diploma thesis and recent lecture notes
of Heinloth [Hei98], [Hei09].

Prerequisites. We will assume some basic algebraic geometry and a
few notions from category theory. For algebraic geometry, we as-
sume familiarity with basic concepts like algebraic varieties, alge-
braic curves, vector bundles; basic notions of the theory of schemes,
sheaves and cohomology like it is presented for example in the book
of Hartshorne [Har77], Chapter 1, the first half of chapter 2 and in
the first three sections of Chapter 3. Some of the material can also be
found in [EH00], [GH94], [Sha77a] or [Mum99]. From category theory
we assume the reader is familiar with the basic notions of categories,
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functors and natural transformations as can be found for example in
MacLane’s book [ML98].
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Chapter 1

Moduli problems and
algebraic stacks I

1.1 A primer on vector bundles and prin-
cipal bundles

In this section we will recall some basic notions from the theory of
vector bundles and principal G-bundles. The main resources for the
theory of vector bundles we use here is [Har77], [LP97] and especially
for vector bundles on algebraic curves see [Fal95]. Building upon the
theory of “espaces fibrés algébriques” of Weil, principal G-bundles
were first introduced in algebraic geometry by Serre [Ser95] in an
analogous way as the theory of general fiber bundles in algebraic
topology. We will follow closely in this section the exposition of
[Sor00]. We will always work over a field k, which is normally assumed
to be algebraically closed.

Definition 1.1. Let X be a scheme over a field k. A vector bundle
over X is a scheme E together with a morphism π : E → X of schemes
such that π is locally trivial in the (Zariski) topology, i.e. there is a
(Zariski) open covering {Ui}i∈I of X and isomorphisms

ϕi : π−1(Ui)
∼=→ Ui × Ank

9
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10 [CAP. 1: MODULI PROBLEMS AND ALGEBRAIC STACKS I

such that for every pair i, j ∈ I there is a morphism, called transition
function

ϕij : Ui ∩ Uj → GLn(k)

such that ϕiϕ−1
j (x, v) = (x, ϕij(x)v) for all x ∈ Ui ∩ Uj and v ∈ Ank .

The tuples (Ui, ϕi, ϕij) are called a trivialization and the integer n is
called the rank of the vector bundle E denoted by rk(E). If rk(E) = 1
the vector bundle E is called a line bundle.

We also have a natural notion of a morphism between vector bun-
dles, which allows us to define the category of vector bundles.

Definition 1.2. Let π : E → X be a vector bundle of rank n with
trivializations (Ui, ϕi, ϕij) and π′ : E ′ → X be a vector bundle of rank
n′ with trivializations (U ′i , ϕ

′
i, ϕ
′
ij). A morphism of vector bundles

f : E → E ′ is given by a commutative diagram

E
f //

π
��?

??
??

??
? E ′

π′~~~~
~~

~~
~~

X

such that for every pair i, j ∈ I there is a morphism

fij : U ′i ∩ Uj →Matn×n′(k)

such that ϕ′ifϕ
−1
j (x, v) = (x, fij(x)v) for all x ∈ U ′i ∩Uj and v ∈ Ank .

A vector bundle over X is trivial if it is isomorphic to the vector
bundle pr1 : X × Ank → X.

In other words, a morphism of vector bundles f : E → E ′ over X
is a morphism of schemes that commutes with the projections to X
and restricts to a linear map on each fiber. Therefore we can extend
in a natural way the usual operations on vector spaces from linear
algebra to vector bundles. For example, we can speak of subbundles,
direct sums, tensor products etc. of vector bundles.

We can also speak of the categories Bun(X) (resp. Bunn(X)) of
vector bundles (resp. vector bundles of rank n) over X.
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[SEC. 1.1: A PRIMER ON VECTOR BUNDLES AND PRINCIPAL BUNDLES 11

A vector bundle E over X of rank n is defined if we choose an
open covering {Ui}i∈I of X together with morphisms ϕij : Ui∩Uj →
GLn(k) such that ϕii = idUi and ϕij ◦ ϕjk = ϕik on Ui ∩ Uj ∩
Uk. An isomorphic vector bundle E ′ over X is then simply given
by morphisms ϕ′ij such that ϕ′ij = fiϕijf

−1
j for some morphism fi :

Ui → GLn(k). Therefore the set of isomorphism classes of vector
bundles E over X of rank n is in bijective correspondence with the
set H1

Zar(X,GLn(k)) [Gro57b].

Definition 1.3. A section of a vector bundle π : E → X over an
open subset U ⊂ X is a morphism s : U → E such that π ◦ s = idU .
A global section is a section s : U → E with U = X.

The category Bunn(X) is equivalent to a certain subcategory of
the category Coh(X) of coherent sheaves of OX -modules, namely to
the category of locally free OX -modules of finite rank.

Definition 1.4. Let X be a scheme over a field k. A locally free sheaf
F on X is a sheaf of OX-modules such that there is a (Zariski) open
covering {Ui}i of X with F(Ui) ∼= OX(Ui)ni for every i, i.e. F(Ui) is
a free OX(Ui)-module. The number ni is the rank of the free OX(Ui)-
module F(Ui). If all the ni are equal to a constant number n, then F
is called a locally free sheaf of rank n. A locally free sheaf F on X of
rank 1 is called an invertible sheaf.

We will denote by Loc(X) (resp. Locn(X)) be the category of
locally free sheaves (resp. locally free sheaves of rank n) on X. We
have the following correspondence between vector bundles and locally
free sheaves.

Theorem 1.5. Let X be a scheme over a field k. There is an equiv-
alence of categories between the category Bunn(X) of vector bundles
of rank n on X and the category of locally free sheaves Locn(X) of
rank n on X.

Proof. Given a vector bundle E of rank n on X we can construct a
coherent sheaf F by taking for F(U) for every (Zariski) open set U
in X its set of sections Γ(U,F). This is always a locally free sheaf of
constant rank n, i.e. such that all stalks Fx are actually free OX,x-
modules of rank n = rk(F).
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12 [CAP. 1: MODULI PROBLEMS AND ALGEBRAIC STACKS I

Conversely, let F be a locally free coherent sheaf of constant rank
rk(F) = n. Then there is an open affine covering {Ui}i∈I of X such
that F(Ui) ∼= OX(Ui)n. We fix isomorphisms βi : OX(Ui)n

∼=→ F(Ui)
and let βij := βiβj |Ui∩Uj . Let Ai := Γ(Ui,OX) be the coordinate ring
of the affine variety Ui, then Ai[x1, . . . , xn] is the coordinate ring of
the product Ui × Ank . The morphisms βij are given as matrices of
GLn(k), i.e. can be identified with morphisms of the form Ui ∩Uj →
GLn(k). We have βii = idUi and βijβjk = βik on Ui∩Uj∩Uk, i.e. the
morphisms βij define a vector bundle of rank n on X.

From these construction it follows that the functor associating to
a vector bundle of rank n the sheaf of sections as defined above is fully
faithful and essentially surjective, i.e. gives the desired equivalence of
categories [LP97], 1.8.1.

We will normally identify these two categories, i.e. we identify a
vector bundle with its locally free sheaf of local sections and will use
the words “vector bundle” and “locally free sheaf” as synonyms.

Now let us define the notion of a principal bundle over a scheme.
This is very much in analogy with similar definitions in algebraic
topology.

Definition 1.6. Let X be a scheme over a field k and G an affine
algebraic group over k. A G-fibration over X is given by a scheme E,
an action ρ : E ×G→ E and a G-equivariant morphism π : E → X.
A morphism between two G-fibrations π : E → X and π′ : E ′ → X
is given by a morphism f : E → E ′ such that π = π′ ◦ f , i.e. by a
commutative diagram

E
f //

π
��?

??
??

??
? E ′

π′~~~~
~~

~~
~~

X

A G-fibration is called trivial if it is isomorphic to the G-fibration
pr1 : X ×G→ X, where the action is given by

ρ : (X ×G)×G→ X ×G, ρ((x, g), g′) = (x, gg′).
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[SEC. 1.1: A PRIMER ON VECTOR BUNDLES AND PRINCIPAL BUNDLES 13

A principal G-bundle is now simply a locally trivial G-fibration.
But it is important to specify local triviality with respect to a given
topology:

Definition 1.7. Let X be a scheme over a field k and G an affine
algebraic group over k. A principal G-bundle in the Zariski (resp.
étale, resp. smooth , resp. fppf, resp. fpqc) topology is a G-fibration
which is locally trivial in the Zariski (resp. étale, resp. smooth, resp.
fppf, resp. fpqc) topology. This means that for any point x ∈ X
there is a neighborhood U of x such that E|U is trivial in the Zariski
topology, resp. there is an étale (resp. smooth, resp. flat of finite
presentation, resp. flat quasi-compact) covering U ′

ϕ→ U such that
the fibre product

ϕ∗(E|U ) ∼= U ′ ×U E|U

is trivial.

Again, we can speak of the category BunG(X) of principal G-
bundles over the scheme X.

Local triviality in the Zariski topology is the strongest, while local
triviality in the fpqc topology the weakest condition we can ask for.
If the algebraic group G is smooth, then a principal G-bundle with
respect to the fpqc topology is also a principal G-bundle with respect
to the étale topology [Gro95a], §6.

If G = GLn or if X is a smooth projective algebraic curve then
such a principal G-bundle is always locally trivial in the Zariski topol-
ogy [Ste65], 1.9. In general this is however not true as Serre showed
[Ser95]. We refer to the third section of this chapter for the definition
of the various Grothendieck topologies already mentioned here. For
a first encounter we advise just to think about Zariski local triviality
here. If a principal G-bundle E has a section, then it follows that E
is trivial.

Let H1
et(X,G) be the set of isomorphism classes of principal G-

bundles over a scheme X. This is a pointed set, pointed by the
isomorphism class of the the trivial bundle.

Example 1.8 (Associated bundle with fiber F ). If F is a quasi-
projective scheme over the field k with a left action of G and E is a
principal G-bundle over X, we can form the associated bundle E(F ) =
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14 [CAP. 1: MODULI PROBLEMS AND ALGEBRAIC STACKS I

E ×GF with fiber F . It is given as the quotient E ×F under the right
action of G defined by

ρ : G× (E × F )→ E × F, ρ(g, e, f) = (e · g, g−1 · f).

The following two examples are important special cases of the
associated bundle construction.

Example 1.9 (Associated vector bundle). Let V be a vector space
over a field k of dimension n and let G = GLn(V ). Furthermore let
E be a principal G-bundle. The algebraic group G acts on V from
the left and we can form the associated bundle V = E(V ). This is a
vector bundle of rank n.

Conversely, given any vector bundle V of rank n the associated
frame bundle E is a principal GLn-bundle.

Again, it is possible to show that the category Bunn(X) of vector
bundles of rank n and the category BunGLn(X) of principal GLn-
bundles over X are equivalent and we will freely make use of this.

Example 1.10 (Extension and reduction of the structure group).
Let G, H be algebraic groups and ρ : G → H be a morphism. Fur-
thermore let E be a principal G-bundle. The group G acts on H via
ρ and we can form the associated bundle E(H), which is a principal
H-bundle. It is also called the extension of the structure group. This
construction induces a map of pointed sets

H1
et(X,G)→ H1

et(X,H).

Conversely, given a principalH-bundle F we call a principalG-bundle
E together with an isomorhism of G-bundles

τ : E(H)
∼=→ F

a reduction of the structure group.

From now on we will restrict ourselves to vector bundles E on
a smooth projective irreducible algebraic curve X of genus g, even
though some of the construction below make sense for more general
schemes X.
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[SEC. 1.1: A PRIMER ON VECTOR BUNDLES AND PRINCIPAL BUNDLES 15

There is another important invariant associated to a vector bundle
E over an algebraic curve besides the rank rk(E), namely the degree
deg(E), which we will define now.

Example 1.11 (Vector bundle associated to a representation). Let
X be a smooth projective algebraic curve over a field k and E be a
vector bundle over X with n = rk(E). Consider a representation of
the form

ρ : GLn → GLn′ .

As E is locally free we can choose an open cover {Ui}i∈I of the alge-
braic curve X such that there are isomorphisms

βi : E(Ui)
∼=→ OX(Ui)n.

On the intersection Ui ∩ Uj we get

βij := βi ◦ β−1
j ∈ GLn(Γ(Ui ∩ Uj ,OX))

with βii = idUi and βijβjk = βik on Ui ∩Uj ∩Uk. Therefore we have
that ρ(βij) ∈ GLn′(Γ(Ui ∩ Uj ,OX)) defines a vector bundle ρ(E) on
X, the vector bundle associated to the representation ρ.

There is an important special case of this general construction we
want to mention here:

Example 1.12 (Determinant bundle). Let X be a smooth projective
algebraic curve over a field k and E be a vector bundle over X with
n = rk(E). We have the representation

det : GLn → GL1 = Gm.

The associated vector bundle det(E) = Λrk(E)(E) is a line bundle,
called the determinant bundle of E .

We can use now the determinant line bundle to define the degree
of a vector bundle E :

Definition 1.13. Let E be a vector bundle over a smooth projective
algebraic curve X over a field k. The degree deg(E) of E is defined
as the degree of the associated determinant bundle of E

deg(E) = deg(det(E)),

i.e. the degree of the divisor corresponding to the line bundle det(E).
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16 [CAP. 1: MODULI PROBLEMS AND ALGEBRAIC STACKS I

For the general theory of divisors and line bundles on algebraic
curves we refer to [Har77], II. 6 and [Sha77a].

It is easy to see that there exist vector bundles E of any given rank
n and degree d on the algebraic curve X. We just take the vector
bundle E = On−1

X ⊕ L, where L is a line bundle of degree d. Then E
has rank n and degree d.

The rank and degree of a vector bundle E on X are directly related
via the Riemann-Roch theorem (see [Har77], IV. 1):

Theorem 1.14 (Riemann-Roch). Let E be a vector bundle over a
smooth projective algebraic curve X over a field k. Then we have

χ(X, E) = (1− g)rk(E) + deg(E),

where χ(X, E) = dimH0(X, E) − dimH1(X, E) is the Euler charac-
teristic of E and g the genus of the algebraic curve X.

In the special case that X = P1
k is the projective line vector bun-

dles on X can be classified via the following splitting theorem of
Grothendieck [Gro57a].

Theorem 1.15 (Grothendieck). Let k be a field, then every vector
bundle E on P1

k is isomorphic to a direct sum of the form

E ∼= OP1
k
(d1)⊕OP1

k
(d2)⊕ . . .⊕OP1

k
(dn)

where the di ∈ Z and n = rk(E). The integers di are uniquely deter-
mined and

∑
i di = deg(E).

Proof. A proof can be found for example in [Fal95], Ch.1.

In these lectures we are interested in classifying vector bundles
E on any smooth projective curve X over the field Fq. For a more
general algebraic curve X we do not have a splitting theorem as in
the case of the projective line P1

k and the moduli problem of classify-
ing vector bundles on more general curves or schemes is much harder.

Finally we like to state some auxiliary results for stable and
semistable vector bundles on algebraic curves. We refer to [HN75],
[Sha77b] and [VLP85] for the general theory and details.
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[SEC. 1.1: A PRIMER ON VECTOR BUNDLES AND PRINCIPAL BUNDLES 17

Definition 1.16. Let X be a smooth projective irreducible algebraic
curve over a field k and E be a vector bundle over X. The slope of
E is defined as

µ(E) :=
rk(E)

deg(E)
.

A vector bundle E on X is called semistable if for all proper subbun-
dles F ⊂ E we have µ(F) ≤ µ(E). A vector bundle E on X is called
stable if for all proper subbundles F ⊂ E we have µ(F) < µ(E).

We can use the slope to construct a filtration for vector bundles
on algebraic curves [HN75].

Theorem 1.17 (Harder-Narasimhan filtration). Let X be a smooth
projective and irreducible algebraic curve over a field k. Every vector
bundle E over X has a unique filtration of proper subbundles Fi over
X

0 = F ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fr = E
such that µ(Fi+1) < µ(Fi) for all i and all successive quotients
Fi/Fi+1 are semistable vector bundles.

Proof. For a proof see [HN75] or [VLP85].

Let E be a vector bundle on X of rank n and degree d. We get
from the Harder-Narasimhan filtration a sequence of pairs of integers
(n1, d1), (n2, d2), . . . (nr, dr) where ni is the rank and di the degree
of the vector bundle Fi. And the theorem says that these numbers
are unique. If we plot these pairs (ni, di) as points in the euclidean
plane R2 and join the line segments from (ni, di) to (ni+1, di+1), we
obtain a polygonal curve with origin (n, d) such that the slope of each
successive line segment decreases. Such a polygonal curve is called a
Shatz polygon for (n, d). We can think of Shatz polygons as graphs of
functions f : [0, n]→ R and the set of all these functions is partially
ordered. Let us denote by s(E) the Shatz polygon of E . We have the
following theorem:

Theorem 1.18 (Shatz). Let U be locally finite scheme over the field
k and and E be a vector bundle on U × X. Fix a Shatz polygon P
with origin (n, d). Then we have:

(1) The locus U>P := {u ∈ U : s(Eu) > P} is closed.
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(2) The locus UP := {u ∈ U : s(Eu) = P} is closed in the open set
U\U>P .

Proof. For a proof see [Sha77b] or [VLP85].

The Harder-Narasimhan filtration and the Shatz polygon can be
used to construct a so-called Shatz stratification of the moduli stack
of vector bundles of rank n and degree d on the algebraic curve X
via substacks (see [Hei98], [Dhi06]). These stratifications give rise to
Gysin sequences in cohomology.

1.2 Moduli problems, moduli spaces and
moduli stacks

The main motivation for the introduction of algebraic stacks comes
from the elegant treatment they provide for the study of moduli prob-
lems in algebraic geometry.

What is a moduli problem? Philosophically speaking a moduli
problem is a classification problem. In geometry or topology, for ex-
ample, we like to classify interesting geometric objects like manifolds,
algebraic varieties, vector bundles or principal G-bundles up to their
intrinsic symmetries, i.e. up to their isomorphisms depending on the
particular geometric nature of the objects.

Just looking at the set of isomorphism classes of the geometric
objects we like to classify normally does not give much of an insight
into the geometry. To solve a moduli problem means to construct a
certain geometric object, a moduli space, which could be for example
a topological space, a manifold or an algebraic variety such that its
set of points corresponds bijectively to the set of isomorphism classes
of the geometric objects we like to classify.

We could therefore say that a moduli space is a solution space of a
given classification problem or moduli problem. In constructing such
a moduli space we obtain basically a parametrizing space in which
the geometric objects we like to classify are then parametrized by the
coordinates of the moduli space.

Constructing a moduli space as the solution space for a given mod-
uli problem is normally not all what we like to ask for. We also would
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like to have a way of understanding how the different isomorphism
classes of the geometric objects can be constructed geometrically in
a universal manner. So what we really like to construct is a universal
geometric object, such that all the other geometric objects can be
constructed from this universal object in a kind of unifying way.

Let’s look at a motivating example. We like to study the moduli
problem of classifying vector bundles of fixed rank over an algebraic
curve over a field k. We will be mainly interested later in the case
when k is the finite field Fq of characteristic p.

Let X be a smooth projective algebraic curve of genus g over
a field k. We define the moduli functor Mn

X as the contravariant
functor or presheaf of sets from the category (Sch/k) of all schemes
over k to the category of sets

Mn
X : (Sch/k)op → (Sets).

On objects the functorMn
X is defined by associating to a scheme

U in (Sch/k) the set Mn
X(U) of isomorphism classes of families of

vector bundles of rank n on X parameterized by U , i.e. the set of
isomorphism classes of vector bundles E of rank n on X × U .

On morphisms Mn
X is defined by associating to a morphism of

schemes f : U ′ → U the map of sets f∗ :Mn
X(U)→Mn

X(U ′) induced
by pullback of the vector bundle E along the morphism idX × f as
given by the commutative diagram

(idX × f)∗E //

��

E

��
X × U ′

idX×f // X × U

The moduli problem for classifying vector bundles of rank n and
degree d on a smooth projective algebraic curve X is now equivalent
to the following question.

Question (Moduli Problem). Is the moduli functor Mn
X rep-

resentable? In other words, does there exist a scheme Mn
X in the
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category (Sch/k) such that for all schemes U in (Sch/k) there is a
bijective correspondence of sets

Mn
X(U) ∼= Hom(Sch/k)(U,Mn

X)?

If such a scheme Mn
X exists, it is also called a fine moduli space.

Let’s discuss why the representability of the moduli functor Mn
X

would indeed solve the moduli problem as described before. If a
fine moduli space Mn

X exists, we would have in paricular a bijective
correspondence

Mn
X(Spec(k)) ∼= Hom(Sch/k)(Spec(k),Mn

X).

But this means that isomorphism classes of vector bundles over X
are in bijective correspondence with points of the moduli space Mn

X .
If a fine moduli space Mn

X exists, we would also have a bijective
correspondence

Mn
X(Mn

X) ∼= Hom(Sch/k)(Mn
X ,M

n
X).

Now let Euniv be the element of the set Mn
X(Mn

X) corresponding to
the morphism idMn

X
, i.e. Euniv is a vector bundle of rank n over

X ×Mn
X .

This vector bundle Euniv over X×Mn
X is called a universal family

of vector bundles overX, because representability implies that for any
vector bundle E over X×U there is a unique morphism f : U →Mn

X

such that E ∼= (idX × f)∗(Euniv) in the pullback diagram

E ∼= (idX × f)∗Euniv //

��

Euniv

��
X × U

idX×f // X ×Mn,d
X

Representability of the moduli functorMn
X would therefore solve

the moduli problem and addresses both desired properties of the solu-
tion, namely the existence of a geometric object such that its points
correspond bijectively to isomorphism classes of vector bundles on
the curve X and the existence of a universal family Euniv of vector
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bundles such that any family of vector bundles E over X can be con-
structed up to isomorphism as the pullback of the universal family
Euniv along the classifying morphism.

Unfortunately it turns out that we run into a fundamental prob-
lem, which is typical for many moduli problems arising in algebraic
geometry.

Problem. The moduli functorMn
X is not representable, because vec-

tor bundles have non-trivial automorphisms.

For example, there are many automorphisms induced by scalar
multiplication, so the multiplicative group Gm is always a subgroup
of the automorphism group Aut(E) of a vector bundle E .

We can argue as follows to show that the moduli functor Mn
X

is not representable. Let E be a vector bundle on X × U and let
pr2 : X × U → U be the projection map. In addition, let L be a line
bundle on U . Define the induced bundle E ′ := E ⊗ pr∗2L. As vector
bundles are always locally trivial in the Zariski topology it follows
that there exists an open covering {Ui}i∈I of the scheme U such that
the restriction L|Ui of L on Ui is the trivial bundle for all i ∈ I. We
will have on X × Ui therefore that

E|X×Ui ∼= E ′|X×Ui .

Assume now that the moduli functorMn
X is representable, i.e. there

exists a scheme Mn
X such that for all schemes U in the category

(Sch/k) there is a bijective correspondence of sets

Mn
X(U) ∼= Hom(Sch/k)(U,Mn

X).

Then it follows that there exists morphisms of schemes

α, α′ : U →Mn
X

corresponding to the two vector bundles E and E ′ on X × U . But
from the remarks above on local triviality of vector bundles it follows
that the restrictions of α and α′ on Ui must be equal for all i ∈ I, i.e.

α|Ui = α′|Ui .
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And from this it would follow immediately that α = α′ and therefore
E ∼= E ′. But in general the two vector bundles E and E ′ are not nec-
essarily globally isomorphic.

As we cannot expect representability of the moduli functor Mn
X

the question arises if there are any ways out of this dilemma?

There are basically two approaches to circumvent the problem of
non-representability of the moduli functor:

1. Restrict the class of vector bundles to be classified to eliminate
automorphisms, i.e. rigidify the moduli problem via restriction
of the moduli functor to a smaller class of vector bundles and
use a weaker notion of representability.

2. Record the information about automorphisms by organizing the
moduli data differently, i.e. enlarge the category of schemes to
ensure representability of the moduli functor.

The first approach is the approach widely used for the study of
moduli problems in algebraic geometry. Classically for vector bun-
dles one would rigidify the moduli problem by restricting to the class
of stable or semistable vector bundles and uses the weaker notion of
a coarse moduli space instead of a fine moduli space. A coarse mod-
uli space still gives representability on points, but will not directly
allow for the construction of a universal family. This approach uses
the machinery of Geometric Invariant theory (GIT) as developed by
Mumford [MFK94]. Using GIT methods it is possible to construct
coarse moduli spaces for stable and semistable vector bundles on pro-
jective varieties. We will not follow this line of investigation here,
but like to refer to the lecture notes by Esteves [Est97] and Gatto
[Gat00] which also provide an excellent introduction into the general
theory of moduli problems and the construction of moduli spaces.

The second approach is the one using algebraic stacks and which
we will pursue here. Following earlier ideas of Grothendieck and Gi-
raud [Gir71] Algebraic stacks were first used in the context of moduli
problems by Deligne and Mumford [DM69] to study the moduli prob-
lem of algebraic curves of genus g. Nowadays these are referred to
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as Deligne-Mumford algebraic stacks and can be thought of algebro-
geometric analogues of orbifolds, which were introduced before in dif-
ferential geometry by Satake [Sat56] under the name of V -manifolds.
Deligne-Mumford algebraic stacks were later generalized by Artin
[Art74] to what is now called an Artin stack. He used them to de-
velop concepts of global deformation theory.

Let us briefly discuss how this second approach applies to our
motiviating example, the moduli problem of vector bundles of rank
n on a smooth projective algebraic curve X. How can we record the
moduli data differently so that we don’t lose the information from the
automorphisms? Instead of passing to sets of isomorphism classes of
vector bundles we will use a categorical approach to record the infor-
mation coming from the automorphisms.

As above let X be a smooth projective algebraic curve of genus g
over a field k. We define the moduli stack BunnX as the contravariant
“functor” from the category (Sch/k) of schemes over k to the category
of groupoids Grpds

BunnX : (Sch/k)op → Grpds.

On objects BunnX is defined by associating to a scheme U in
(Sch/k) the category BunnX(U) with objects being vector bundles E
of rank n on X×U and morphisms being vector bundle isomorphism,
i.e. for every scheme U the category BunnX(U) is a groupoid, i.e. a
category in which all its morphisms are isomorphisms.

On morphisms BunnX is defined by associating to a morphism of
schemes f : U ′ → U a functor f∗ : BunnX(U)→ BunnX(U ′) induced
by pullback of the vector bundle E along the morphism idX × f as
given by the pullback diagram

(idX × f)∗E //

��

E

��
X × U ′

idX×f // X × U

Because pullbacks are only given up to natural isomorphisms we
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also have for any pair of composable morphisms of schemes

U ′′
g→ U ′

f→ U

a natural isomorphism between the induced pullback functors

εf,g : g∗ ◦ f∗ ∼= (f ◦ g)∗.

And these natural isomorphisms will be associative with respect to
composition.

It is important to observe that BunnX is not really a “functor” in
the classical categorical sense as it preserves composition not on the
nose, but only up to specified coherent isomorphisms and BunnX is
therefore what in general is called a pseudo-functor. When dealing
with moduli problems the functors f∗ are often given as pullback
functors and the natural transformations εf,g as in the case of vector
bundles between composition of pullback functors are induced be-
cause of uniqueness of pullbacks up to isomorphisms. The coherence
they need to satisfy is then automatically satisfied, because pullbacks
are characterized by a universal property. As we will see later in the
formal definition of a pseudo-functor, these natural transformations
need to be specified explicitly in more general situations.

There is also a fundamental difference between the set of isomor-
phism classes of vector bundles and the groupoid of vector bundles
and vector bundle isomorphisms. Sets can be viewed as categories
where the only morphisms are simply the identity morphisms, while
groupoids are categories where morphisms can be more general iso-
morphisms. The category of groupoids is of a higher categorical
hierachy than the category of sets and is in fact what is called a
2-category. We will recall later the basic categorical terminology of
2-categories and pseudo-functors relevant for us in the context of
moduli problems.

An important feature of vector bundles is in addition that they
have the special property that they can be defined on open cover-
ings and glued together when they are isomorphic when restricted
to intersections. So what we really will get here for BunnX is a
pseudo-functor with glueing properties on the category (Sch/k) once
we have specified a topology called Grothendieck topology on the
category (Sch/k) in order to be able to speak of “coverings” and
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“glueing ”. Such pseudo-functors with glueing properties, like BunnX
are called stacks. In some sense we can think of stacks as “sheaves of
groupoids”, but need to take into account the difference to classical
sheaves of sets. Sheaves of sets can be glued together if they agree
by equality on coverings, but stacks can be glued if they agree up to
coherent isomorphisms.

And as every scheme S can be considered as a sheaf of sets and
therefore also as a “sheaf of groupoids”, i.e. a stack, a version of the
Yoneda Lemma for stacks will ensure representability of BunnX and
from this we will get the desired properties we asked for of a solu-
tion of a moduli problem. The difference is that representability of
the moduli functor will not take place anymore in the category of
schemes, but in the larger category of stacks. In this way we will
also obtain automatically a universal family of vector bundles Euniv
of rank n, but now over the stack X ×BunnX . It will have the de-
sired property that any vector bundle E of rank n over X ×U can be
obtained via pullback from the universal bundle Euniv along a classi-
fying morphism.

In order to make all this rigorous we will formally introduce in the
next sections the concept of a stack and derive its main properties
necessary for treating moduli problems and to do algebraic geometry
with them.

To summarize this informal discussion, we can say that the ad-
vantages of using the language of stacks over the classical approach
towards constructing moduli spaces are the following:

1. The moduli problem of classifying vector bundles of rank n over
a smooth projective algebraic curve X of genus g over the field
k has no solution in the category (Sch/k), but in stacks. The
moduli functor BunnX is representable in stacks, i.e. there is an
equivalence of categories for any scheme U in (Sch/k)

BunnX(U) ∼= HomStacks(U,BunnX)

where U = HomSch/k(−, U) is the stack associated to U .

2. There exists a universal vector bundle bundle Euniv of rank n
over the stack X ×BunnX such that for any vector bundle E of
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rank n over the scheme X × U there is a morphism of stacks

ϕ : U → BunnX

such that E is given via the pullback E ∼= (idX × ϕ)∗Euniv from
the pullback diagram of stacks

E ∼= (idX × ϕ)∗Euniv //

��

Euniv

��
X × U idX×ϕ // X ×BunnX

These are the desired properties we ask for a solution of a mod-
uli problem, which will allow for many important constructions with
stacks.

Another motivation besides moduli problems for the use of the
language of stacks are quotient problems.

What is a quotient problem? A quotient problem can be charac-
terized as follows. Let X be a scheme over a field k and let G be a
linear algebraic group acting on X via

ρ : X ×G→ X.

Let us for the moment also assume the the action ρ is a free action.
Then the quotient X/G exists as a scheme and the quotient morphism
τ : X → X/G is a principal G-bundle. The points of the quotient
scheme X/G are given by morphism of schemes U → X/G. For any
such morphism f : U → X/G we have a pullback diagram of the form

E α //

π

��

X

τ

��
U

f // X/G

The morphism f defines therefore a principal G-bundle π : E → U
together with an G-equivariant morphism α : E → X.

If the action of the algebraic group G on X is not free, the quotient
X/G might in general not exist in the category of schemes. Again
there are in principle two ways out of this dilemma:
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1. Restrict the class of schemes X or the action of G on X to con-
struct quotients, i.e. rigidify the quotient problem via restriction
to a smaller class of schemes and actions.

2. Organize the quotient data differently, i.e. enlarge the category
of schemes to ensure the existence of the quotient.

The first approach to the quotient problem uses again Geomet-
ric Invariant Theory (GIT), while the second approach can be made
precise by working with stacks and considering the quotient simply
as a stack.

Let us here briefly outline again the principal idea behind the
second approach towards quotient problems.

Let X be a scheme defined over a field k together with an action
of a linear algebraic group G.

We define the quotient stack [X/G] as the contravariant “func-
tor” from the category (Sch/k) of schemes over k to the category of
groupoids Grpds

[X/G] : (Sch/k)op → Grpds.

On objects the functor [X/G] is defined by associating to a scheme
U in (Sch/k) the category [X/G](U) with objects being principal G-
bundles π : E ↓ U over U together with a G-equivariant morphism
α : E → X and morphisms being isomorphisms of principalG-bundles
commuting with the G-equivariant morphisms, i.e. for every scheme
U the category [X/G](U) is a groupoid.

On morphisms [X/G] is defined by associating to a morphism of
schemes f : U ′ → U a functor f∗ : [X/G](U) → [X/G](U ′) induced
by pullbacks of principal G-bundles.

Again, because pullbacks are only defined up to natural isomor-
phisms we have for any pair of composable morphisms of schemes

U ′′
g→ U ′

f→ U

a natural isomorphism between the induced pullback functors

εf,g : g∗ ◦ f∗ ∼= (f ◦ g)∗.
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These natural transformations will again be associative with respect
to composition.

So similar as with the moduli stack BunnX , we get a pseudo-
functor [X/G], which will again be a stack after defining a suitable
topology on the category (Sch/k).

In the special case that X = Spec(k), i.e. X is just a point with a
trivial G-action, the quotient stack [Spec(k)/G] can be understood as
the moduli stack of all principal G-bundles, which is also called the
classifying stack of the group G denoted by BG. It plays a similar
role in algebraic geometry as the classifying space BG in algebraic
topology. But while in algebraic topology principal G-bundles are
classified by homotopy classes of maps into the classifying space BG
in algebraic geometry principalG-bundles are classified by morphisms
of stacks into the classifying stack BG.

1.3 Sites, sheaves and spaces

In order to define stacks on the category of all schemes (Sch/S) over
a base scheme S we have to introduce a topology on the category
(Sch/S). This is done via the general concept of a Grothendieck
topology, which is a generalization of the classical topology of open
sets of a topological space. We will collect here the basic terminology
necessary for our purpose. We refer to [sga72], [Del77], [Tam94],
[MLM94] for a more systematic treatment. Especially in relation
with descent theory and stacks we will refer also to [Gir71], [Vis05].

Definition 1.19. Let C be a category such that all fiber products exist
in C. A Grothendieck topology on C is given by a function τ which
assigns to each object U of C a collection τ(U) consisting of families
of morphisms {Ui

ϕi→ U}i∈I with target U such that

1. (Isomorphisms) If U ′ → U is an isomorphism, then {U ′ → U}
is in τ(U).

2. (Transitivity) If the family {Ui
ϕi→ U}i∈I is in τ(U), and if for

each i ∈ I one has a family {Uij
ϕij→ Ui}j∈J in τ(Ui), then the

family {Uij
ϕi◦ϕij−→ U}i∈I,j∈J is in τ(U).
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3. (Base change) If the family {Ui
ϕi→ U}i∈I is in τ(U), and if

V → U is any morphism, then the family {V ×U Ui → V } is in
τ(V ).

The families in τ(U) are called covering families for U in the τ -
topology. A site is a category C with fiber products together with a
Grothendieck topology τ , also denoted by Cτ .

It is good to think of a Grothendieck topology on a category C
simply as a choice of a class of morphisms, which play the role of
“open sets” in analogy with a topological space. An open cover of a
topological space U can be seen also as choosing a class of morphisms
in the category of topological spaces fi : Ui → U such that the fi are
open inclusions and the union of their images is U .

Let us also recall here a useful notion from category theory which
we will need later.

Definition 1.20. Let C be a category and X an object of C. The slice
category (C/X) is the category whose objects are morphisms U → X
and whose morphisms are given by commutative diagrams of the form

U ′ //

  A
AA

AA
AA

A U

~~~~
~~

~~
~~

X

Our main example of a slice category will be the category (Sch/S)
of schemes over a base scheme S. The objects of (Sch/S) are schemes
X together with a structure morphism X → S and the morphisms
are given by the obvious commutative diagrams again. We call this
category simply the category of S-schemes. Most important for us in
these lectures will be the case when S = Spec(k) is the spectrum of
a field k and we simply write (Sch/k) for the category of all schemes
over the base scheme Spec(k).

Now let us look at some examples of sites used in algebraic geom-
etry to illustrate the concept of a Grothendieck topology.

Geometric properties of morphisms of schemes.We will recall some
geometric properties of morphisms of schemes. We refer to [GD67a]
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and [Har77] for a systematic treatment and background material.

A morphism f : X → Y is locally of finite type if for every point
x in X with f(x) = y there are affine neighborhoods U ∼= Spec(B) of
x and V ∼= Spec(A) of y with f(U) ⊂ V such that the induced map
A = Γ(V,OV ) → B = Γ(U,OU ) makes B into a finitely generated
algebra over A, i.e. B = A[X1, . . . Xn]/I for some ideal I. f : X → Y
is locally of finite presentation if we can find such neighborhoods as
before with B of finite presentation over A, i.e. B = A[X1, . . . Xn]/I
with I = (F1, . . . Fm) for some polynomials Fi ∈ A[X1, . . . Xn].

A morphism f : X → Y of schemes is of finite type if every
point y of Y has an affine open neighborhood V ∼= Spec(A) such
that f−1(V ) ⊂ X is covered by a finite number of affine open sets
U ∼= Spec(B) with B a finitely generated algebra over A.

A morphism f : X → Y of schemes is an open embedding if it
factors into an isomorphism X → Y ′ followed by an inclusion Y ′ ↪→ Y
of an open subscheme Y ′ of Y . Similar if Y ′ is a closed subscheme of
Y then f is called a closed embedding.

A morphism f : X → Y of schemes is quasi-compact if f−1(U)
can be covered by a finite number of affine open subsets of X for
every affine open subset U of Y . It follows that a morphism is of
finite type if and only if it is locally of finite type and quasi-compact.

A morphism f : X → Y is separated if the image of the diago-
nal morphism ∆ : X → X ×Y X is a closed subset of X ×Y X or
equivalently the diagonal morphism ∆ is a closed embedding.

A morphism f : X → Y of schemes is quasi-separated if the
diagonal morphism ∆ is quasi-compact.

A morphism f : X → Y of schemes is proper if it is separated, of
finite type and closed (i.e. the image of any closed subset is closed).

A morphism f : X → Y of schemes is flat if for every point x in
X the local ring OX,x is a flat OY,f(x)-module.

A morphism f : X → Y of schemes is faithfully flat if it is flat
and surjective.

A morphism f : X → Y of schemes is fppf if it is faithfully flat
and locally of finite presentation.

A morphism f : X → Y of schemes is fpqc if it is faithfully flat,
surjective and every quasi-compact open subset of Y is the image of
a quasi-compact open subset of X.
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This is the modified definition of an fpqc morphism of Kleiman,
which gives rise to the correct sheaf theory. If we would just assume
instead that f is surjective and faithfully flat, Zariski covers would
not be includes and one would not be able to compare the topologies
(see the discussion in [Vis05], 2.3.2).

Let f : X → Y be a morphism of schemes and y be a point of Y .
We have an induced morphism of local rings f ] : OY,f(x) → OX,x Let
m be the maximal ideal of OY,f(x) and n = f ](OY,f(x)) be the ideal
generated by the image of m in OX,x. A morphism f : X → Y of
schemes is unramified if f is locally of finite presentation and for all
points y in Y the ideal n is the maximal ideal of OX,x and the induced
map OY,f(x)/m→ OX,x/n is a finite, separable field extension. This
is the geometric generalization of an unramified field extension in
algebraic number theory.

A morphism f : X → Y of schemes is étale if it is flat and unram-
ified. We can think about this property as an analogue of an étale
map or local diffeomorphism in differential topology.

A morphism f : X → Y of schemes is smooth if it is locally of
finite presentation, flat and for any morphism of schemes of the form
Spec(k) → Y with k a field the geometric fiber X ×Y Spec(k) is
regular, i.e. all its local rings are regular local rings. Equivalently,
every point x in X has a neighborhood U , which is mapped to an
open subset V of Y such that there is a commutative diagram

U
� � //

��

Spec(A[X1, . . . Xn]/(F1, . . . Fm))

��
V

� � // Spec(A)

where the horizontal morphisms are open embeddings such that on U
we have: rk(∂Fi/∂Xj) = m. There is a similar local characterisation
of étale morphisms, but with m = n. We can think again of a smooth
morphism as an analogue of a smooth map in differential topology.

Many more characterizations and properties of unramified, étale
and smooth morphisms can be found in [GD67a] and [Har77]. De-
pending on the correct choice of a class of geometric morphisms we
can define various Grothendieck topologies on the category (Sch/S)
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of S-schemes. We can define small and big sites depending on if the
emphasis is on a single scheme or on all schemes.

Example 1.21. Let X be a scheme over a base scheme S and let
XZar be the category whose objects are open embeddings U → X
and whose morphisms are morphisms U ′ → U over X, i.e. morphisms
are given by commutative diagrams

U ′
ϕ //

  A
AA

AA
AA

A U

~~~~
~~

~~
~~

X

A family of morphisms {Ui ↪→ U}i∈I is defined to be a covering
family for U if the union is U i.e. given by commutative diagrams for
every i ∈ I

Ui
ϕi //

  A
AA

AA
AA

U

��~~
~~

~~
~~

X

such that
⋃
i∈I Ui = U. The resulting site is called the small Zariski

site of X denoted by XZar.

Example 1.22. Let X be a scheme over a base scheme S and let Xet

be the category whose objects are étale morphisms U → X and whose
morphisms are étale morphisms U ′ → U over X, i.e. morphisms are
given by commutative diagrams

U ′
ϕ //

  A
AA

AA
AA

A U

~~~~
~~

~~
~~

X

A family of morphisms {Ui
ϕi→ U}i∈I is a covering family if it is a

jointly surjective family of morphisms, i.e. if the union of the images
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is U , i.e. given by commutative diagrams for every i ∈ I

Ui
ϕi //

  A
AA

AA
AA

U

��~~
~~

~~
~~

X

such that
⋃
i∈I ϕi(Ui) = U. In other words,

∐
i∈I Ui → U is an étale

morphism.The resulting site is the small étale site of X denoted by
Xet.

The étale topology is finer than the Zariski topology on a scheme
X, because there are more “open sets”.

Example 1.23. Let X be a scheme over a base scheme S. If we
replace in the last example “étale” by “smooth” (resp. “fppf”, resp.
“fpqc”), we will get instead the small smooth site Xsm (resp. the
small fppf site Xfppf , resp. the small fpqc site Xfpqc) of X. In the
construction of the small sites a bit of care is needed as normally we
don’t have enough products at hand. One basically defines first a
so-called pretopology which then generates a Grothendieck topology.

Example 1.24. Let (Sch/S) be the category of S-schemes. We
can give it the Zariski (resp. étale, resp. smooth, res. fppf, resp.
fpqc) topology by imposing them for every scheme U of the category
(Sch/S). The covering families of any given scheme U are families
{Ui

ϕi→ U}i∈I with
⋃
i∈I ϕi(Ui) = U of open embeddings (resp. étale

morphisms, resp. smooth morphisms, resp. fppf morphisms, resp.
fpqc morphisms). We call the resulting site on (Sch/S) the big Zariski
site (Sch/S)Zar (resp. the big étale site (Sch/S)et, resp. the big
smooth site (Sch/S)sm, resp. the big fppf site (Sch/S)fppf , resp. the
big fpqc site (Sch/S)fpqc).

If we don’t want to specify a particular choice of a Grothendieck
topology we will sometimes denote by Xτ the small site with respect
to a Grothendieck topology τ on the scheme X and with (Sch/S)τ
the big site with respect to a Grothendieck topology τ on the cate-
gory of S-schemes. In practice τ will refer to one of the Grothendieck
topologies discussed above.
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After having defined the concept of a topology on a category we
can now define sheaves on it. Let’s start with the purely categorical
notion of a presheaf.

Definition 1.25. Let C be a category. A presheaf of sets on C is a
functor F : Cop → (Sets). Morphisms of presheaves of sets on C are
given by natural transformation of functors f : F → F ′. We denote
by PrShv(C) the category of presheaves on C.

The notion of a sheaf reflects in addition glueing properties with
respect to covering families of a Grothendieck topology τ chosen on
the category C.

Definition 1.26. Let Cτ be a site. A sheaf on C for the Grothendieck
topology τ is a presheaf of sets F : Cop → (Sets) satisfying the fol-
lowing two glueing axioms:

1. For all objects U in C, for all f, g ∈ F(U) and all covering
families {Ui

ϕi→ U}i∈I in τ(U) we have that, if f |Ui = g|Ui for
all i ∈ I, then f = g.

2. For all covering families {Ui
ϕi→ U}i∈I in τ(U) and systems

{fi ∈ F(Ui)}i∈I such that F(ϕij,i)(fi) = F(ϕij,j)(fj) in the set
F(Ui ×U Uj), there exists an f ∈ F(U) such that f |Ui = fi
for all i ∈ I. Here ϕij,i : Ui ×U Uj → Ui is the pullback of ϕj
along ϕi. In other words, F(U) is the equalizer of the following
diagram

F(U) = Ker(
∏
i∈I F(Ui)

∏
i,j F(Ui ×U Uj))

F(ϕij,i) //
F(ϕij,j)

//

Morphisms of sheaves on C are natural transformations of presheaves
f : F → F ′. We denote by Shv(C) the category of sheaves on C.

We are mainly interested in sheaves on the category (Sch/S) of
S-schemes together with a Grothendieck topology τ and will restrict
ourselves to this particular situation now.

Definition 1.27. Let (Sch/S)τ be a site over the category (Sch/S)
of S-schemes. An S-space with respect to the Grothendieck topology
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τ is a sheaf of sets over the site (Sch/S)τ . We denote by (Spaces/S)
the category of S-spaces.

We have the following important presheaf on the category (Sch/S)
of S-schemes.

Definition 1.28. Let X be an object of (Sch/S). Its functor of
points is defined as the Yoneda functor

hX := Hom(Sch/S)(?, X) : (Sch/S)op →(Sets)
U 7→Hom(Sch/S)(U,X)

where Hom(Sch/S)(U,X) is the set of morphisms between S-schemes.

We can ask when the presheaf hX for a given S-scheme X is
actually a sheaf on the category (Sch/S) of S-schemes together with
a Grothendieck topology. This can be answered using descent theory.

Theorem 1.29 (Grothendieck). For any S-scheme X, the functor
hX : (Sch/S)op → (Sets) is a sheaf for the fpqc-topology.

Proof. This is [Vis05], Thm. 2.55. See also [Gro95a].

Therefore the functor hX is a sheaf also for the Zariski, étale,
smooth and fppf topology as the fpqc is the finest Grothendieck topol-
ogy among them. In general it is harder to define a sheaf on a finer
topology than on a given one as we have more things to glue.

If the functor of points hX = Hom(Sch/S)(?, X) is a sheaf with
respect to the Grothendieck topology τ , we can view any scheme
X in the category (Sch/S) as an S-space via hX and a morphism
between two S-spaces is equivalent to a morphism of schemes via the
Yoneda embedding. Then the category (Sch/S) of S-schemes is a
full subcategory of the category (Spaces/S) of S-spaces and we will
sometimes write X if we view an object of the category (Sch/S) as
an S-space. We can then define the following concept:

Definition 1.30. Let (Sch/S) be the category of S-schemes together
with a Grothendieck topology τ . An S-space F is called representable
if there exists an object X of (Sch/S) such that F is isomorphic to the
functor of points hX , i.e. we have a natural isomorphism of functors

F(?) ∼= Hom(Sch/S)(?, X).
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We will later need a special case of an S-space with respect to
the étale topology, called algebraic space which behaves very much
like a scheme and which allows us to do algebraic geometry with.
Algebraic spaces were introduced by Artin [Art71] and studied in
detail by Knutson [Knu71]. They proved to be the right notion for
the construction of quotients from étale equivalence relations.

Definition 1.31. An equivalence relation in the category (Spaces/S)
of S-spaces on the big étale site (Sch/S)et is given by two S-spaces
R and X together with a monomorphism of S-spaces

δ : R −→ X ×S X

such that for all objects U of (Sch/S) the map

δ(U) : R(U)→ X(U)×X(U)

is the graph of an equivalence relation between sets. A quotient S-
space for such an equivalence relation is given as the coequalizer of
the following diagram

R
pr2◦δ //
pr1◦δ

// X.

We define now the notion of an algebraic space [Knu71], [Art71],
which is a special S-space on the category (Sch/S) with the étale
topology. See also [LMB00], Chap. 1. for a general discussion of
algebraic spaces.

Definition 1.32. An algebraic space is an S-space X on the site
(Sch/S)et such that

1. For all schemes X, Y and all morphisms of S-spaces x : X →
X , y : Y → X the sheaf X ×X Y is representable by a scheme.

2. There exists a scheme X, called an atlas and a surjective étale
morphism x : X → X , i.e. for all morphisms of S-spaces y :
Y → X , where Y is a scheme, the projection X ×X Y → Y is
a surjective étale morphism of schemes.

Let (AlgSpaces/S) be the full subcategory of algebraic spaces of
the category (Spaces/S) of S-spaces. Algebraic spaces can be char-
acterized as being a quotient of a scheme by an étale equivalence
relation.
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Proposition 1.33. An S-space X is an algebraic space if and only
if it is the quotient S-space for an equivalence relation with R and
X both objects of (Sch/S), pr1 ◦ δ, pr2 ◦ δ étale morphisms and δ a
quasi-compact morphism in (Sch/S).

Proof. This is [Knu71]. II, 1.3.. Basically let R = X ×X X where X
is an atlas of the algebraic space X .

We can therefore think of an algebraic space as an S-space that
looks locally in the étale topology like an affine scheme, similar as a
scheme looks locally like an affine scheme in the Zariski topology.

Later we will see that algebraic spaces are algebraic stacks which
are actually sheaves of sets.
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Chapter 2

Moduli problems and
algebraic stacks II

2.1 Stacks

In this section we will introduce stacks formally. The idea is to define
them exactly as those pseudo-functors with glueing properties as dis-
cussed before in relation with moduli and quotient problems. We are
mainly interested in stacks over the category of schemes, but we will
formulate much of the theory as general as possible. Besides in alge-
braic geometry stacks are nowadays also used in topology, differential
geometry or complex geometry. Stacks can be defined equally well
over the category of topological spaces, over the category of topo-
logical or smooth manifolds or over the category of complex analytic
spaces. We refer the interested reader to the articles of Noohi [Noo05]
and Metzler [Met03] for stacks over the category of topological spaces
or to Heinloth [Hei05] and Metzler [Met03] for stacks over the cate-
gory of smooth manifolds. Alternative approaches towards stacks via
homotopy theory can be found in the article of Hollander [Hol08] and
using topos theory in the article of Pronk [Pro96].

Before defining the notion of a stack we will recall the basic no-
tions of 2-categories and 2-functors, which are necessary to make the
definition of a stack rigorous. We will follow here [Hak72] and the

39
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appendix in [Góm01].

Definition 2.1. A 2-category C is given by the following data:

1. A class of objects ob(C).

2. For each pair of objects X,Y ∈ ob(C) a category Hom(X,Y ).

3. (Horizontal composition of 1-morphisms and 2-morphisms) For
each triple of objects X,Y, Z ∈ ob(C) a functor

µX,Y,Z : Hom(X,Y )×Hom(Y,Z)→ Hom(X,Z)

such that

(i) (Identity 1-morphism) For each object X ∈ ob(C), there
exists an object idX ∈ Hom(X,X) such that

µX,X,Y (idX , ?) = µX,Y,Y (?, idY ) = idHom(X,Y ),

where idHom(X,Y ) is the identity functor on the category
Hom(X,Y ).

(ii) (Associativity of horizontal compositions) For each quadru-
ple of objects X,Y, Z,W ∈ ob(C), we have

µX,Y,W ◦(µX,Y,Z×idHom(Z,W )) = µX,Y,W ◦(idHom(X,Y )×µY,Z,W ).

Example 2.2 (Category of categories). Let Cat be the 2-category
of categories. The objects of Cat are categories C and for each pair
C,D of categories, Hom(C,D) is the category with objects being the
functors between C and D and morphisms the natural transformation
between these functors.

Example 2.3 (Groupoids). A groupoid is a category where all mor-
phisms are invertible, i.e. isomorphisms. Let Grpds be the 2-category
of groupoids. The objects of Grpds are groupoids G and for each pair
G,H of groupoids, Hom(G,H) is the category of functors between
G and H with morphisms being again the natural transformations
between these functors.
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Definition 2.4. Let C be a 2-category. An object f of the category
Hom(X,Y ) is called a 1-morphism of C and is represented by a dia-
gram of the form

X
f // Y

A morphism α of the category Hom(X,Y ) is called a 2-morphism of
C and is represented by a diagram of the form

X Y

f

��

f ′

@@
α

��

We can now rewrite the axioms of a 2-category using commutative
diagrams as in the previous definition.

1. (Composition of 1-morphisms) Given a diagram of the form

X
f // Y

g // Z

there is given a composition X
g◦f−→ Z and this composition is

associative, i.e. we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

2. (Identity for 1-morphisms) For each object X there is a 1-
morphism idX such that

f ◦ idY = idX ◦ f = f.

3. (Vertical composition of 2-morphisms) Given a diagram of the
form

X Y
g //

f

��

h

AA

α

��
β

��
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there is given a composition

X Y

f

��

h

@@
β◦α

��

and this composition is associative, i.e. we have

(γ ◦ β) ◦ α = γ ◦ (β ◦ α).

4. (Horizontal composition of 2-morphisms) Given a diagram of
the form

X Y

f

��

f ′

@@
α

��
Y Z

g

��

g′

@@
β

��

there is given a composition

X Z

g◦f

��

g′◦f ′

@@
β∗α

��

and this composition is associative, i.e. we have

(γ ∗ β) ∗ α = γ ∗ (β ∗ α).

5. (Identity for 2-morphisms) For every 1-morphism f there is a
2-morphism idf such that α ◦ idg = idf ◦α = α and idg ∗ idf =
idg◦f .

6. (Compatibility between horizontal and vertical composition of
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2-morphisms) Given a diagram of the form

X Y
f ′ //

f

��

f ′′

AA

α

��
α′

��

Y Z
g′ //

g

��

g′′

AA

β

��
β′

��

we have

(β′ ◦ β) ∗ (α′ ◦ α) = (β′ ∗ α′) ◦ (β ∗ α).

We also like to be able to say when two objects in a 2-category
are actually isomorphic.

Definition 2.5. Two objects X and Y of a 2-category are equivalent
if there exist two 1-morphisms f : X → Y , g : Y → X and two
2-isomorphisms, i.e. invertible 2-morphisms α : g ◦ f

∼=→ idX and
β : f ◦ g

∼=→ idY

Example 2.6. Let C be any 1-category, i.e. an ordinary category.
We can make it into a 2-category C by just making the set Hom(X,Y )
into a category by taking its elements as objects and adding identity
maps to each object.

Giving a 2-category C we can obtain a 1-category C by defining
the set of morphisms between two objects X and Y simply as the
set of isomorphism classes of objects of the category Hom(X,Y ),
where two objects f, g ∈ Hom(X,Y ) are isomorphic if there exists a
2-isomorphism α : f ⇒ g between them.

Example 2.7. The category (Sch/S) of S-schemes can be viewed
therefore as a 2-category by adding identity 2-morphisms to all 1-
morphisms.

We can now define the concept of a general pseudo-functor F
between two 2-categories C and D, which will be the categorical pro-
totype of a stack.

Definition 2.8. A pseudo-functor F : C → D between 2-categories
C and D is given by the following data:
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1. For every object X in C an object F (X) in D,

2. For each 1-morphism f : X → Y in C we have a 1-morphism
F (f) : F (X)→ F (Y ) in D,

3. For each 2-morphism α : f ⇒ g in C we have a 2-morphism
F (α) : F (f)⇒ F (g) in D,

such that

1. (Respects identity 1-morphism) F (idx) = idF(X).

2. (Respects identity 2-morphism) F (idf ) = idF(f).

3. (Respects composition of 1-morphism up to 2-isomorphism) For
every diagram of the form

X
f // Y

g // Z

there is given a 2-isomorphism εg,f : F (g) ◦F (f)→ F (g ◦ f)
with

F (Y )

εg,f

��

F(g)

$$H
HH

HH
HH

HH

F (X)

F(f)
::vvvvvvvvv

F(g◦f)
// F (Z)

such that

(i) εf,idX = εidY ,f = idF(f).

(ii) ε is associative, i.e. the following diagram is commutative

F (h) ◦F (g) ◦F (f)
εh,g∗idF(f) +3

idF(h)∗εg,f
��

F (h ◦ g) ◦F (f)

εh◦g,f

��
F (h) ◦F (g ◦ f)

εh,g◦f +3 F (h ◦ g ◦ f)

4. (Respects vertical composition of 2-morphisms) For every pair
of 2-morphisms α : f → f ′ and β : g :→ g′ we have

F (β ◦ α) = F (β) ◦F (α).
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5. (Respects horizontal composition of 2-morphisms) For every
pair of 2-morphisms α : f → f ′ and β : g → g′ we have the
following commutaive diagram

F (g) ◦F (f)
F(β)∗F(α) +3

εg,f

��

F (g′) ◦F (f ′)

εg′,f′

��
F (g ◦ f)

F(β∗α) +3 F (g′ ◦ f ′)

A bit of care is needed for the general definition of a pseudo-
functor F : C → D between 2-categories. There are actually four
variants of pseudo-functors. Besides the pseudo-functor defined above,
we can revert the direction of 1-morphisms, but leave the 2-morphisms
as they are, revert the direction of 2-morphisms, but leave the 1-
morphisms as they are or revert the direction of both 1- and 2-
morphisms.

We will now restrict ourselves to a very special case of this general
2-categorical framework, namely pseudo-functors over a 1-category C,
which is all we need for our application to moduli problems. In fact
the category C in our context will normally just be the 1-category
(Sch/S) of schemes over a base scheme S and the 2-category D will
be the 2-category Grpds of groupoids.

Definition 2.9. Let C be a category. A prestack X is a pseudo-
functor

X : Cop → Grpds.

Unraveling this definition shows the simplification in contrast with
the general definition of a pseudo-functor between 2-categories. A
prestack X is simply given by the following data:

1. For every object X in C an object X (X) in Grpds,

2. For each morphism f : X → Y in C we have a functor

f∗ = X (f) : X (Y )→X (X)

in Grpds,
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3. For each diagram in C of the form

X
g◦f

33
f // Y

g // Z

we have an invertible natural transformation in Grpds

εg,f : (g ◦ f)∗ ⇒ f∗ ◦ g∗,

such that the following diagram is commutative

(h ◦ g ◦ f)∗
εh,g◦f +3

εh◦g,f

��

(g ◦ f)∗ ◦ h∗

εg,f∗idh∗
��

f∗ ◦ (h ◦ g)∗
idf∗∗εh,g +3 f∗ ◦ g∗ ◦ h∗

A stack is now simply a prestack with glueing properties with
respect to a Grothendieck topology τ chosen on the category C. In
our context C will normally be the category (Sch/S) together with
a Grothendieck topology τ and we will consider stacks over the big
site (Sch/S)τ .

First let us simplify the notation. If X is a prestack, and if x is
an object in the groupoid X (U) and f : U ′ → U is a morphism in C,
we will denote the object f∗x in the groupoid X (U ′) simply by x|U ′ .
Especially, if we have given a covering family {Ui

fi→ U}i∈I of U and
x an object of X (U) we denote by x|Ui the pullback f∗i x. We will
denote by xi|Uij the pullback f∗ij,ixi where fij,i : Ui×U ×Uj → Ui, xi
is an object in the groupoid X (Ui) and Uij = Ui ×U Uj .

Definition 2.10. Let C be a category together with a Grothendieck
topology τ . A stack X is a prestack satisfying the following glueing
conditions:
Let {Ui

fi→ U}i∈I be a covering family in the site Cτ , then

1. (Glueing of objects) Given objects xi of X (Ui) and morphisms
ϕij : xi|Uij → xj |Uij satisfying the cocycle condition

ϕij |Uijk ◦ ϕjk|Uijk = ϕik|Uijk ,
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then there exists an object x of X (U) and an isomorphism
ϕi : x|Ui

∼=→ xi in X (Ui) for each i such that

ϕji ◦ ϕi|Uij = ϕj |Uij .

for all i, j ∈ I.

2. (Glueing of morphisms) Given objects x and y of X (U) and
morphisms ϕi : x|Ui → y|Ui such that

ϕi|Uij = ϕj |Uij ,

then there exists a morphism η : x→ y such that η|Ui = ϕi.

3. (Monopresheaf) Given objects x and y of X (U) and morphisms
ϕ : x→ y, ψ : x→ y such that

ϕ|Ui = ψ|Ui ,

then ϕ = ψ.

We can rephrase this definition in a more elegant way by using
some terminolgy.

Definition 2.11. Let C be a category together with a Grothendieck
topology τ and X be a prestack. A descent datum for X with respect
to a covering family {Ui

fi→ U}i∈I in the site Cτ is a system of the
form (xi, ϕij)i,j∈I with the following properties:

1. each xi is an object of X (Ui)

2. each ϕij : xi|Uij → xj |Uij is a morphism in X (Uij) satisfying
the cocycle condition

ϕij |Uijk ◦ ϕjk|Uijk = ϕik|Uijk

for all i, j, k ∈ I.

A descent datum is effective if there exists an object x of X (U) and
an isomorphism ϕi : x|Ui

∼=→ xi in X (Ui) for each i such that

ϕji ◦ ϕi|Uij = ϕj |Uij .

for all i, j ∈ I.
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Now we can rewrite the definition of a stack in a more compact
way, which is often used in the literature.

Proposition 2.12. Let Cτ be a site. A stack X is a prestack satis-
fying the following properties

1. Every descent datum for X is effective.

2. For every object U of C and all objects x, y of X (U) the presheaf

IsomU (x, y) : (C/U)op → (Sets)

(U ′
f→ U) 7→ HomX (U ′)(f∗x, f∗y).

is a sheaf on the site (C/U)τ .

Proof. The first assertion is simply a reformulation of the first prop-
erty in the definition of a stack using the terminology of descent data
as defined above. The second assertion is just a compact way of writ-
ing down the second and third property in the definition of a stack.
The Grothendieck topology τ on the category C also makes the slice
category C/U in an obvious way into a site, which is denoted here by
(C/U)τ .

Example 2.13 (Sheaves as stacks). Let Cτ be a site. Any sheaf

F : Cop → (Sets)

on the site Cτ gives a stack. For each object X of C the set F(X) can
simply be viewed as a groupoid with objects the elements of the set
F(X) and the only morphisms are given by the identity morphisms
for each element of F(X). The glueing conditions are automatically
satisfied as F is a sheaf. Therefore especially any object X of C gives
rise to a stack X if the functor

X = HomC(?, X)

is a sheaf with respect to the Grothendieck topology τ on C. The
stack X is then also called the stack associated to an object X. It will
always define a prestack on C. If the context is clear we will normally
simply write X instead of X. Obviously any presheaf F and therefore
HomC(?, X) for any object X of C always define a prestack.
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We are especially interested in stacks on the category (Sch/S)
of S-schemes together with a Grothendieck topology τ , i.e. pseudo-
functors

X : (Sch/S)op → Grpds.

Therefore let us just record the following important special case
of the preceding example.

Example 2.14 (Sheaves and schemes as stacks). Let (Sch/S) be
the category of S-schemes together with a Grothendieck topology τ .
Any sheaf

F : (Sch/S)op → (Sets)

on the site (Sch/S)τ gives a stack as discussed before and again
especially any scheme X gives rise to a stack X if the functor

X = Hom(Sch/S)(?, X)

is a stack for the Grothendieck topology τ . The stack X is then called
the stack associated to a scheme X.

Via descent theory (see Theorem 1.29) we know that the functor
Hom(Sch/S)(?, X) is a sheaf for example for the fpqc topology and
therefore for any coarser topology, i.e. for the Zariski, étale, smooth
and fppf topology on (Sch/S).

The following are important examples of stacks in algebraic ge-
ometry.

Example 2.15 (Moduli stack of quasi-coherent sheaves on a scheme).
Let (Sch/S) be the category of S-schemes and X be an S-scheme.
The moduli stack QcohX of quasi-coherent OX-modules is the prestack
defined as

QcohX : (Sch/S)op → Grpds.

On objects the functor QcohX is defined by associating to a
scheme U in (Sch/S) the category QcohX(U) with objects being
quasi-coherent OX×U -modules, which are flat over U and morphisms
being isomorphisms of OX×U -modules

On morphisms QcohX is defined by associating to a morphism of
schemes f : U ′ → U the inverse image functor

f∗ : QcohX(U)→ QcohX(U ′)
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induced by the morphism idX × f . Then the quasi-coherent sheaves
(g∗ ◦ f∗)(E) ∼= (f ◦ g)∗(E) are naturally isomorphic and it can be
shown that quasi-coherent sheaves have the required descent proper-
ties even with respect to the fpqc topology [Vis05], [sga03]. Therefore
the descent properties are also fulfilled in the Zariski (resp. étale,
resp. smooth, resp. fppf) topology on (Sch/S). It follows there-
fore that QcohX is a stack for the fpqc (resp. Zariski, resp. étale,
resp. smooth, resp. fppc) topology on (Sch/S) (see for example
[Vis05], Thm. 4.23 for a detailed proof). As quasi-coherent sheaves
are sheaves in the Zariski topology, which is a much coarser topology
the fact that descent holds for the smooth or even fpqc topology is
not obvious at all.

Assume that S is a locally noetherian scheme and X locally of
finite type over S. Then we can define in a similar way the moduli
stack C ohX of coherent OX-modules.

Example 2.16 (Moduli stack of vector bundles over a scheme). Let
(Sch/S) be the category of S-schemes and X be an S-scheme. The
moduli stack BunnX of vector bundles on X of rank n is the prestack
defined as

BunnX : (Sch/S)op → Grpds.

On objects the functor BunnX is defined by associating to a scheme
U in (Sch/S) the category BunnX(U) with objects being vector bun-
dles E on X × U of rank n and with morphisms being vector bundle
isomorphisms.

On morphisms BunnX is defined by associating to a morphism of
schemes f : U ′ → U a functor f∗ : BunnX(U)→ BunnX(U ′) induced
by pullback of the vector bundle E along the morphism idX × f as
given by the pullback diagram

(idX × f)∗E //

��

E

��
X × U ′

idX×f // X × U

We can show that BunnX is indeed a stack for the étale (resp.
Zariski, resp. smooth, resp. fppf, resp. fpqc) topology on (Sch/S)
as the descent properties are valid for these topologies because they
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hold for quasi-coherent sheaves [LMB00], 2.4.4, 3.4.4, [sga03], VIII,
1.1, 1.2.

Let X now be a smooth projective irreducible algebraic curve of
genus g over a field k. We also have the moduli stacks Bunn,dX of
vector bundles of rank n and degree d on X as well as the moduli
stacks Bunss,n,dX (resp. Bunst,n,dX ) of semistable (resp. stable) vector
bundles of rank n and degree d on X. On objects the prestack Bunn,dX
for example, is defined by associating to a scheme U in (Sch/S) the
category Bunn,dX (U) with objects being vector bundles E on X ×
U of rank n such that their restrictions to the slices X × {u} for
any point u in U have degree d and with morphisms being vector
bundle isomorphisms. Similarly, we define the prestacks Bunss,n,dX

(resp. Bunst,n,dX ) by additionally requesting that the restrictions to
the slices are semistable (resp. stable) vector bundles. They are again
all stacks over the category (Sch/k) with either Zariski (resp. étale,
resp. smooth, resp. fppf, resp. fpqc) topology.

Similarly, we can define the moduli stack BunG,X of principal
G-bundles on X, where G is a reductive algebraic group over a field
k [Sor00].

Example 2.17 (Quotient stack). Let (Sch/S) be the category of S-
schemes and X be a noetherian S-scheme. Let G be an affine smooth
group S-scheme with a right action ρ : X × G → X. The quotient
stack [X/G] is the prestack defined as

[X/G] : (Sch/S)op → Grpds.

On objects the functor [X/G] is defined by associating to a scheme
U in (Sch/S) the category [X/G](U) with objects being principal G-
bundles π : E → U over U together with a G-equivariant morphism
α : E → X and morphisms being isomorphisms of principalG-bundles
commuting with the G-equivariant morphisms.

On morphisms [X/G] is defined by associating to a morphism of
schemes f : U ′ → U a functor f∗ : [X/G](U) → [X/G](U ′) induced
by pullbacks of principal G-bundles.

It is possible to verify that [X/G] defines a stack on (Sch/S) with
the étale topology [LMB00], 3.4.2., [Edi00], Prop. 2.1. Let us outline
the argument here. Let x, x′ ∈ [X/G](U) corresponding to principal
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G-bundles π : E → U and π′ : E ′ → U with G-equivariant morphisms
α : E → X and α′ : E ′ → X. Then IsomU (x, x′) is empty unless
E = E ′ and α = α′. If x = x′, then the isomorphisms correspond
bijectively to elements g ∈ G which preserve α, i.e. IsomU (x, x)
is the subgroup of G, which is the stabilizer of the G-equivariant
morphism α (see [MFK94], Chap. 0). There is a functor which
associates to every G-equivariant morphism α : E → X its stabilizer,
which is represented by a scheme StabX(G), given as the stabilizer
of the identity morphism idX . Therefore IsomU (x, x′) is represented
by a scheme and is therefore a sheaf on the étale site of (Sch/S)/U .
As any principal G-bundle is determined by étale descent it follows
finally that [X/G] is a stack on the big étale site (Sch/S)et.

In the special case that X = S with trivial G-action, the quotient
stack [S/G] can be understood as the moduli stack of all principal
G-bundles and is therefore called the classifying stack of the group
S-scheme G denoted by BG.

Classically the first examples of stacks in algebraic geometry are
the moduli stacks of algebraic curves and stable algebraic curves dis-
cussed by Deligne and Mumford in [DM69].

Example 2.18 (Moduli stack of algebraic curves). Let (Sch/S) be
the category of S-schemes. Let U be an S-scheme and g ≥ 2. An
algebraic curve or family of algebraic curves of genus g over U is
a proper and flat morphism π : C → U whose fibers are reduced,
connected, 1-dimensional schemes Cu with arithmetic genus g, i.e.
dimH1(Cu,OCu) = g.

The moduli stack of algebraic curves of genus g is the prestack
defined as

Mg : (Sch/S)op → Grpds.

On objects the functor Mg is defined by associating to an S-
scheme U in (Sch/S) the groupoid Mg(U) with objects being families
of algebraic curves of genus g over U and morphisms being isomor-
phisms of such families over U .

On morphisms Mg is defined by associating to a morphism of
schemes f : U ′ → U the base change functor f∗ : Mg(U)→Mg(U ′)
given by base change of families of algebraic curves of genus g along
the morphism f .
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The moduli stack Mg is a stack in the étale topology as the descent
properties hold [sga03], VIII, 7.8. We will later see that Mg is actually
given as a quotient stack and so in fact a special case of the last
example. There are other variations of moduli stacks of algebraic
curves, like the moduli stack Mg,n of algebraic curves of genus g
with n distinct ordered points or the moduli stack of algebraic curves
of genus g with symmetries [FN03].

Example 2.19 (Moduli stack of stable algebraic curves). Let (Sch/S)
be the category of S-schemes. Let U be an S-scheme and g ≥ 2. An
stable algebraic curve or family of stable algebraic curves of genus g
over U is a proper and flat morphism π : C → U whose fibers are
reduced, connected, 1-dimensional schemes Cu with arithmetic genus
g, i.e. dimH1(Cu,OCu) = g and such that

1. the only singularities of the fiber Cu are ordinary double points,

2. if D is a non-singular rational component of the fiber Cu, then
D meets the other components of Cu in more than two points.

This is [DM69], Def. 1.1. The second condition ensures that stable
algebraic curves have always finite automorphism groups.

The moduli stack of stable algebraic curves of genus g is the
prestack defined as

M̃g : (Sch/S)op → Grpds.

On objects the functor M̃g is defined by associating to an S-
scheme U in (Sch/S) the groupoid M̃g(U) with objects being families
of stable algebraic curves of genus g over U and morphisms being
isomorphisms of such families over U .

On morphisms M̃g is defined again by the base change functor
f∗ : M̃g(U)→ M̃g(U ′) for a given morphism of schemes f : U ′ → U .

Again M̃g is a stack in the étale topology as the descent properties
hold also here [sga03], VIII, 7.8 and is also given as a quotient stack
as we will see later. We also have many variations of this moduli
stack like M̃g,n.
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We will shortly see that stacks over a site Cτ actually form a
2-category. For this we need to introduce the notion of 1- and 2-
morphisms between stacks.

Definition 2.20. Let C be a category. A 1-morphism of prestacks
F : X → Y is a natural transformation of functors of 2-categories,
i.e. given by the following data:

1. for every object X of C, a functor FX : X (X)→ Y (X)

2. for every morphism f : X → Y in C, an invertible natural trans-
formation Ff : Y (f) ◦ FX ⇒ FY ◦X (f), which is compatible
with the natural transformations

εg,f : (g ◦ f)∗ ⇒ f∗ ◦ g∗,

i.e. we have the following commutative square for Ff

X (Y )

Ff

(( ��

FY //

X (f)

��

Y (Y )

Y (f)

��
X (X)

FX

// Y (X)

satisfying the following compatibility conditions:

(i) if f = idX , then FidX = idF (X).

(ii) if f and g are composable morphism, then Fg◦f is the
composite of the squares given by Ff and Fg further com-
posed with the composition of the pullback isomorphisms
εg,f : (g ◦ f)∗ ⇒ f∗ ◦ g∗ for X and Y .

Definition 2.21. Let C be a category. A 2-morphism between two
1-morphisms of prestacks F,G : X → Y is given by a diagram

X Y

F

��

G

??
ψ

��
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associating to every object X in C an invertible natural transforma-
tion ψX : FX → GX of the form

X (X) Y (X)

FX

��

GX

??
ψX

��

Proposition 2.22. Let C be category. Prestacks over C together with
its 1-morphisms and 2-morphims form a 2-category PreStacks(C).
Let Cτ be a site. Stacks over the site Cτ together with its 1-morphisms
and 2-morphims form a 2-category Stacks(C). Moreover, Stacks(C)
is a full 2-subcategory of PreStacks(C).

Proof. This follows from the above definitions of 1-morphisms and
2-morphisms of prestacks and the general definition of a 2-category.
The 1- and 2-morphisms of stacks are given by the 1- and 2-morphisms
of the underlying prestacks.

Example 2.23. Let (Sch/S) be the category of S-schemes together
with a Grothendieck topology τ . Stacks over the site (Sch/S)τ
together with its 1-morphisms and 2-morphims form a 2-category
Stacks/S = Stacks(Sch/S) called the 2-category of S-stacks.

The definitions of 1- and 2-morphisms of stacks of course make
sense for any pseudo-functor between 2-categories. The complicated
compatibility conditions will be often automatically satisfied in the
algebro-geometric examples we are interested in. The main thing to
keep in mind here is that the pullback objects f∗x for every object
x of the groupoid X (X) and every morphism f : X → Y are well
defined only up to isomorphism, i.e. the object f∗x can be arbitrary
chosen within its isomorphism class.

Proposition 2.24. Let C be a category. The category of presheaves
PrShv(C) is a full 2-subcategory of the 2-category PreStacks(C) of
prestacks over C. In particular, the category C can be viewed as a full
2-subcategory of the 2-category PreStacks(C).
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Proof. The category PrShv(C) of presheaves of sets on C can be
viewed as a 2-category, where all the 2-morphisms are just identity
morphisms. Any 1-morphism between prestacks, which are actually
presheaves of sets is simply a morphism between presheaves, as there
are only trivial 2-morphisms. Any object X of C can be viewed again
as the presheaf X = HomC(?, X) and so also gives a prestack, the
prestack associated to the object X of C.

Corollary 2.25. Let Cτ be a site. The category of sheaves Shv(C)
is a full 2-subcategory of the 2-category Stacks(C) of stacks over Cτ .
In particular, the category C can be viewed as a full 2-subcategory of
the 2-category Stacks(C) if for each object X of C the functor X =
HomC(?, X) is a sheaf for the Grothendieck topology τ .

In particular this means that we don’t need to distinguish be-
tween an object X, the sheaf it defines on the site Cτ and the stack
associated to X.

We have the following version of the Yoneda Lemma for prestacks
[Hak72], [Gir71].

Theorem 2.26 (2-Yoneda Lemma for prestacks). Let X be a prestack
over a category C. Then for any object X of C there is an equivalence
of categories

Θ : HomPreStacks(C)(X,X )
∼=→X (X)

(F : X →X ) 7→ F (idX)

Proof. This is a variation of the proof of the classical Yoneda Lemma
[ML98]. The functor Θ defines for a morphism of prestacks F : X →
X an object xF := F (idX) ∈ X (X), where idX ∈ HomC(X,X) is
the identity morphism of the object X in the category C. And any
isomorphism F → F defines an isomorphism of xF . On the other
hand we can define a functor

Ξ : X (X)→ HomPreStacks(C)(X,X ).

associating to every object x ∈ X (X) the morphism of prestacks
Fx : X → X defined by sending f ∈ X(U) = HomC(U,X) to the



“fnStacks”
2010/9/1
page 57i

i
i

i

i
i

i
i

[SEC. 2.1: STACKS 57

object f∗(x) ∈ X (U). And for every isomorphism ϕ : x′ → x in
X (X) we define a natural transformation ηϕ : Fx′ → Fx induced by
f∗ϕ : f∗x′ → f∗x. We see immediately that the composition Θ ◦ Ξ
is the identity functor Θ ◦ Ξ = IdX (X), because we have

Θ ◦ Ξ(x) = Θ(Fx) = Fx(idX) = id∗(x) = IdX (X)(x).

On the other hand we get Ξ ◦ Θ(F ) = Ξ(xF ) = FxF . Here we have

FxF (U
f→ X) = f∗(xF ). And we get a natural isomorphism

Ξ ◦Θ⇒ IdHomPreStacks(C)(X,X )

induced by Ff : F (U
f→ X)→ f∗(xF ). Therefore the functors Θ and

Ξ define the desired equivalence of categories.

Of course we could again have formulated the 2-Yoneda Lemma
for more general pseudo-functors between 2-categories [Hak72]. It is
this 2-categorical version of the Yoneda Lemma for prestacks that is
crucial for the application of the language of stacks to moduli prob-
lems. It implies automatically, that a moduli problem has always a
fine solution in stacks or in other words, if a stack X represents a
moduli problem, then X will be itself a fine moduli space for the
moduli problem. And from this it will also follow the existence of
universal families.

Let Cτ be a site. The 2-category Stacks(C) of stacks on Cτ has
2-fiber products.

Definition 2.27. Let X , X ′ and S be stacks over the site Cτ and
F : X → S , F ′ : X ′ → S be morphism of stacks. The 2-fiber
product X ×S X ′ is the stack defined by associating to every object
U in C the category (X ×S X ′)(U) with

• objects
(u, u′, φ) with u ∈X (U), u′ ∈X ′(U), φ ∈ HomS (U)(F (u), F ′(u′))

• morphisms

Hom((u, u′, φ), (v, v′, ψ)) = {(u f→ v, u′
f ′→ v′) : ψ ◦ F (f) =

φ ◦ F ′(f ′)}.
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Given two morphisms of objects X, X ′ of C into a stack S we
can interpret the 2-fiber product in a more concrete way.

Proposition 2.28. Let X and X ′ be objects of C and let x : X → S
and x′ : X ′ → S be morphisms of stacks. Then we have

X ×S X ′ = HomS (?)(pr∗1x, pr
∗
2x
′),

where
HomS (?)(pr∗1x, pr

∗
2x
′) : (C/X ×X ′)op → (Sets)

is the sheaf on C/X×X ′ associating to every object U h→ X×X ′ the
set HomS (U)(h∗pr∗1x, h

∗pr∗2x
′).

Proof. From the definition we see that (X ×S X ′)(U) on objects is
given by the set of all diagrams of the form

X

φ

��

x

!!B
BB

BB
BB

B

U

f
>>}}}}}}}}

g
  A

AA
AA

AA
A S

X ′
x′

==||||||||

but this is the same as the set of pairs of morphisms

{(U h=(f,g)−→ X ×X ′, φ ∈ HomS (U)(h∗pr∗1x, h
∗pr∗2x

′))}.

This is the set of all morphisms between pullbacks over U of the
objects x and y.

As this is an important special case of a 2-fiber product, we in-
troduce the following notation.

Definition 2.29. Let X and X ′ be objects of a category C and let
x : X → S and x′ : X ′ → S be morphisms of stacks. We let

Isom(X ×X ′, pr∗1x, pr∗2x′) = X ×S X ′.

We can also describe the automorphisms of an object as a 2-fiber
product of morphisms of stacks.
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Proposition 2.30. Let X be an object of a category C, X a stack
and x : X →X be a morphisms of stacks. Then we have

X ×X×X X = IsomX(x, x) = HomX (?)(x, x),

where IsomX(x, x) : (C/X)op → (Sets) is the sheaf on C/X associat-

ing to every object U
f→ X the set HomX (U)(f∗x, f∗x).

Proof. First we see that the groupoid (X ×X×X X )(U) on objects
is given by the category of all diagrams of the form

X

φ

��

(x,x)

""E
EE

EE
EE

E

U

f
>>}}}}}}}}

u
  A

AA
AA

AA
A X ×X

X

∆

<<yyyyyyyy

which is equivalent to the category of all pairs of the form (f,D)
where f : U → X is a morphism and D a diagram of the form

U
(f∗x,f∗x) //

u
  A

AA
AA

AA
A

φ

��

X ×X

X

∆

::uuuuuuuuu

which is equivalent to the category of quadruples of the form

(f : U → X,u ∈X (U), φ1 : f∗x→ u, φ2 : f∗x→ u).

and from this the desired description of the automorphisms of an
object follows.

Sometimes it is better to consider stacks not as pseudo-functors
but as categories. Many constructions can be easier formulated in
this framework, which we will briefly recall here now. A nice and
direct introduction into stacks from scratch using this approach can
be found in [Fan01].



“fnStacks”
2010/9/1
page 60i

i
i

i

i
i

i
i

60 [CAP. 2: MODULI PROBLEMS AND ALGEBRAIC STACKS II

Definition 2.31. Let C be a category. A category fibred over C is a
category X together with a projection functor pX : X → C. If x is
an object of X with pX (x) = X, we say that x lies over X. If φ is
a morphism of X with pX (φ) = f , we say that φ lies over f .

Definition 2.32. A category fibered in groupoids is a category X
over C such that

1. For every morphism f : X ′ → X in C and every object x in
X with pX (x) = X there exists an object x′ and a morphism
φ : x′ → x such that pX (x′) = X ′ and pX (φ) = f , i.e.

x′
φ //___

��

x

��
X ′

f // X

2. For every diagram of the form

x′′

φ′

!!C
C

C
C

ψ //

��

x

��

x′

φ

>>}}}}}}}}

��

X ′′
f◦f ′ //

f ′ !!C
CC

CC
CC

C X

X ′
f

>>}}}}}}}}

where pX (x′′) = X ′′, pX (x′) = X ′, pX (x) = X and for mor-
phisms pX (φ) = f , pX (ψ) = f ◦ f ′, there exists a unique
morphism φ′ : x′′ → x′ with ψ = φ ◦ φ′ such that pX (φ′) = f ′.

The second condition implies that the object x′ whose existence is
postulated by the first condition is unique up to a canonical isomor-
phism. Therefore for each object x and each morphism f we choose
such an object f∗x = x′. It also follows immediately from the second
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condition that φ is an ismorphism if and only if pX (φ) = f is an
isomorphism.

Definition 2.33. Let C be a category. Let X be a category fibered
in groupoids over C and X be an object of C. The fiber X (X) of X
over X is the subcategory of X whose objects are the objects of X
lying over X and whose morphisms are the morphisms of X lying
over idX .

It follows immediately from this definition that the fiber X (X)
of X over X is a groupoid as all morphisms lying over idX are iso-
morphisms. This explains the choice of the name category fibered in
groupoids.

Given a category X fibered in groupoids over a category C we
can associate to it a prestack

X̃ : Cop → Grpds, X 7→X (X)

The second condition in the definition ensures the existence of a pull-
back functor f∗ and the existence of the 2-isomorphisms εg,f and it
is an easy exercise now to check the axioms of a prestack.

On the other hand, given a prestack X̃ on a category C we can
associate to it a category X fibered in groupoids over C. Its objects
are given by pairs (x,X), where X is an object of C and x an object
of the groupoid X̃ (X). A morphism (x′, X ′)→ (x,X) is given by a
pair (f, α), where f : X ′ → X is a morphism in C and α : f∗x → x′

is an isomorphism with f∗ = X̃ (f). Again, it is easy to check now
the axioms for a category fibered in groupoids over C.

This gives the equivalence between prestacks and categories fibered
in groupoids over a category C, in fact we would again get an equiva-
lence of the respective 2-categories of prestacks and categories fibered
in groupoids. We can give now an equivalent definition of a stack as
a category fibered in groupoids satisfying glueing conditions.

Definition 2.34. Let Cτ be a site. A stack X is a category fibered
in groupoids over C such that

1. For all objects U in C and all pairs of objects x, y of X lying
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over U , the presheaf

IsomU (x, y) : (C/U)op → (Sets)

(U ′
f→ U) 7→ HomX (U ′)(f∗x, f∗y).

is a sheaf on the site (C/U)τ .

2. Every descent datum is effective.

Using the language of categories fibered in groupoids, the notions
of a 1- and 2-morphism of stacks can now easily be rephrased.

Definition 2.35. Let Cτ be a site. A 1-morphism F : X → Y
of stacks is a functor between the categories X and Y fibered in
groupoids over C, which commutes with the projection functors, i.e.
pY ◦ F = pX . Two stacks X and Y are isomorphic if there is a
1-morphism F : X → Y of stacks such that F is an equivalence of
categories.

Definition 2.36. Let Cτ be a site. A 2-morphism between two 1-
morphisms of stacks F,G : X → Y is given by a diagram

X Y

F

��

G

??
ψ

��

where ψ is a natural transformation over the identity functor idC.

It is also useful to rephrase the notion of a stack associated to an
object of a category in the language of categories fibered in groupoids.

Example 2.37 (Stack associated to an object). Let Cτ be a site.
Let X be an object of C. We consider the slice category C/X of all
objects over X. We define the following functor:

pX : C/X → C

(U
f→ X) 7→ U.

Then the category C/X is a category fibered in groupoids over C with
projection functor pX and it is easy to see that this construction will
define the stack X associated to the object X.
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This will give a way of embedding the category C into the 2-
category Stacks(C) of stacks.

The fiber product in Stacks(C) also has a nice interpretation in
the language of categories fibered in groupoids.

Example 2.38. (Fiber product of stacks) Let X , X ′ and S be
stacks over the category C and F : X → S , F ′ : X ′ → S be
morphism of stacks. We define a new category fibered in groupoids
X ×S X ′ over C and projection functors pX and pY with

• objects
(x, x′, α) with x ∈ X , x′ ∈ X ′ lying over the same object X
and α : F (x) → F ′(x′) is a vertical isomorphism in S with
respect to the projection to C, or in other words pS (α) = idX .

• morphisms
(φ, φ′) : (x, x′, α) → (y, y′, β) is given by morphisms φ : x → y
and φ′ : x′ → y′ lying over the same morphism f : X → Y in C
such that β ◦ F (φ) = F ′(φ′) ◦ α.

We could have formulated again all this equally well more gener-
ally for fibred categories, but we like to restrict ourselves to stacks
now. For a general treatment of fibered categories and descent see
the article by Vistoli [Vis89] or the original sources by Grothendieck
[Gro95a], [Gro62].

Finally, let us discuss briefly a third way of introducing stacks
using groupoids. Let us recall the definition of a groupoid internally
in a category C.

Definition 2.39. Let C be a category with fiber products. A groupoid
[X1 ⇒ X0] in C consists of sets X0 (set of objects), and X1 (set of
morphisms) together with five maps of sets s, t, e,m, i given as:

X1 X0
e−→ X1

s //__

t
//__

X1 ×s,X0,t X1
m−→ X1 X1

i−→ X1.

Furthermore, the maps of sets satisfy the following properties:
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(1.) (Compatibility) We have:

s◦e = t◦e = idX1 , s◦i = t, t◦i = s, s◦m = s◦pr2, t◦m = t◦pr1.

(2.) (Associativity) m ◦ (m× idX1) = m ◦ (idX1 ◦m).

(3.) (Identity) The compositions

X1 = X1 ×s,X0 X0 = X0 ×X0,tX1

idX1×e−→ X1 ×s,X0,tX1
m−→ X1

X1 = X1 ×s,X0 X0 = X0 ×X0,tX1

e×idX1−→ X1 ×s,X0,tX1
m−→ X1

are both equal to the identity map idX1 .

(4.) (Inverse) We have:

m ◦ (i× idX1) = e ◦ s, m ◦ (idX1 × i) = e ◦ t.

Following [LMB00], 2.4.3 and [DM69] we can now define a groupoid
space.

Definition 2.40. Let Cτ be a site. A groupoid space is a groupoid
[X1 ⇒ X0] in the category Shv(C).

Given a groupoid space [X1 ⇒ X0] we can define a category
˜[X1 ⇒ X0] fibered in groupoids over the category C as follows: The

objects of ˜[X1 ⇒ X0] over an object U of C are given by the el-
ements of the set X0(U) and the morphisms over idU are given
by the elements of X1(U). We have an obvious projection func-

tor p : ˜[X1 ⇒ X0] → C. Again, there is an equivalence between
the 2-categories of groupoid spaces Grpds(C) and categories fibred in
groupoids.

Given a morphism f : U ′ → U in C we can also define a functor

f∗ : ˜[X1 ⇒ X0](U)→ ˜[X1 ⇒ X0](U ′)

induced via restriction [LMB00], 2.4.3.

In general, the category ˜[X1 ⇒ X0] will only be a prestack, but
it is possible to “stackify” this construction, i.e. we can associate a
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stack [X0/X1] to ˜[X1 ⇒ X0] (see [LMB00], 3.4.3).

We are especially interested here in the 2-category Grpds/S =
Grpds(Sch/S) of S-groupoid spaces, i.e. groupoids in the category
(Spaces/S) of S-spaces on a site (Sch/S)τ . Let us look at the quotient
of a group action on a scheme again [Góm01], Ex. 2.28.

Example 2.41. (Quotient groupoid) Let (Sch/S) be the category
of S-schemes and X be a noetherian S-scheme. Let G be an affine
smooth group S-scheme with a right action ρ : X×G→ X. As usual
we think of X, S and G as S-spaces via their functor of points. Using
the group action we get an S-groupoid space [X × G ⇒ X], where
t = ρ, s = pr1 and m is the multiplication in the group G. The map
e is given by the identity and i is given by the inverse. The objects
of the fiber ˜[X ×G ⇒ X](U) over an S-scheme U are morphisms
f : U → X or equivalently we can say that they are trivial principal
G-bundles U×G ↓ U together with the morphism ρ◦f : U×G→ X.
As above we get a prestack and the associated stack [X/X × G] is
isomorphic to the quotient stack [X/G].

Example 2.42. (Equivalence relation) Given an equivalence relation
δ : R −→ X ×S X in the category (Spaces/S) of S-spaces we can
always construct an S-groupoid space [R ⇒ X], where s = pr1 ◦ δ
and t = pr2 ◦ δ are the projections. The associated stack [X/R] is
sometimes also called the stacky quotient of the equivalence relation.

All three ways of defining stacks are useful depending for which
purpose the language of stacks is used for. The groupoid approach
mentioned here at the end is especially of use if one likes to talk about
equivalence relations and quotients. And it is this approach towards
stacks which is often used in other areas like differential or symplectic
geometry.

2.2 Algebraic stacks

We like to do algebraic geometry on stacks, so it is necessary to be
able to extend the geometry of schemes to a geometry of stacks. In
order to do this we will restrict ourselves to a special class of stacks,
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called algebraic stacks. Algebraic stacks behave a lot like schemes and
many geometric properties of schemes can be extended to algebraic
stacks.

In this section we will always consider the category (Sch/S) of S-
schemes over a base scheme S together with a Grothendieck topology
τ , which normally will be the étale topology and we will consider
stacks over the big étale site (Sch/S)et.

Definition 2.43. A stack X is representable by an algebraic space
(resp. by a scheme) if there exists an algebraic space X (resp. scheme
X) such that the stack associated to X (resp. X) is isomorphic to
the stack X . A morphism of stacks F : X → Y is representable
by algebraic spaces (resp. schemes) if for each object Y of (Sch/S)
and each morphism Y → Y the fiber product stack Y ×Y X is rep-
resentable by an algebraic space (resp. scheme), i.e. in the cartesian
diagram

Y ×Y X //

��

X

��
Y // Y

Proposition 2.44. Let X be a stack and ∆ : X →X ×X be the
diagonal morphism. Then the following are equivalent:

1. The diagonal morphism ∆ : X → X ×X is representable by
algebraic spaces.

2. For all schemes X, Y and morphisms x : X →X and y : Y →
X the sheaf X×X Y = Isom(X×Y, pr∗1x, pr∗2y) is representable
by algebraic spaces i.e. isomorphic to an algebraic space.

3. For all algebraic spaces X , every morphism X → X is repre-
sentable by algebraic spaces.

4 For all schemes X, every morphism X → X is representable
by algebraic spaces.

Proof. We prove the equivalence of 1. and 2. using appropriate carte-
sian diagrams. We first show that 2. follows from 1. We have the
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following cartesian diagram

X ×X Y //

��

X × Y

��
X

∆
// X ×X

We have the following isomorphisms

X ×X Y ∼= HomX (?)(pr∗1x, pr
∗
2y) ∼= (X × Y )×X×X X .

If the diagonal morphism ∆ : X →X ×X is representable by alge-
braic spaces, then X×X Y = Isom(X×Y, pr∗1x, pr∗2y) is an algebraic
space.

Now to show that 1. follows from 2. let f : X →X be a morphism
with X a scheme. We have the following diagram

(X ×X X)×X×X X //

��

X

∆

��
X ×X X //

��

X ×X

f×f
��

X
∆

// X ×X

The small squares are cartesian and therefore also the big one and
we get

X ×X×X X = (X ×X X)×X×X X.

By hypothesis we know that X ×X X is representable by algebraic
spaces and therefore also X ×X×X X as a fiber product of alge-
braic spaces (in the upper square). So we see that the diagonal ∆ is
representable by algebraic spaces.

The equivalence of 2. and 3. and of 3. and 4. follows from the
definitions (see [LMB00], 3.11, 3.13).

We have the following basic properties for representable mor-
phisms of stacks.
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Proposition 2.45. 1. The property of being representable for a
morphism of stacks is stable under arbitrary base change.

2. A stack X of Stacks/S is representable if and only if the struc-
ture morphism X → S is representable.

3. Compositions and products of representable morphisms are rep-
resentable

Proof. Let F : X → Y be a representable morphism of stacks and
F ′ : X ′ → Y be an arbitrary morphism of stacks defining the base
change. To prove 1. look at the following cartesian diagram

X ×X ′ (X ′ ×Y X ) //

��

X ′ ×Y X //

��

X

F

��
X // X ′ F ′ // Y

We have that X ×X ′ (X ′ ×Y X ) ∼= X ×Y X , which is repre-
sentable by hypothesis and therefore also the morphism F ′.

The statement 3. is proved via a similar argument involving carte-
sian diagrams.

To prove 2. observe that the structure morphism X → S maps
the groupoid X (X) for any object X of (Sch/S) to the structure
morphism X → S of the scheme X.

Geometric properties of morphisms of schemes or algebraic spaces,
which are local on the target and stable under arbitrary base change
can be extended to respresentable morphisms of stacks, which will
then allow us to do geometry with them.

Definition 2.46. Let (Sch/S) be the category of S-schemes together
with a Grothendieck topology τ . A property P of morphisms of schemes
is called stable under base change and local in the topology τ on the
target if the following hold:

(1.) If the morphism f : X → Y has property P, then for any mor-
phism U → Y the morphism X ×Y U → U induced by base
change has property P.
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(2.) If f : X → Y is a morphism and {Ui → Y }i∈I is a covering of
Y with respect to the topology τ , then f has property P if and
only if for every i the morphism X×Y Ui → Ui induced by base
change has property P.

Analogously we can define more generally when a property P of
morphisms of algebraic spaces is stable under base change and local
in the topology τ on the target [Knu71].

For the étale topology, examples of properties P stable under base
change and local in the étale topology on the target include:
étale, surjective, flat, smooth, locally of finite presentation, locally of
finite type, quasi-compact, open embedding, closed embedding, affine,
quasi-affine, proper, unramified, separated... (see [LMB00], 3.10,
[GD67a] for a more complete list).

Now we can naturally extend the notion of morphisms of schemes
or algebraic spaces of having a property P stable under base change
and local in the topology on the target to representable morphisms
of stacks.

Definition 2.47. Let (Sch/S) be the category of S-schemes together
with the étale topology and let P be a property of morphisms of schemes
which is stable under base change and local in the étale topology on
the target. A representable morphism F : X → Y of stacks has
property P, if for every morphism Y → Y , where Y is an object of
(Sch/S) the induced morphism F̄ : Y ×Y X → Y of schemes has
property P, i.e. in the cartesian diagram

Y ×Y X //

F̄P
��

X

FP
��

Y // Y

As for schemes we have the following basic properties for repre-
sentable morphism of stacks.

Proposition 2.48. 1. Having property P for representable mor-
phism of stacks is stable under arbitrary base change.
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2. P as a property of representable morphisms of stacks is local on
the target.

3. If two representable and composable morphisms of stacks F :
X → Y and G : Y → Z have property P then also G ◦ F :
X → Z has property P if the same is true for composable
morphisms of (Sch/S) having property P.

Proof. This follows immediately from the definition and the ana-
log statements for morphisms in the category (Sch/S) of S-schemes
[GD67b].

Let (Sch/S)et be the category of S-schemes with the étale topol-
ogy. We can now extend the following geometric properties of mor-
phisms in (Sch/S) to representable morphisms of stacks (cf. [GD67b]
§2.7 and §17.7):
étale, surjective, flat, smooth, locally of finite presentation, locally of
finite type, quasi-compact, open embedding, closed embedding, affine,
quasi-affine, proper, unramified, separated...

For example, we can define what it means to be an étale covering
of a stack X by a scheme X. It is simply a representable surjec-
tive étale morphism X → X . Stacks having such a covering by a
scheme are the ones we can do algebraic geometry with by using the
covering. These stacks are the algebraic stacks we like to discuss now.

Algebraic stacks were first introduced as what is now called Deligne-
Mumford stacks by Deligne and Mumford [DM69] to give a new proof
of the irreducibility of the coarse moduli space of algebraic curves.
Later Artin [Art74] defined a more general notion of algebraic stacks,
now called Artin stacks to develop a global framework for deformation
theory.

Definition 2.49 (Artin stack). Let (Sch/S) be the category of S-
schemes together with the étale topology. A stack X over the site
(Sch/S)et is an Artin algebraic stack if

1. The diagonal morphism ∆ : X → X ×X is representable by
algebraic spaces and quasi-compact.

2. There exist a scheme X, called an atlas and a surjective smooth
morphism X →X .
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We will often refer to Artin algebraic stacks simply as algebraic
stacks. We could have defined Artin algebraic stacks equally well over
the fppf site (Sch/S)fppf or the smooth site (Sch/S)sm instead of
using the étale topology on (Sch/S). But a theorem of Artin about
comparison of topologies [Art74], 6.1 implies that we will get the
same notion of an Artin algebraic stack as defined above for the
étale topology, i.e. the 2-categories of algebraic stacks will be equiv-
alent. Sometimes though it is technically more convenient to work
with the smooth or fppf topology, for example when dealing with
cohomology.

Definition 2.50 (Deligne-Mumford stack). Let (Sch/S) be the cat-
egory of S-schemes together with the étale topology. A stack X over
the site (Sch/S)et is a Deligne-Mumford algebraic stack if

1. The diagonal morphism ∆ : X → X ×X is representable by
schemes, quasi-compact and separated.

2. There exist a scheme X, called an atlas and a surjective étale
morphism X →X .

In the first condition we could have asked for representability
of the diagonal by algebraic spaces, like we did in the case of Artin
algebraic stacks. But from a theorem about algebraic spaces [Knu71],
Thm. 6.16 it follows that any algebraic space, which is quasi-finite
and separated over a scheme is itself a scheme. So especially for a
Deligne-Mumford algebraic stack we would get that the diagonal is
representable by schemes. If we would have asked representability of
the diagonal morphism by schemes in the definition of Artin algebraic
stacks above, we would just simply get a smaller class of algebraic
stacks.

The definition of a Deligne-Mumford algebraic stack is similar
to the definition of an algebraic space, but in S-stacks instead of
S-spaces.

Obviously a Deligne-Mumford algebraic stack is also an Artin
algebraic stack, as every étale atlas is also a smooth atlas, but the
converse is in general not true, as the example of quotient stacks will
show us.

Proposition 2.51. Let (Sch/S)et be the category of S-schemes to-
gether with the étale topology. Algebraic stacks form a strict full
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2-subcategory AlgStacks/S of the 2-category Stacks/S of S-stacks.
AlgStacks/S is closed under forming 2-fiber products.

The category (AlgSpaces/S) of algebraic spaces is a strict full 2-
subcategory of the category AlgStacks/S of algebraic stacks.

Proof. The first statement follows from the definitions. Let us show
that AlgStacks/S is closed under 2-fiber products. Assume we have
the following 2-cartesian diagram of morphisms of stacks

X ×S X ′ //

��

X ′

F ′

��
X

F // S

Let X →X and X ′ →X ′ be atlases, then

X ×S X ′ →X ×S X ′

is again an atlas. This is either an algebraic space or a scheme, but
an algebraic space has an étale covering by a scheme itself, therefore
we get an atlas for the fiber product. The diagonal is representable,
because we have

Y ×X×S X ′ Y ′ ∼= (Y ×X Y ′)×Y×SY ′ (Y ×X ′ Y ′)

for any morphisms Y → X and Y ′ → X ′, where Y and Y ′ are
schemes and the right hand side is again a scheme.

The last statement follows immediately from the definition of an
algebraic space, because an algebraic space is a Deligne-Mumford
algebraic stack which is even a sheaf of sets on the site (Sch/S)et.

Given an Artin algebraic stack X with an atlas x : X → X
we obtain an S-groupoid space [X1 ⇒ X0] by setting X0 := X and
X1 := X×X X given by the fiber product of x with itself. The maps
s, t : X1 → X0 are for example given by the two projections. It can
be shown that there is a natural isomorphism

X ∼= [X0/X1]

between X and the associated stack [X0/X1] of the S-groupoid.
[X0/X1] in this case is again an algebraic stack. And every Artin alge-
braic stack (resp. Deligne-Mumford algebraic stack) can be obtained
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as the associated stack [X0/X1] of an S-groupoid space [X1 ⇒ X0]
where X0 and X1 are algebraic spaces, the maps s, t are smooth (resp.
étale) morphisms and (s, t) : X1 → X0×X0 is a quasi-compact (resp.
quasi-compact and separated) morphism (see [LMB00], 4.3.1).

Proposition 2.52. If X is an Artin (resp. Deligne-Mumford) al-
gebraic stack, then the diagonal morphism ∆ : X → X ×X is of
finite type (resp. unramified).

Proof. For Deligne-Mumford algebraic stacks this is proved in [Vis89],
prop. 7.15 and in general for Artin algebraic stacks in [LMB00], lem.
4.2.

Corollary 2.53. Let X be a Deligne-Mumford algebraic stack and X
be a quasi-compact scheme. If x is an object of the groupoid X (X),
then x has only finitely many automorphisms.

Proof. (see [Vis89]). Let x : X →X be the morphism corresponding
to x and ∆ ◦ x : X →X ×X be the composition with the diagonal
morphism. As X is a Deligne-Mumford stack, the fiber product

X ×X×X X = IsomX(x, x)

is a scheme unramified over X. As X is quasi-compact the mor-
phism of schemes IsomX(x, x) → X has only finitely many sections.
Therefore x has only finitely many automorphisms.

We have the following characterization of Deligne-Mumford stacks
among Artin algebraic stacks.

Proposition 2.54. Let X be an Artin algebraic stack. Then the
following properties are equivalent:

(1) X is a Deligne-Mumford algebraic stack.

(2) The diagonal morphism ∆ : X →X ×X is unramified.

(3) No object has non-trivial infinitesimal automorphisms.

Proof. For a proof see [Art74], Sec. 5 or [LMB00], Chap. 8.
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In fact, for Deligne-Mumford algebraic stacks the stabilizer groups
of points are finite groups, where for Artin algebraic stacks the sta-
bilizer groups of points can be more general algebraic groups, as for
example it is the case of moduli stacks of vector bundles in contrast
to moduli stacks of algebraic curves.

We have defined geometric properties for representable stacks and
representable morphisms of stacks. We can also define geometric
properties for algebraic stacks and their morphisms by using the atlas.
Let us mention just some examples. For a systematic discussion we
refer to [Góm01], 2.5 and [LMB00].

Definition 2.55. An Artin algebraic stack X is called smooth (resp.
reduced, resp. locally of finite presentation, resp. locally noetherian,
resp. normal, resp. regular) if there exists an atlas x : X → X
with the scheme X being smooth (resp. reduced, resp. locally of finite
presentation, resp. locally noetherian, resp. normal, resp. regular).

Definition 2.56. Let P be a property of morphisms of schemes f :
X → Y such that f has property P if and only if for some smooth
surjective morphism Y ′ → Y the induced morphism f ′ : X×Y Y ′ → Y
has property P. A representable morphism F : X → Y of algebraic
stacks has property P if for some atlas y : Y → Y the induced
morphism F̄ : Y ×Y X → Y of schemes has property P, i.e. in the
cartesian diagram

Y ×Y X //

F̄P
��

X

FP
��

Y // Y

In this way we can define geometric properties for algebraic stacks
and for representable morphisms of algebraic stacks by testing them
on the atlas. This can be used for example to define the geometric
properties of morphisms like closed or open embedding, affine, finite,
proper etc. In particular we get the notion of an open or closed sub-
stack of an algebraic stack. For schemes this gives nothing new as all
these properties can be checked on a smooth covering.
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We can also define geometric properties for arbitrary morphisms
of algebraic stacks, if they can be checked locally in the source and
target of the morphism.

Definition 2.57. Let P be a property of morphisms of schemes f :
X → Y such that f has property P if and only if there is a commu-
tative diagram of the form

X ′
f ′ //

p

��

Y ′

q

��
X

f // Y

with p and q smooth surjective morphisms, such that f ′ has property
P. Then a morphism F : X → Y of algebraic stacks has property P
if there exists atlases, i.e. smooth surjective morphisms from schemes
x : X →X and y : Y → Y and a commutative diagram of the form

X
f //

x

��

Y

y

��
X

F // Y

such that the induced morphism f of schemes has property P.

Examples include the geometric properties smooth, flat, locally of
finite presentation etc. Let us just look at the particular example of
smoothness here. We can check smoothness for an algebraic stack
locally on an atlas using the lifting criterion for smooth morphisms
of schemes.

Proposition 2.58. (Lifting criterion for smooth morphisms) A mor-
phism of schemes f : X → Y is smooth if and only if f is locally of
finite presentation and for all local Artin algebras A with ideal I ⊂ A
with I2 = (0) there is a lifting

Spec(A/I) //
� _

��

X

f

��
Spec(A) //

::u
u

u
u

u
Y
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Proof. See [GD67b], IV, §17 for smoothness.

We can now test smoothness on an algebraic stack using the lifting
property for schemes (see for example [Hei09]).

Proposition 2.59. Let X be an algebraic stack, which is locally
of finite presentation over Spec(k) such that the structure morphism
X → Spec(k) satisfies the lifting criterion for smoothness. Then X
is smooth.

Proof. Let x : X → X be an atlas, i.e. a smooth surjective mor-
phism. We will show that the scheme X is smooth, i.e. that the lifting
criterion holds for the structure morphism X → Spec(k). Assume we
have the following commutative diagram:

Spec(A/I) //
� _

��

&&MMMMMMMMMMM X

x

��
X

��
Spec(A)

ϕ // Spec(k)

As the structure morphism satisfies the lifting criterion by hypoth-
esis, we can lift the morphism ϕ to a morphism ϕ̃ : Spec(A) → X .
As the atlas x is smooth and representable, we see that the morphism
X ×X Spec(A) → Spec(A) is also smooth and we can complete the
following diagram

Spec(A/I) //
� u

((PPPPPPPPPPPP
X ×X Spec(A)

��

// X

x

��
Spec(A)

ϕ̃ // X

��
Spec(A)

ϕ // Spec(k)

which finishes the proof.



“fnStacks”
2010/9/1
page 77i

i
i

i

i
i

i
i

[SEC. 2.2: ALGEBRAIC STACKS 77

It is also possible to extend notions like separatedness or proper-
ness to algebraic stacks and general morphism of algebraic stacks
and to prove valuative criteria for separatedness and properness like
in the theory of schemes. We refer to [LMB00] and [DM69] for a
systematic treatment. Let us just record here for completeness the
topological notions of a substack, connectedness and irreducebility of
an algebraic stack.

Definition 2.60. Let X be an algebraic stack. An algebraic stack
Y is called an open (resp. closed) substack of X if there exists a
representable morphism Y ↪→ X of stacks which is an open (resp.
closed) embedding.

Definition 2.61. An algebraic stack X is called connected if it is
not isomorphic to the disjoint union of two non-empty algebraic sub-
stacks. An algebraic stack X is called irreducible if it is not the
union of two non-empty closed substacks.

We have also a well-defined notion of connected components for
algebraic stacks.

Proposition 2.62. A locally noetherian algebraic stack is in one and
only one way the disjoint union of connected algebraic stacks, called
the connected components.

Proof. This is [LMB00], Prop. 4.9. See also [DM69], 4.13.

Let us now discuss some of the main examples of algebraic stacks
related to moduli and quotient problems.

Theorem 2.63. Let (Sch/S) be the category of S-schemes and X be
a noetherian S-scheme. Let G be an affine smooth group S-scheme
with a right action ρ : X ×G → X. The quotient stack [X/G] is an
Artin algebraic stack. In particular, the classifying stack BG is an
Artin algebraic stack.

Proof. Let E be an object of [X/G](U) and E ′ of [X/G](U ′). Let u :
U → [X/G] and u′ : U ′ → X/G be the associated morphisms via rep-
resentability. Using trivializations of the principalG-bundles E and E ′
on some coverings, it follows that the sheaf Isom(U ×U ′, pr∗1u, pr∗2u′)
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is representable by the scheme (U ×U ′×G)×X×X X which is quasi-
affine over U × U ′ and therefore the diagonal morphism ∆ is repre-
sentable (Prop. 2.44) and quasi-affine, so in particular quasi-compact
and also separated.

Now we have to construct a smooth atlas for [X/G]. The triv-
ial principal G-bundle X × G → X over X with the right action
ρ : X × G → X gives an object in the groupoid [X/G](X) and by
representability it defines a morphism of stacks x : X → [X/G].
The morphism x is representable, because for any scheme U and
any morphism u : U → [X/G] let π : E → U be the corresponding
principal G-bundle with G-equivariant morphism µ : E → X, then
U ×[X/G]X ∼= E and is therefore a scheme and x is representable. We
have a cartesian diagram of the form

E ∼= U ×[X/G] X
µ //

π

��

X

x

��
U

u // [X/G]

From this we see that the morphism x is surjective and smooth,
because π is surjective and smooth for every morphism u. Therefore
x gives an atlas for [X/G].

In the special case that X = S with trivial G-action, it follows
therefore that the classifying stack BG = [S/G] is an Artin algebraic
stack.

For more general actions of S-group schemes, even though x might
not be an atlas anymore, it is still possible to show that [X/G] is an
Artin algebraic stack [LMB00], ex. 4.6.1 and prop. 10.13.1.

Theorem 2.64. Let (Sch/S) be the category of S-schemes and X be
a noetherian S-scheme. Let G be an smooth affine group S-scheme
with a right action ρ : X ×G→ X. If either G is étale over S or the
stabilzers of the geometric points of X are finite and reduced, then
[X/G] is a Deligne-Mumford algebraic stack.

In particular, if either G is étale over S or the stabilzers of the
geometric points of S are finite and reduced, the classifying stack BG
is a Deligne-Mumford algebraic stack.
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Proof. This is a consequence of the theorem above and the discussion
in [DM69], ex. 4.8 and [Vis89], ex. 7.17.

Now we will proof that the moduli stacks of algebraic curves are
in fact Deligne-Mumford algebraic stacks [DM69].

Theorem 2.65 (Deligne-Mumford). Let g ≥ 2. The moduli stacks
Mg of algebraic curves of genus g and M̃g of stable algebraic curves
of genus g are Deligne-Mumford algebraic stacks.

Proof. This follows from the fact that we can realize the stacks Mg

and M̃g as quotient stacks of a scheme by a smooth algebraic group.
Let us briefly present the main line of argument. For the details
and main properties of these stacks we refer to the original article by
Deligne and Mumford [DM69] and the article of Edidin [Edi00]. Let
π : C → U be a stable curve of genus g. The morphism π is a local
complete intersection morphism, because it is flat and its geometric
fibers area local complete intersections. Using duality theory it fol-
lows that there exits a canonical invertible dualizing sheaf ωC/U on
C. In the case that π is smooth it follows that ωC/U is the relative
cotangent bundle. Deligne and Mumford proved that ω⊗nC/U is relative
very ample for n ≥ 3 and the direct image sheaf π∗(ω⊗nC/U ) is locally
free of rank (2n− 1)(g − 1) [DM69], p. 78.

Therefore, every stable algebraic curve can be realized as a curve
in the projective space PN with N = (2n−1)(g−1)−1 with prescribed
Hilbert polynomial Pg,n(t) = (2nt − 1)(g − 1). Furthermore, there
exists a subscheme H̃g of the Hilbert scheme HilbPg,nPN parametrizing
n-canonically embedded stable algebraic curves. Similarly, there is a
subscheme Hg,n of H̃g,n parametrizing only n-canonically embedded
smooth algebraic curves. Any morphism U → H̃g,n corresponds to
a stable algebraic curve π : C → U of genus g together with an iso-
morphism of P(π∗(ω⊗nC/U )) with PN ×U . The projective linear group

PGLN+1 acts naturally on the schemes Hg,n and H̃g,n. Given a sta-
ble algebraic curve π : C → U , let E → U be the associated principal
PGLN+1-bundle over U of the projective bundle P(π∗(ω⊗nC/U )). We
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have a cartesian diagram of the form

C ×U E
π′ //

��

E

��
C

π // U

The pullback of the projective bundle to E is trivial and isomorphic
to P(π′∗(ω

⊗n
C×UE/E)). This defines a PGLN+1-equivariant morphism

E → H̃g,n and therefore a morphism of stacks

M̃g → [H̃g,n/PGLN+1].

which takes Mg to the quotient substack [Hg,n/PGLN+1] and it can
be shown that these are in fact isomorphisms of stacks. From this
presentation as quotient stacks of a scheme by a smooth algebraic
group, it follows that these quotient stacks have a smooth atlas. And
because over an algebraically closed field every stable algebraic curve
has an automorphism group which is finite and reduced it follows
that the diagonal morphisms for both stacks is unramified. Then the
alternative characterization of Deligne-Mumford algebraic stacks in
[DM69], Thm. 4.21 or [Edi00], Thm. 2.1 implies the statement.

Deligne and Mumford [DM69] further showed that M̃g is smooth,
proper and irreducible over Spec(Z) and the complement M̃g\Mg is
a divisor with normal crossings in M̃g.

Now let us discuss the moduli stacks of coherent sheaves and
vector bundles of fixed rank. It turns out that these are in fact Artin
algebraic stacks.

Theorem 2.66. Let (Sch/S) be the category of S-schemes with S
a noetherian scheme. Assume that X is a projective scheme with
structure morphism f : X → S such that for any base change S′ → S
we have f ′∗OX′ ∼= OS′ . The moduli stacks C ohX of coherent OX-
modules and BunnX of vector bundles of rank n over X are Artin
algebraic stacks which are locally of finite type.
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Proof. This is [LMB00], Thm. 4.6.2.1. The proof uses the machin-
ery of Hilbert and Quot schemes of Grothendieck [Gro62]. Besides
the original article of Grothendieck we refer for the construction and
general theory of Hilbert and Quot schemes to the article of Nitsure
in [Nit05] or the book of Huybrechts and Lehn [HL97].

We are especially interested in these lectures in the moduli stack
Bunn,dX of vector bundles on an algebraic curve X of rank n and
degree d. Let us discuss this particular case in more detail here now.

Theorem 2.67. The moduli stack Bunn,dX of vector bundles of rank
n and degree d on a smooth projective irreducible algebraic curve X
of genus g ≥ 2 is an Artin algebraic stack which is smooth and locally
of finite type.

Proof. Let E resp. E ′ be a family of vector bundles of rank n and
degree d over X parametrized by the S-scheme U resp. U ′. Now let
u : U → Bunn,dX and u′ : U ′ → Bunn,dX be the associated morphisms
via representability.

We know that the sheaf Isom(U×U ′, pr∗1u, pr∗2u′) is the open sub-
scheme of invertible morphisms of the fiber bundle Hom(pr∗1E , pr∗2E ′)
over U ×U ′ and the morphism Hom(pr∗1E , pr∗2E ′)→ U ×U ′ is affine.
Therefore the diagonal morphism ∆ is representable (by a scheme)
and quasi-compact and also separated.

Let us now describe the construction of an atlas for the moduli
stack Bunn,dX . Let Pn,d be the polynomial given by

Pn,d(x) = nx+ d+ n(1− g).

For every integer m let P (m) = Pn,d(m) and consider the Quot
scheme Quot(OP (m)

X , P (x + m)) parametrizing quotient sheaves of
OX -modules OP (m)

X with prescribed Hilbert polynomial Pn,d. In gen-
eral, a Quot scheme Quot(F , P ) is a fine moduli space for the moduli
functor

Quot : (Sch/S)op → (Sets)

of the moduli problem of classifying quotient sheaves of OX -modules
F with prescribed Hilbert polynomial P and there exists a universal
family of such quotient sheaves over the Quot-scheme Quot(F , P )
(see [HL97], 2.2).
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For every integer m we define an open subscheme

Rm ↪→ Quot(OP (m)
X , P (x+m))

by requiring that

(i) the quotient sheaves OP (m)
X → F → 0 parametrized by Rm are

vector bundles, i.e. F is a locally free OX -sheaf.

(ii) for every U -point of Rm defined by the family OP (m)
X×U → F → 0

we have that R1(pr2)∗F = 0 and (pr2)∗ : OP (m)
X×U

∼=→ (pr2)∗F is
an isomorphism.

Induced by the universal family over Quot(OP (m)
X , P (x+m)) we get

now a universal family Euniv of vector bundles over X of rank n and
degree d parametrized by the subscheme Rm. Therefore we get a
morphism of stacks

rm : Rm → Bunn,dX .

From (ii) it follows that if a point of Rm is represented by a quotient
sheaf of the form

0→ G → OP (m)
X×U → F → 0

then H1(F ⊗G∨) = 0, which implies that rm is a smooth morphism.
For every family of vector bundles E of rank n and degree d on X

we can find an integer m such that the scheme Rm has a geometric
point whose corresponding quotient in Quot(OP (m)

X , P (x+m)) is E .
Taking infinite disjoint unions of all morphisms rm we get a surjective
smooth morphism

r :
∐
m

Rm → Bunn,dX

and therefore an atlas for the the stack Bunn,dX . From the nature of
the schemes Rm it follows also that Bunn,dX is locally of finite type.

It remains to show that Bunn,dX is a smooth stack. For this we
apply the lifting criterion for smoothness. We have to prove: Let A
be a local Artin algebra with ideal I ⊂ A and I2 = (0). If Ē is a
vector bundle on Spec(A/I) × X, then it can be lifted to a vector
bundle E on Spec(A)×X.
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Let {Ūi} an open affine covering of Spec(A/I)×X on which Ē is
the trivial vector bundle. Furthermore let {Ui}i∈I be the correspond-
ing covering of Spec(A)×X and φ̄ij ∈ Γ(Ūij , GLn) be the transition
functions, which can be lifted to φij ∈ Γ(Uij , GLn). In this way we
get a cocycle φij ◦ φjk ◦ φ−1

ik = 1 + γijk with

γijk ∈ Γ(Uijk, IOn
2

Spec(A)×X) = Γ(Uijk, IEnd(E)).

We have a 2-cocycle condition for γijk on the intersection Uijkl cor-
responding to an element (γijk) ∈ H2(Spec(A) × X, IEnd(E)). But
for dimension reason as X is a curve we have:

H2(Spec(A)×X, IEnd(E)) = 0

and therefore as the obstruction vanishes, we can change the transi-
tion functions βij ∈ Γ(Uij , GLn) such that they define a vector bundle
E on Spec(A) ×X. Now from the lifting criterion for smoothness it
follows that the stack Bunn,dX is smooth.

The moduli stack BunnX of all vector bundles of rank n on a
smooth projective irreducible curve X is the disjoint union of the
moduli stacks Bunn,dX , which are the connected components. [Fal95].

Let us finally discuss briefly the relation between moduli stacks
and moduli spaces. We need to define first what it means for an
algebraic stack to have a coarse moduli space.

Definition 2.68. Let X be an algebraic stack over the category
(Sch/S) of S-schemes. A coarse moduli space for X is an algebraic
space X together with a morphism π : X → X such that:

1. All morphisms X → Y, where Y is an algebraic space factor
uniquely through X , i.e. there exists a unique morphism X → Y
such that the diagram

X
ϕ //

π
  A

AA
AA

AA
A Y

X

??~
~

~
~

is commutative.
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2. For every algebraically closed field k the map of sets

[X (Spec(k))]→ X (Spec(k))

is a bijection, where [X (Spec(k))] is the set of isomorphism
classes of the groupoid X (Spec(k))

Let us compare this general definition with the classical one for
schemes [HL97], Def. 2.2.1.

Definition 2.69. Let (Sch/S) be the category of S-schemes. A
scheme M is a coarse moduli space for a functor

M : (Sch/S)op → (Sets)

if the following holds:

1. M corepresents the functor M, i.e. there is a natural transfor-
mation of functors φ :M→ Hom(Sch/S)(?,M) such that given
another scheme N and a natural transformation ψ : M →
Hom(Sch/S)(?, N) there exists a unique natural transformation
η : Hom(Sch/S)(?,M) → Hom(Sch/S)(?, N) with ψ = η ◦ φ,
i.e. we have a commutative diagram of the form

M

φ

��

ψ

**VVVVVVVVVVVVVVVVVVVVV

Hom(Sch/S)(?,M)
η //______ Hom(Sch/S)(?, N)

2. For every algebraically closed field k the map of sets

φ(k) :M(Spec(k))→ Hom(Sch/S)(Spec(k),M)

is a bijection.

Let us also recall here for completeness, even though it is normally
a vacuous term, what it means to have a fine moduli space.

Definition 2.70. Let (Sch/S) be the category of S-schemes. A
scheme M is a fine moduli space for a functor

M : (Sch/S)op → (Sets)
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if M represents the functor M, i.e. there is a natural isomorphism
between functors

η :M(?) ∼= Hom(Sch/S)(?,M).

A fine or a coarse moduli space M is always given up to unique
isomorphism.

Example 2.71. (Coarse moduli space for vector bundles over an
algebraic curve) There is a morphism of stacks

F : Bunst,nX → Bunst,nX

where Bunst,nX is the moduli stack of stable vector bundles of rank
n on an algebraic curve X and Bunst,nX is its coarse moduli space.
Bunst,nX is a scheme constructed by GIT methods using the machin-
ery of Quot schemes. We refer to [MFK94] or [Est97] for the con-
structions of GIT quotients and applications to moduli problems. In
fact, Bunst,nX is a coarse moduli space for the moduli functor

Mst,n
X : (Sch/k)op → (Sets)

associated to the moduli problem of classifying stable vector bundles
of rank n on X. It follows from the GIT constructions that the
moduli stack of stable vector bundles of rank n on X is given as a
quotient stack Bunst,nX = [Rst,n/GLN ] and the coarse moduli space
as a quotient Bunst,nX = Rst,n/PGLN for some scheme Rst,n. The
scheme Rst,n is an atlas for the moduli stack and its quotient by the
PGLN -action gives the coarse moduli space. The quotient morphism
π : Rst,n → Rst,n/PGLN is a principal PGLN -bundle. Similarly, we
have also a morphism of stacks

F : Bunss,nX → Bunss,nX

where Bunss,nX is the moduli stack of semistable vector bundles of
rank n on an algebraic curve X and Bunss,nX is again its coarse moduli
space.

Let us just state the following proposition to summarize the dis-
cussion on moduli stacks versus moduli spaces of vector bundles.
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Proposition 2.72. There is a commutative diagram of algebraic
stacks of the form

[Rst,n/GLN ]
q //

g∼=
��

[Rst,n/PGLN ]

h ∼=
��

Bunst,nX

F // Bunst,nX

where g and h are isomorphism of stacks. There is a similar diagram
in the semistable situation, but the right vertical morphism is not an
isomorphism of stacks anymore.

Proof. This is [Góm01], Prop. 3.3.

For a more detailed discussion of the relation between moduli
stacks and coarse moduli spaces of semistable and stable vector bun-
dles on a scheme we refer to [Góm01], Sec. 3. Similar statements can
also be made for the moduli stacks Mg and M̃g of algebraic curves.
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Chapter 3

Cohomology of
algebraic stacks

3.1 Sheaf cohomology of algebraic stacks

In this section we will define sheaf cohomology for algebraic stacks
and discuss some of its properties. For a systematic and general
treatment of how to define cohomology of algebraic stacks we refer
to [LMB00], [LO08a], [LO08b],[Ols07], [Beh93]. [Beh03] and [Vis89].
An introduction to this material can also be found in [NS05] and
[Hei09]. We like to recommend also the article [Hei05] for a similar
discussion of cohomology of differentiable stacks.

We will give here only a working definition for sheaf cohomology
of algebraic stacks, which has all the properties we will need to deter-
mine the l-adic cohomology of the moduli stack of vector bundles of
fixed rank and degree on an algebraic curve. First we need to define
the smooth site of an algebraic stack, where our sheaves will be living
on (see [LMB00], [Beh93], [NS05], [Hei98]).

Definition 3.1. Let X be an algebraic stack. The smooth site Xsm

on X is defined as the following category:

1. The objects are given as pairs (U, u), where U is a scheme and
u : U →X is a smooth morphisms.

87
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2. The morphisms are given as pairs (ϕ, α) : (U, u)→ (V, v) where
ϕ : U → V is a morphism of schemes and α : u ⇒ v ◦ ϕ is a
2-isomorphism, i.e. we have a commutative diagram of the form

U

u
  A

AA
AA

AA
A

ϕ // V

v
~~}}

}}
}}

}}

X

together with a 2-isomorphism α : u⇒ v ◦ ϕ.

3. The coverings are given by the smooth coverings of the schemes,
i.e. coverings of an object (U, u) are families of morphisms

{(ϕi, αi) : (Ui, ui)→ (U, u)}i∈I
such that the morphism∐

i∈I
ϕi :

∐
i∈I

Ui → U

is smooth and surjective.

The Grothendieck topology on the smooth site Xsm here is basi-
cally induced by the smooth topology on the category (Sch/S) of S-
schemes. We can now define the notion of a sheaf on the smooth site
Xsm.

Definition 3.2. Let X be an algebraic stack. A sheaf F on the
smooth site Xsm is given by the following data:

1. For each object (U, u) of Xsm, where U is a scheme and u :
U →X a smooth morphism, a sheaf FU,u on U .

2. For each morphism (ϕ, α) : (U, u)→ (V, v) of Xsm a morphism
of sheaves

θϕ,α : ϕ∗FV,v → FU,u
satisfying the cocycle condition for composable morphisms, i.e. for
each commutative diagram of the form

U

u
  A

AA
AA

AA
A
ϕ // V

ψ //

v

��

W

w
}}||

||
||

||

X
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together with 2-isomorphisms α : u ⇒ v ◦ ϕ and β : v ⇒ w ◦ ψ
we have that

θϕ,α ◦ ψ∗θψ,β = θψ◦ϕ,ϕ∗β◦α

A sheaf F is called quasi-coherent (resp. coherent, resp. of finite type,
resp. of finite presentation, resp. locally free) if the sheaf FU,u is
quasi-coherent (resp. coherent, resp. of finite type, resp. of finite pre-
sentation, resp. locally free) for every morphism u : U → X , where
U is a scheme.

A sheaf F is called cartesian if all morphisms θϕ,α are isomor-
phisms.

A morphism of sheaves h : F → F ′ on Xsm is a collection of
morphisms of sheaves hU,u : FU,u → F ′U,u for all objects (U, u) of Xsm

which are compatible with the morphisms θϕ,α. The category Shv(X )
of sheaves of sets on the smooth site Xsm is called the smooth topos
of X .

It is normally enough to consider affine schemes in the definition
of a sheaf on an algebraic stack as any sheaf on a scheme can be
obtained by glueing along affine covers [LMB00].

The category of sheaves on an algebraic stack X can be described
equivalently as the category of sheaves on some atlas x : X → X
together with descent data [LMB00], Chap. 12.

In general, it is not enough to consider just cartesian sheaves as
for example certain abelian categories of cartesian sheaves might not
have enough injective objects, and so have a bad homological be-
haviour. But it can be shown that the category of cartesian sheaves
is a thick subcategory of the category of all sheaves, i.e. a full sub-
category closed under kernels, quotients and extensions [LMB00].

We record especially here the case of a vector bundle on an alge-
braic stack.

Definition 3.3. A vector bundle on an algebraic stack X is a co-
herent sheaf E on Xsm such that all coherent sheaves EU,u are locally
free for every morphism u : U →X , where U is a scheme.

Let us look now at some important example of sheaves on alge-
braic stacks.
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Example 3.4. (Structure sheaf of an algebraic stack) Let X be an
algebraic stack. The structure sheaf OX on X is defined by assem-
bling the structure sheaves OU of the schemes U for every smooth
morphism u : U →X , i.e. by setting (OX )U,u = OU . In this way we
get a ringed site (X ,OX ) on the algebraic stack X and we can de-
fine sheaves of OX -modules, sheaves of quasi-coherent OX -modules
and, if X is locally noetherian, also sheaves of coherent OX -modules
[LMB00], Chap. 13 & 15.

Example 3.5. (Constant sheaf Z/nZ) Let X be an algebraic stack.
Let n ≥ 1 be a positive integer. The constant sheaf (Z/nZ)X is given
by assembling the constant sheaves (Z/nZ)U,u = (Z/nZ)U = Z/nZ.
It turns out that this is actually a cartesian sheaf on X [LMB00],
12.7.1 (ii).

Example 3.6. (Sheaf of relative differentials) Let F : X → Y be a
representable morphism of algebraic stacks. We can define the sheaf
of relative differentials ΩX /Y .

Let u : U → Y be any smooth covering morphism with U a
scheme, i.e. an atlas of Y . We have the following cartesian diagram

U ×Y X
pr2 //

pr1

��

X

F

��
U

u // Y

The fiber product U ×Y X is a scheme and we have the sheaf
of relative differentials ΩU×Y X /U . The sheaf of relative differentials
ΩX /Y is now defined via descent of the shaf ΩU×Y X /U on the cov-
ering morphism pr2 : U ×Y X →X . This sheaf is well-defined as it
does not depend on the chosen atlas u : U → Y . [Hei98], [Góm01],
Ex. 2.48.

Example 3.7. (Universal vector bundle Euniv on X ×Bunn,dX ) Let
Bunn,dX be the moduli stack of rank n and degree d vector bun-
dles on a smooth projective irreducible algebraic curve X of genus
g ≥ 2. There exists a universal vector bundle Euniv on the alge-
braic stack X ×Bunn,dX , because via representability any morphism
U → Bunn,dX , where U is a scheme defines a family of vector bundles
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of rank n and degree d on the scheme X parametrized by U and the
cocycle conditions can easily be checked for vector bundles. Similar,
we get universal vector bundles for the moduli stacks Bunss,n,dX (resp.
Bunst,n,dX ) of semistable (resp. stable) vector bundles.

Example 3.8. (Equivariant sheaves) Let (Sch/S) be the category
of S-schemes and X be a noetherian S-scheme. Let G be an affine
smooth group S-scheme with a right action ρ : X × G → X and
consider the quotient stack [X/G]. Then any cartesian sheaf F on
[X/G] is the same as an G-equivariant sheaf on X.

Example 3.9. (Vector bundle on moduli stack of algebraic curves)
Let Mg be the moduli stack of algebraic curves of genus g ≥ 2. For
any family π : C → U consider the dualizing sheaf ω⊗3

C/U . The direct
image sheaf π∗(ω⊗3

C/U ) is a locally free sheaf of rank 5g−5. We define
a sheaf on Mg by letting EU,u = π∗(ω⊗3

C/U ) for any atlas u : U →Mg.
This gives a vector bundle E of rank 5g − 5 on the moduli stack Mg

(see also [Vis89], Ex. 7.20 (iii)). The vector bundle E defines then
via representability a morphism of algebraic stacks

Mg → BGL5g−5

where BGL5g−5 is the classifying stack of vector bundles of rank
5g − 5. It turns out, that this is actually a representable morphism,
which is surjective and smooth.

Having defined sheaves on algebraic stacks we can now also de-
fine inverse image and direct image functors f∗, f∗ of quasicoherent
sheaves etc. We refer to [LMB00], [Ols07], [LO08a] and [LO08b] for a
systematic treatment. Let us just mention that because such functors
f∗, f∗ always commute with flat base change we get such functors
automatically for any representable morphism of stacks F : X → Y .

We will now define sheaf cohomology of an algebraic stack X
with respect to a sheaf of abelian groups F on Xsm. We will give a
common man’s definition of cohomology here which will be enough
for our purposes to illustrate the use of cohomology. We refer to the
work of Behrend [Beh93], [Beh03] and Laszlo and Olsson [LO08a] and
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[LO08b] for a general and systematic approach in the style of SGA.

Let X be an algebraic stack and choose an atlas u : U → X of
X . For cartesian sheaves F on X we define the global sections as
the equalizer

Γ(X ,F) := Ker(Γ(U,F) ⇒ Γ(U ×X U,F)).

It is not hard to see that this definition does not depend on the choice
of the atlas u : U → X of X by first checking it on a covering and
then on refinements.

For general sheaves we proceed as follows [LMB00], 12.5.3.

Definition 3.10. Let X be an algebraic stack and F a quasi-coherent
sheaf on Xsm. The set of global sections is defined as

Γ(X ,F) := {(sU,u) : sU,u ∈ H0(U,FU,u), θϕ,αsU,u = sV,v}.

The functor
Γ(X , ?) : Shv(X )→ (Sets)

is called the global section functor.

We can rephrase this by saying that the global sections are given
as the limit

Γ(X ,F) = lim
←

Γ(U,FU,u)

where the limit is taken over all atlases u : U → X with transition
functions given by the restriction maps θϕ,α. Again, it is not hard
to show that for cartesian sheaves the two notions of global sections
coincide.

The category Mod(X ) of sheaves of OX -modules and the cate-
gory Ab(X ) of sheaves of abelian groups on the site Xsm have enough
injective objects and so we can do homological algebra in them and
especially can proceed now to define sheaf cohomology of algebraic
stacks.
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Definition 3.11. The i-th smooth cohomology group of the algebraic
stack X with respect to a sheaf F of abelian groups on the smooth
site Xsm is defined as

Hi
sm(X ,F) := RiΓ(X ,F)

where the cohomology functor

Hi
sm(X , ?) = RiΓ(X , ?) : Ab(X )→ Ab

is the i-th right derived functor of the global section functor Γ(X , ?)
with respect to Xsm.

For cartesian sheaves we can give a simplicial interpretation of
the sheaf cohomology of an algebraic stack X [LMB00], 12.4. Let
x : X → X be an atlas. As the diagonal morphism of an algebraic
stack is representable, we obtain by taking iterated fiber products of
the atlas with itself

X ×X X //

��

X

x

��
X

x // X

a simplicial scheme X• = {Xi}i≥0 over X with layers

Xi = X ×X X ×X · · · ×X X

given by the (i+1)-fold iterated fiber product of the atlas with itself.
A simplicial scheme X• over X can simply be interpreted as a

functor
X• : ∆op → (Sch/X )

where ∆op is the category with objects finite sets [n] = {0, 1, . . . n}
and morphisms order preserving maps and (Sch/X ) is the category
of schemes over the algebraic stack X , i.e. the category of schemes
X together with morphisms x : X →X .

Now let F be a sheaf on X . This defines a sheaf F• on the
simplicial scheme X•, i.e. a sheaf Fi on all schemes Xi together with
morphisms for all simplicial maps f : [m] → [n] of the form f∗ :
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X•(f)∗Fn → Fm. We call a sheaf on a simplicial scheme cartesian
if all morphisms f∗ are isomorphisms. If we start with a cartesian
sheaf F on X , we get a cartesian sheaf F• on the simplicial scheme
X•. In this way we get a functor Shv(X )→ Shv(X•).

Conversely, for any smooth morphism u : U → X a sheaf F• on
the simplicial scheme X• gives a sheaf on the covering U ×X X → U
via taking global sections and by assembling them to a sheaf on X .
Again starting with a cartesian sheaf F• on X• gives a cartesian sheaf
on X .

We can define cohomology of sheaves of abelian groups on simpli-
cial schemes generalizing the classical homological approach for sheaf
cohomology on schemes [Fri82].

The relation between the cohomology groups of an algebraic stack
X and the cohomology groups of an atlas x : X → X is given by a
descent spectral sequence [Fri82]:

Theorem 3.12. Let X be an algebraic stack and F be a cartesian
sheaf of abelian groups on X . Let x : X → X be an atlas and F•
the induced sheaf on the simplicial scheme X• over X . Then there
is a convergent spectral sequence

Ep,q1
∼= Hp

sm(Xq,Fq)⇒ Hp+q
sm (X ,F).

which is functorial with respect to morphisms F : X → Y of alge-
braic stacks.

Proof. For a proof see [Del74b], [Fri82].

In [Beh93] the general framework of topoi is used to give a rig-
orous definition of sheaf cohomology on the smooth site Xsm of an
algebraic stack X . The resulting cohomology groups agree with the
ones defined here in an ad hoc way. We are mainly interested in
the special case of l-adic cohomology employing the cartesian con-
stant sheaf (Z/lnZ)X , where l is a prime number different from the
characteristic p of the ground field Fq.

Example 3.13. (l-adic smooth cohomology) Let X be an algebraic
stack defined over the field Fq of characteristic p. Via base change we
get an associated algebraic stack X over the algebraic closure Fq by
setting

X = X ×Spec(Fq) Spec(Fq).



“fnStacks”
2010/9/1
page 95i

i
i

i

i
i

i
i

[SEC. 3.1: SHEAF COHOMOLOGY OF ALGEBRAIC STACKS 95

Let l be a prime number different from p. The l-adic smooth coho-
mology of the algebraic stack X is defined as

H∗sm(X ,Ql) = lim
←
H∗sm(X ,Z/lmZ)⊗Zl Ql.

It is possible to conclude directly that Künneth decomposition,
Gysin sequences and Leray spectral sequences also exist for smooth
l-adic cohomology of algebraic stacks by using the simplicial scheme
associated to an atlas X and the descent spectral sequence.

In the special case of smooth schemes, the smooth l-adic cohomol-
ogy groups agree with the étale l-adic cohomology groups [Mil80].

Let us just record here the following fundamental properties of
l-adic smooth cohomology of algebraic stacks:

Theorem 3.14. We have the following properties:

(1.) (Künneth decomposition) Let X and Y be algebraic stacks.
There is a natural isomorphism of graded Ql-algebras

H∗sm(X × Y ,Ql) ∼= H∗sm(X ,Ql)⊗H∗sm(Y ,Ql).

(2.) (Gysin sequence) Let Z ↪→ X be a closed embedding of alge-
braic stacks of codimension c. There is a long exact sequence

· · · → Hi−2c
sm (Z ,Ql(c))→ Hi

sm(X ,Ql)→ Hi
sm(X \Z ,Ql)→ · · ·

In particular, Hi
sm(X ,Ql)

∼=→ Hi
sm(X \Z ,Ql) is an isomor-

phism in the range i < 2c− 1.

Proof. The first part follows from the descent spectral sequence and
the analogous results for simplicial schemes [Del77], [Fri82]. (See also
[NS05] for a brief discussion). The second part is [Beh93], Prop. 2.1.2
and Cor. 2.1.3.

A general l-adic formalism of derived categories of l-adic sheaves
for algebraic stacks was systematically developed by Behrend [Beh03]
and used to prove a general version of a Lefschetz trace formula for
algebraic stacks.
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Example 3.15. (Cohomology of the classifying stack BGm) Let Gm

be the multiplicative group over Spec(Fq). The quotient morphism
An − {0} → Pn−1 is a principal Gm-bundle and we have a cartesian
diagram of the form

An − {0} //

��

Spec(Fq)

��
Pn−1 π // BGm

The fiber of the morphism π is An − {0} and we can employ the
Leray spectral sequence

Ep,q2
∼= Hp

sm(Pn−1
, Rqπ∗Ql)⇒ H∗sm(BGm,Ql)

and because R0π∗Ql
∼= Ql and Rqπ∗Ql = 0 if q ≤ 2n − 1 it follows

for q ≤ 2n− 1 that

Hq
sm(BGm,Ql) ∼= Hq

sm(Pn−1
,Ql)

and therefore
H∗sm(BGm,Ql) ∼= Ql[c1]

where c1 is a generator of degree 2 given as the Chern class of the
universal bundle Euniv on the classifying stack BGm.

We will later need a bit of the theory of gerbes on algebraic stacks.
We refer to [Lie07], [Hei09] for the technical details.

Definition 3.16. A morphism F : X → Y of algebraic stacks is a
gerbe over Y if the following holds:

1. F is locally surjective, i.e. for any morphism U → Y from a
scheme, there exists a covering U ′ → U such that the morphism
U ′ → Y can be lifted to a morphism U ′ →X , i.e.

X

F

��
U ′

==||||||||
// Y
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2. All objects in a fiber of F are locally isomorphic, i.e. if u1, u2 :
U → X are objects of X (U) such that F (u1) ∼= F (u2), then
there exists a covering U ′ → U such that u1|U ′ ∼= u2|U ′ .

A gerbe F : X → Y is a Gm-gerbe if for all morphisms u : U →X
the relative automorphism group AutY (u) is canonically isomorphic
to Gm(U).

We can think of a Gm-gerbe over a scheme Y as a BGm-bundle
over Y , i.e. a bundle over Y with fiber BGm.

Example 3.17. As mentioned before, there is a morphism of stacks

F : Bunst,nX → Bunst,n

where Bunst,nX is the moduli stack of stable vector bundles of rank
n on an algebraic curve X with coarse moduli space Bunst,nX . The
morphism F has the following property: For any morphism U →
Bunst,nX of schemes there exists an étale covering U ′ → U such that
the morphism U ′ → Bunst,nX lifts to a morphism U ′ → Rst,n and so
it lifts to the moduli stack Bunst,nX = [Rst,n/GLN ].

Therefore F is a gerbe and because all automorphisms of stable
bundles are given by scalars the fiber of F is isomorphic to BGm, i.e.
F is actually a Gm-gerbe.

In general, a morphism of quotient stacks of the form

F : [R/GLN ]→ [R/PGLN ]

is a Gm-gerbe. This is useful in order to compare “stacky” quotients
with GIT quotients.

The following proposition gives a criterion for triviality of a Gm-
gerbe on a stack Y .

Proposition 3.18. Let F : X → Y be a Gm-gerbe. Then the
following are equivalent:

1. The Gm-gerbe F is trivial, i.e. we have a splitting of algebraic
stacks

X ∼= Y ×BGm.
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2. The morphism F has a section.

Proof. This is [Hei09], Lemma 3.10.

Example 3.19. There is also a morphism of stacks

F : Bunst,n,dX → Bunst,n,dX

where Bunst,n,dX is the moduli stack of stable vector bundles of rank
n and degree d on X and Bunst,n,dX its coarse moduli space, given
again as a scheme via GIT methods. A section of the morphism F
is a vector bundle on X × Bunst,n,dX such that the fiber over every
geometric point of Bunst,n,dX lies in the isomorphism class of stable
bundles defined by this geometric point. Such a vector bundle is also
called a Poincaré family.

There are many interesting Gm-gerbes over an algebraic stack
and we will make use of the splitting criteria for the triviality of a
Gm-gerbe when we determine the cohomology of the moduli stack
Bunn,dX .
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Chapter 4

Moduli stacks of vector
bundles I

4.1 Cohomology of the moduli stack

In this section we will determine the l-adic cohomology algebra of the
moduli stack Bunn,dX of vector bundles of rang n and degree d on a
smooth projective irreducible algebraic curve X over the field Fq.

Let us recall the l-adic cohomology algebra of the moduli stack

H∗sm(Bun
n,d

X ,Ql) = lim
←
H∗sm(Bun

n,d

X ,Z/lmZ)⊗Zl Ql.

The main ingredients used to produce the cohomology algebra will
be the l-adic cohomology of the classifying stack BGLn of all rank n
vector bundles and the l-adic cohomology of the algebraic curve X.

The l-adic cohomology of the algebraic curve X is completely
determined from the Weil Conjectures.

Theorem 4.1 (Weil, Deligne). Let X be a smooth projective curve of
genus g over Fq and X = X ×Spec(Fq) Spec(Fq) the associated curve
over the algebraic closure Fq. Then we have

99
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H0
et(X; Ql) = Ql · 1

H1
et(X; Ql) =

2g⊕
i=1

Ql · αi

H2
et(X; Ql) = Ql · [X]

Hi
et(X; Ql) = 0, if i ≥ 3

where [X] is the fundamental class and the αi are eigenclasses under
the action of the geometric Frobenius morphism

F
∗
X : H∗et(X,Ql)→ H∗et(X,Ql)

given as
F
∗
X(1) = 1

F
∗
X([X]) = q[X]

F
∗
X(αi) = λiαi (i = 1, 2, . . . 2g)

where λi ∈ Ql is an algebraic integer with |λi| = q1/2 for any embed-
ding of λi in C.

Proof. This is the étale l-adic cohomology analogue of a similar result
in the complex analytic case of a Riemann surface. For a proof see
for example [Mil80] or [FK88].

We could have also used here smooth l-adic cohomology, but as
mentioned before, it will give the same result as étale l-adic cohomol-
ogy as on smooth schemes both cohomology theories agree [Mil80].

The other ingredient in the determination of the l-adic cohomol-
ogy algebra of Bunn,dX will be the l-adic cohomology of the clas-
sifying stack BGLn of all rank n vector bundles. Let BGLn =
BGLn×Spec(Fq) Spec(Fq) be the associated classifying stack over the
algebraic closure Fq. We also have a geometric Frobenius morphism

F
∗
BGLn : H∗sm(BGLn,Ql)→ H∗sm(BGLn,Ql).

The l-adic cohomology algebra of BGLn and the action of the
Frobenius morphism FBGLn is completely determined by the follow-
ing theorem [Beh93].
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Theorem 4.2. There is an isomorphism of graded Ql-algebras

H∗sm(BGLn,Ql) ∼= Ql[c1, . . . cn]

and the geometric Frobenius morphism F
∗
BGLn acts as follows

F
∗
BGLn(ci) = qici (i ≥ 1).

where the ci are the Chern classes of the universal vector bundle Ẽuniv
of rank n over the classifying stack BGLn.

Proof. This is [Beh93] Thm. 2.3.2. This is an analogue of a similar
result in algebraic topology for singular cohomology of the classifying
space BGLn. The associated simplicial scheme of the classifying stack
BGLn has the same homotpy type as the classifying space.

We will embark now on the determination of the l-adic cohomol-
ogy algebra of the moduli stack Bunn,dX . Let Euniv be the univer-
sal vector bundle of rank n and degree d over the algebraic stack
X ×Bun

n,d

X . Via representability it gives a morphism of stacks

u : X ×Bun
n,d

X → BGLn.

The universal vector bundle Euniv has Chern classes given as

ci(Euniv) = u∗(ci) ∈ H2i
sm(X ×Bun

n,d

X ,Ql).

Fixing a basis 1 ∈ H0
sm(X,Ql), αj ∈ H1

sm(X,Ql) with j = 1, . . . 2g
and [X] ∈ H2

sm(X,Ql) we get the following Künneth decomposition
of Chern classes:

ci(Euniv) = 1⊗ ci +
2g∑
j=1

αj ⊗ a(j)
i + [X]⊗ bi−1.

where the classes ci ∈ H2i
sm(Bun

n,d

X ,Ql), a
(j)
i ∈ H2i−1

sm (Bun
n,d

X ,Ql)
and bi−1 ∈ H2(i−1)

sm (Bun
n,d

X ,Ql) are the so-called Atiyah-Bott classes.

We can now state and prove the main theorem of this chapter
about the l-adic cohomology algebra of the moduli stack Bunn,dX .
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Historically, first the l-adic Betti numbers of the coarse moduli
space of stable bundles of coprime rank n and degree d on an algebraic
curve over a finite field were determined by Harder and Narasimhan
[HN75] using arithmetic techniques and the Weil Conjectures. Later
Atiyah and Bott [AB83] calculated the Betti numbers in the complex
analytic case for the coarse moduli space of stable bundles of coprime
rank n and degree d on a compact Riemann surface using Yang-Mills
gauge theory and equivariant Morse theory. A new algebro-geometric
determination of the Betti numbers with the aim to compare and
understand the two different calculations was given by Bifet, Ghione
and Letizia [BGL94].

More recently, Heinloth [Hei98] determined the l-adic cohomology
for the whole moduli stack Bunn,dX and another determination of this
cohomology algebra together with actions of the various Frobenius
actions was given in [NS05], [NS05]. The proof we will present here
is a mixture of the proof outlined in [Hei09], which is a variant of the
proof in [Hei98], and the one in [NS05] and [NS].

Theorem 4.3. Let X be a smooth projective irreducible algebraic
curve of genus g ≥ 2 over the field Fq and Bunn,dX be the moduli
stack of vector bundles of rank n and degree d on X. There is an
isomorphism of graded Ql-algebras

H∗sm(Bun
n,d

X ,Ql) ∼= Ql[c1, . . . , cn]⊗Ql[b1, . . . , bn−1]

⊗ ΛQl(a
(1)
1 , . . . , a

(2g)
1 , . . . , a(1)

n , . . . , a(2g)
n ).

Proof. The proof has two steps. As a first step, we will show that the
cohomology algebra of the moduli stack Bun

n,d

X contains the graded
Ql-algebra of the right hand side, i.e. the Atiyah-Bott classes gener-
ate a free subalgebra of the cohomology algebra. This uses induction
over the rank of vector bundles and reduction to closed substacks of
vector bundles being direct sums of line bundles. In the second step
we will calculate the Poincaré series of the stack Bun

n,d

X by ”stack-
ifying” the approach of [BGL94], where it is basically shown that
the moduli stack Bun

n,d

X is quasi-isomorphic to a certain ind-scheme
Div

n,d
representing a moduli functor of effective divisors on X. This
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ind-scheme has the same Poincaré series as the Ql-algebra on the
right hand side and therefore we will get an isomorphism of the two
algebras.

First step. We do induction over the rank n. Let n = 1 and consider
the moduli stack Bun1,d

X , which classifies line bundles of degree d on
X. A coarse moduli space for the stack Bun1,d

X is simply given by
the Picard scheme PicdX on X. There exists a Poincaré family on the
product X×PicdX (see [Ram73] or [DN89], Thm. G) and so we get a
section of the Gm-gerbe Bun1,d

X → PicdX and a splitting of algebraic
stacks

Bun
1,d

X
∼= Pic

d

X ×BGm.

The cohomology of the Picard scheme PicdX is ismorphic to the Ja-
cobian Jac(X) of the algebraic curve X. But Jac(X) is an abelian
variety and therefore we have:

H∗sm(Jac(X),Ql) ∼= ΛQl(H
1
et(X,Ql)) ∼= ΛQl(α1, . . . , α2g)

and using the Künneth decomposition of l-adic cohomology we get:

H∗sm(Bun
1,d

X ,Ql) ∼= H∗sm(Pic
d

X ,Ql)⊗H∗sm(BGm,Ql).

And this therefore gives already the desired isomorphism of Ql-algebras
in the case of rank one vector bundles:

H∗sm(Bun
1,d

X ,Ql) ∼= ΛQl(a
(1)
1 , . . . , a

(2g)
1 )⊗Ql[c1].

Now let n > 1 and consider the moduli stack Bunn,dX . Let

d =
n∑
i=1

di, di ∈ Z; d = (d1, . . . , dn)

be an arbitrary partition of the degree d. We can consider the fol-
lowing morphism of algebraic stacks

⊕d :
n∏
i=1

Bun1,di
X → Bunn,dX , (Li) 7→ L1 ⊕ . . .⊕ Ln.
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and its induced homomorphism (⊕d)∗ in l-adic cohomology. Chern
classes of direct sums of line bundles can be expressed as elementary
symmetric polynomials σi in the Chern classes of the line bundles
involved in the direct sum. Now for every k = 1, . . . , n let Lunivdk

be the universal line bundle on the stack X × Bun
1,dk
X . Fixing a

basis, we have the following Künneth decomposition of the Chern
class c1(Lunivdk

):

c1(Lunivdk
) = 1⊗ Ck +

2g∑
j=1

αj ⊗A(j)
k + [X]⊗ dk.

Now we can describe the effect of the induced map (⊕d)∗ in l-adic
cohomology on the Chern classes of the universal vector bundle Euniv

on the stack X ×Bun
n,d

X .

(⊕d)∗(ci(Euniv)) = σi(c1(Lunivd1 , . . . , c1(Lunivdn ))

= σi(Ci, . . . , Cn) +
∑
r,s

αr ⊗ ∂sσi(C1, . . . , Cn)A(r)
s

+
∑

r+u=2g+1,s,t

[X]⊗ ∂s∂tσi(C1, . . . , Cn)A(r)
s A

(u)
t

+
∑
r,s

[X]⊗ ∂sσi(C1, . . . , Cn)ds.

We take the product of all homomorphisms (⊕d)∗ for all partitions
d = (d1, . . . , dn) with

∑
i di = d and get a commutative diagram:

H∗sm(Bun
n,d

X ; Ql) //∏
d Ql[C1, . . . Cn]⊗

⊗n,2g
i,j ΛQl(A

(j)
i )

Ql[ci]⊗ ΛQl(a
(j)
i )⊗Ql[bi]

α

OO

� � ϕ // Ql[Ci]⊗ ΛQl(A
(j)
i )⊗ Ql[D1,...Dn]

(
P
sDs−d)

ψ

OO

The algebra homomorphism ϕ is given on generators by

ci 7→ σi(C1, . . . Cn), a(j)
i 7→

∑
s

∂sσi(C1, . . . Cn)A(j)
s
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bi 7→
∑

r+u=2g+1,s,t

∂s∂tσi(C1, . . . , Cn)A(r)
s A

(u)
t

+
∑
r,s

∂sσi(C1, . . . , Cn)Ds.

It follows that ϕ is a monomorphism, because the elementary sym-
metric polynomials σi and their derivatives ∂sσi are linearly inde-
pendent. The linear independence of the derivatives basically follows
from the fact that the map An → An/Σn is generically a Galois cov-
ering, i.e. an étale covering with the symmetric group Σn as Galois
group.

The algebra homomorphism ψ is given by simultaneous evalua-
tion of the variables Ds, i.e. Ds 7→ (d1, . . . , ds, . . . dn) simultaneously
at all integers ds. Therefore ψ is also a monomorphism. Because
both φ and ψ are monomorphisms it finally follows that the homo-
morphism α must be a monomorphism for all i, j and therefore that
the Atiyah-Bott classes generate a free subalgebra of the cohomology
algebra of the moduli stack.

Second step. We will now show that the cohomology algebra of the
moduli stack is isomorphic to the algebra on the right hand side. In
order to do so we determine the Poincaré series of both algebras and
show that they are equal.

The Poincaré series of the graded Ql-algebra

Alg∗Ql := Ql[c1, . . . , cn]⊗Ql[b1, . . . , bn−1]

⊗ ΛQl(a
(1)
1 , . . . , a

(2g)
1 , . . . , a(1)

n , . . . , a(2g)
n ).

can be read off immediately. We have

P (Alg∗Ql , t) =
∞∑
k=0

dim Ql(Alg
k
Ql)t

k

=
∏n
i=1(1 + t2i−1)2g∏n

i=1(1− t2i)
∏n
i=2(1− t2i−2)

In order to calculate the Poincaré series of the cohomology algebra
of the moduli stack, we approximate the moduli stack via a certain
ind-scheme of effective divisors on X. For this we will “stackify” the
approach of [BGL94].
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Let Λ be a partially ordered set of effective divisors on the al-
gebraic curve X. For any fixed divisor D ∈ Λ we have a moduli
functor

Divn,d(D) : (Sch/Fq)op → (Sets)

where Divn,d(D)(U) is given as the set of (n, d)-divisors, i.e. equiva-
lence classes of inclusions E ↪→ OX×U (D)⊕n with E a family of rank
n and degree d vector bundles on X parametrized by U [BGL94].
The moduli functor Divn,d(D) is representable by a Quot scheme
Divn,d(D) given as

Divn,d(D) := Quot(OX(D)⊕n, s)

which parametrizes the torsion sheaf quotients of OX(D)⊕n of degree
s = n · deg(D) − d [Gro95b], [BGL94]. These are smooth projective
schemes and for every pairD,D′ ∈ Λ of effective divisors withD ≤ D′
we have a closed immersion of Quot schemes

Divn,d(D) ↪→ Divn,d(D′).

We get a directed system of schemes {Divn,d(D), D} and therefore
get an ind-scheme Divn,d by taking the direct limit

Divn,d := lim
→

Divn,d(D).

Let s = (s1, . . . , sn) be a partition of the integer s = n ·deg(D)−d by
non-negative integers. The automorphism group of the vector bundle
OX(D) is given by Gm. Therefore we obtain an action of the split
maximal torus T ⊂ GLn of diagonal matrices on the sum OX(D)⊕n

on the scheme Divn,d(D). The components of the fixed-point sets of
this torus action correspond to line bundles of the form

OX(D1)⊕ · · · ⊕ OX(Dn).

Taking cokernels of inclusions of bundles of this form into OX(D)⊕n

we get torsion sheaves on X. We can identify the fixed-point sets
with products Hs of Hilbert schemes of points on X given as

Hs = Hilb(s1, X)× · · · ×Hilb(sn, X)
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and canonically embedded in Divn,d(D) [Bif89], [BGL94]. Since X
is 1-dimensional, these Hilbert schemes Hilb(sk, X) of points are just
given as symmetric powers X(sk) of the algebraic curve X. From gen-
eral results of fixed points of algebraic group actions [BB73], [BB74]
and deformation theory it follows from this [BGL94], Prop. 4.2 that
the l-adic cohomology of the ind-scheme Divn,d stabilizes, i.e. if
D ≤ D′, then the homomorphism

Hi
et(Div

n,d
(D′),Ql)→ Hi

et(Div
n,d

(D),Ql)

induced by the closed immersion Divn,d(D) ↪→ Divn,d(D′) is an iso-
morphism in the range 0 ≤ i ≤ n · deg(D)− d, i.e. the cohomology is
given as the inverse limit

H∗et(Div
n,d
,Ql) ∼= lim

←
H∗et(Div

n,d
(D),Ql).

And we also get that

H∗et(Div
n,d

(D),Ql) ∼=
⊕
s

H∗et(X(s1) × · · · ×X(sn),Ql).

It follows also that the l-adic cohomology of Divn,d(D) for every
divisor is torsion free and the Poincaré series therefore can be calcu-
lated via the Poincaré series of the symmetric powers X(sk) [Bif89],
[BGL94]. But those Poincaré series can be calculated directly [Mac62]
and from this it follows finally that (see again [BGL94], Prop. 4.2.)

P (H∗et(Div
n,d
,Ql), t) =

∏n
i=1(1 + t2i−1)2g∏n

i=1(1− t2i)
∏n
i=2(1− t2i−2)

= P (Alg∗Ql , t)

For every divisor D ∈ Λ there is a canonical morphism of algebraic
stacks

Divn,d(D)→ Bunn,dX

as geometric points in Divn,d(D) are families of vector bundles of
rank n and degree d on X parametrized by U . Therefore we get a
morphism from the ind-scheme to the moduli stack

Divn,d → Bunn,dX
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inducing a homorphism in l-adic cohomology

H∗sm(Bun
n,d

X ,Ql)→ H∗sm(Div
n,d
,Ql).

Using the Shatz stratification of both the ind-scheme Divn,d and the
moduli stack Bunn,dX , it follows from [Dhi06], Thm 4.6 that this ho-
momorphism is in fact an isomorphism. Therefore the Poincaré series
of the moduli stack is also given as

P (H∗sm(Bun
n,d

X ,Ql), t) = P (Alg∗Ql , t)

From both steps we can now conclude that we have an isomor-
phism of graded Ql-algebras

H∗sm(Bun
n,d

X ,Ql) ∼= Alg∗Ql

which finishes the proof of the theorem.

As a benefit of the proof of the above theorem we get immediately
a complete calculation of the l-adic cohomology of the ind-scheme
Divn,d extending the calculations of Betti numbers in [BGL94].

Corollary 4.4. Let X be a smooth projective and irreducible al-
gebraic curve of genus g over the field Fq and Divn,d be the ind-
scheme of (n, d)-divisors on X. There is an isomorphism of graded
Ql-algebras

H∗et(Div
n,d
,Ql) ∼= Ql[c1, . . . , cn]⊗Ql[b1, . . . , bn−1]

⊗ ΛQl(a
(1)
1 , . . . , a

(2g)
1 , . . . , a(1)

n , . . . , a(2g)
n ).

Recently Heinloth and Schmitt [HS] determined also the l-adic
cohomology of the moduli stack BunG,X of principal G-bundles on
a smooth projective algebraic curve X in arbitrary characteristic,
where G is a reductive algebraic group. Again, they showed that the
cohomology algebra is freely generated by the corresponding Atiyah-
Bott characteristic classes. This reformulates and extends to alge-
braic stacks the fundamental results of Atiyah and Bott [AB83] in
the complex analytic case on the cohomology of the coarse moduli
space of principal G-bundles on a Riemann surface. In the complex
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analytic case a calculation of the cohomology of the moduli stack of
principal G-bundles was already obtained by Teleman [Tel98], where
in fact the homotopy type of this moduli stack is determined. This
suggests another way of determining the l-adic cohomology algebra
of the moduli stack of vector bundles and more generally the moduli
stack of principal G-bundles using the machinery of étale homotopy
theory [AM69], [Fri82] along similar lines as in the case of moduli
stacks of algebraic curves with symmetries [FN03].

In [ADK08] Asok, Doran and Kirwan recently determined the mo-
tivic cohomology à la Voevodsky of the coarse moduli space of stable
bundles of rank n and degree d on a smooth projective curve over an
algebraically closed field and thereby unified and extended the differ-
ent classical approaches to the natural setting of motivic cohomology.
In fact, more generally they are able to calculate the equivariant mo-
tivic cohomology of GIT quotients. It would be interesting to extend
this approach to the whole moduli stack and calculate its motivic
cohomology or even its motivic homotopy type. This would need a
good definition of motivic cohomology for algebraic stacks, which in
the case of quotient stacks should correspond to equivariant motivic
cohomology. Some other interesting results on motives of moduli
stacks of vector bundles and principal G-bundled on curves were also
recently obtained by Behrend and Dhillon [BD07].
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Chapter 5

Moduli stacks of vector
bundles II

5.1 A primer on the classical Weil Con-
jectures

In this section we will give a brief introduction into the fascinating
circle of ideas behind the Weil Conjectures. The Weil Conjectures
bring to light a deep connection between the arithmetic and topology
of a smooth complex vartiety. The main aim here is to motivate
the discussion on Frobenius morphisms and analogues of the Weil
Conjectures for the moduli stack of vector bundles of algebraic curves
in the last section of this chapter.

As a guide and reference for the discussion of the classical Weil
Conjectures here we refer to the introduction by Dieudonné in [FK88]
and a similar overview in [KW06].

Let X ⊆ CPn be an m-dimensional smooth complex projective
variety defined over an algebraic number ring R, for example let X
be defined over the ring R = Z of integers. In other words, X can be
defined as the zero locus of homogeneous polynomials with coefficients
in the ring R. Let m be a maximal ideal in R. Then R/m ∼= Fq is
a finite field of characteristic char(R/m) = p with q = ps elements,

111
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where s is a positive integer. For example, if R = Z, we can take
m = pZ for a prime number p and get the finite field Fp.

We define a new projective variety Xm over the field Fq

Xm ⊆ FqPN =
FN+1
q \{(0, . . . , 0)}

Fq\{0}
by reducing the equations defining X with coefficients in the ring
R modulo m. Let Xm be the associated projective variety over the
algebraic closure Fq defined by the same equations as for Xm but
viewed over Fq.

We like to count the number Nr = #X(Fqr ) of Fqr -rational points
of Xm. The number Nr = #X(Fqr ) is basically given as the number
of points in Xm of the form (x0 : . . . : xk) such that xj ∈ Fqr
for all j = 0, . . . , k. It is clear from the definition that Nr is a
finite number. We can define a generating function for the different
numbers N1, N2, N3, . . . by:

Definition 5.1. Let X be an m-dimensional smooth complex pro-
jective variety defined over an algebraic number ring R. The zeta
function of the associated variety Xm is defined as

Z(t) = Z(Xm, t) = exp(
∑
r≥1

Nr
tr

r
)

= 1 +
∑
r≥1

Nr
tr

r
+

1
2!

(
∑
r≥1

Nr
tr

r
)2 + . . . ∈ Q[[t]]

Let us look at a simple example, the complex projective space.

Example 5.2. Let X = CPm be the m-dimensional complex pro-
jective space defined over the number ring R = Z. Furthermore let
m = pZ, so R/m = Fp and q = p. Then we get for the number of
Fpr -rational points via direct calculation

Nr = 1 + pr + p2r + . . . pmr

and therefore the zeta function is simply given as

Z(t) = exp(
∑
r≥1

(1 + pr + p2r + . . . pmr)
tr

r
)

=
1

(1− t)(1− pt)(1− p2t) · · · (1− pmt)
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André Weil suggested that there is a deep relation between the
arithmetic and the topology of the complex projective variety X. He
conjectured that the numbersNr of Fqr -rational points of the complex
projective variety X are related to the Betti numbers dimHj(X,C)
of X. The classical Weil Conjectures can be formulated as follows
[Wei49].

Theorem 5.3 (Weil Conjectures). Let Z(t) = Z(X, t) be the zeta
function of an m-dimensional smooth complex projective variety X
over an algebraic number ring R. Then

Z(t) =
P1(t)P3(t) · · ·P2m−1(t)
P0(t)P2(t) · · ·P2m(t)

=
∏
j

(
∏

1≤i≤dimHj(X,C)

(1− αjit))(−1)j+1

with P0(t) = 1− t, P2m = 1− qmt and for 1 ≤ j ≤ 2m− 1

Pj(t) =
∏

1≤i≤dimHj(X,C)

(1− αjit)

where the αji are algebraic integers with |αji| = q
j
2 , i.e. the zeta

function Z(t) determines uniquely the polynomials Pj(t) and hence
the Betti numbers dimHj(X,C) = degPj(t). Let

χ = χ(X) =
∑
j

(−1)jdimHj(X,C)

be the Euler characteristic of the variety X. Then we have the fol-
lowing functional equation

Z(
1
qmt

) = ±q
χ
2 tχZ(t)

Proof. This is of course a very special case of the general Weil con-
jectures proved by Deligne [Del74a], [Del80] and the proof uses the
full machinery of étale cohomology. For an overview of the proof and
background material, especially on étale cohomology we refer also to
[FK88] and [Mil80].
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Weil was able to prove some special cases of these conjectures and
realized that the general case would follow if one would be able to
construct a suitable cohomology theory for algebraic varieties in pos-
itive characteristic, which would play an analogous role as singular
cohomology for complex varieties in algebraic topology.

The Weil Conjectures can also be viewed as an analogue of the
Riemann Hypothesis for algebraic curves. Let us discuss this here
also briefly.

Let X again be an m-dimensional smooth complex projective va-
riety defined over an algebraic number ring R and p be a prime divisor
of X, i.e. an equivalence class of points of Xm modulo conjugation
over Fq. We define the norm as

Norm(p) = qdeg(p)

where the degree of the divisor p is given as the number of points
in the equivalence class of p. Because Fqi ⊆ Fqj if and only if i|j it
follows immediately that

Nr = #X(Fqr ) =
∑

deg(p)|r

deg(p).

Substituting now t = q−s in the zeta function Z(t) = Z(X, t) of
the variety X we get

Z(q−s) = exp(
∑
r≥1

Nr
q−rs

r
)

= exp(
∑
r≥1

∑
deg(p)|r

deg(p)Norm(p)−rs/deg(p)

r
)

= exp(
∑

p

∑
i

Norm(p)−si

i
) =

∏
p

1
1−Norm(p)−s

In this way the zeta function of X looks very much like the clas-
sical Riemann zeta function given as

ζ(s) =
∑
n≥1

1
ns

=
∏

p prime

1
1− p−s
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The Riemann Hypothesis says that if ζ(s) = 0, then Re(s) = 1
2 .

We can now see the Weil Conjectures as an analogue of the Riemann
Hypothesis by looking at the particular case of an algebraic curve. Let
X be a complex smooth projective algebraic curve, i.e. dim C(X) = 1.
Then we get as a special case the following expression for the zeta
function of X

Z(t) =
∏
j

(
∏

1≤i≤dimHj(X,C)

(1− αjit))(−1)j+1

= (
∏

1≤i≤dimH1(X,C)

(1− α1i))(1− t)−1(1− qt)−1

So |α1i| = q
1
2 implies that if Z(t) = 0, then |t| = q

1
2 or equivalently,

that if Z(q−s) = 0, then Re(s) = 1
2 , which is the analogue of the

Riemann Hypothesis.
The question now is to understand how the numbers αij are re-

lated to the complex variety X. We have a special automorphism of
the variety X over Fq, the Frobenius morphism.

Definition 5.4. Let X be an m-dimensional smooth complex pro-
jective variety defined over an algebraic number ring R and m be a
maximal ideal in R. Let Xm be the associated projective variety over
the algebraic closure Fq. The Frobenius morphism f is defined as the
morphism

f : Xm → Xm, f(x0 : . . . : xk) = (xq0 : . . . : xqk).

It is obvious that f is well-defined, because basically polynomial
equations defining Xm have coefficients in Fq and if p(X0, . . . , Xk) ∈
Fq[X0, . . . , Xk] then it follows

p(Xq
0 , . . . , X

q
k) = p(X0, . . . , Xk)q.

Therefore we can iterate the Frobenius morphism f for any r ≥ 1
and we get that a point x of Xm is a fixed point of fr, r ≥ 1 if and
only if all coordinates of the point x are in Fqr .

Let L(fr) be the number of fixed points of the iterated Frobenius
morphism fr. It follows immediately from the definition that we have

Nr = #X(Fqr ) = L(fr).
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The number L(fr) can be calculated algebraically via a Lefschetz
trace formula for the l-adic étale cohomology of the variety X/m.

Theorem 5.5 (Grothendieck, Deligne). Let X be an m-dimensional
smooth complex projective variety defined over an algebraic number
ring R and m be a maximal ideal in R. Let Xm be the associated
projective variety over the algebraic closure Fq and f : Xm → Xm

be the Frobenius morphism. Then the number of fixed points of the
iterated Frobenius morphism fr can be calculated via the Lefschetz
trace formula

L(fr) =
∑

0≤j≤2m

(−1)jTr((fr)∗ : Hj
et(Xm,Ql)→ Hj

et(Xm,Ql))

where l is a prime with l 6= p.

The cohomology used in the trace formula is the l-adic étale coho-
mology of the projective variety X

H∗et(Xm,Ql) := lim
←
H∗et(Xm,Z/lnZ)⊗Zl Ql.

It gives the “right” cohomology theory for algebraic varieties over
finite fields analogous to the rational singular cohomology H∗(X,Q)
of topological spaces. This cohomology theory was introduced by
Grothendieck, Artin and Deligne in SGA4 and gives the necessary
cohomological framework to prove the Weil Conjectures. We refer to
[Tam94] and [Mil80] for an introduction to étale cohomology and to
SGA 4 1

2 [Del77] for a general account.
The Lefschetz trace formula and a bit of linear algebra now gives

the following reinterpretation of the zeta function:

Z(t) = exp(
∑
r≥1

N(r)
tr

r
) = exp(

∑
r≥1

L(fr)
tr

r
)

= exp(
∑
r≥1

∑
0≤j≤2m

(−1)jTr((fr)∗ : Hj
et(XmQl)→ Hj

et(Xm,Ql))
tr

r
)

=
2m∏
j=0

det(1− tf∗ : Hj
et(Xm,Ql)→ Hj

et(Xm,Ql))(−1)j+1

=
P1(t)P3(t) · · ·P2m−1(t)
P0(t)P2(t) · · ·P2m(t)
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and with αji being the eigenvalues of the induced Frobenius mor-
phism f∗ in l-adic cohomology we get

Pj(t) = det(1− tf∗ : Hj
et(Xm,Ql)→ Hj

et(Xm,Ql))

=
∏

1≤i≤dimHjet(Xm,Ql)

(1− αjit)

In the next sections we will indicate how to prove an analogue of
the classical Weil Conjectures for the moduli stack of vector bundles
of rank n and degree d on a smooth projective algebraic curve X.

5.2 Frobenius morphisms for the moduli
stack

We like to classify vector bundles on a given algebraic curve X in
characteristic p up to their isomorphisms. In order to do so we need
to count the number of isomorphism classes of these vector bundles,
i.e. we need to determine the number of Fq-rational points of the
moduli stack Bunn,dX . First we will consider the various Frobenius
morphisms of the moduli stack Bunn,dX following [NS05].

Definition 5.6. Let X be a smooth projective algebraic curve of
genus g over the field Fq. The geometric Frobenius morphism of X
is defined as the morphism of schemes given by

FX : (X,OX)→ (X,OX), FX = (idX , f 7→ fq).

We also get a geometric Frobenius on X = X ×Spec(Fq) Spec(Fq) via
base change

FX = FX × idSpec(Fq) : X → X.

Now pullback along the geometric Frobenius morphism FX of the
algebraic curve X induces a functor given by

Bun
n,d

X (U)→ Bun
n,d

X (U), E 7→ F
∗
(E) = (FX × idU )∗(E)

for every object U of the category (Sch/Fq) of schemes over Fq. It
induces an endomorphism of algebraic stacks

ϕ : Bun
n,d

X → Bun
n,d

X .
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We will call this endomorphism the induced geometric Frobenius
morphism of Bun

n,d

X .
The induced geometric Frobenius morphism on Bun

n,d

X induces
an endormorphism in l-adic cohomology

Φ = ϕ∗ : H∗sm(Bun
n,d

X Ql)→ H∗sm(Bun
n,d

X ; Ql).

The relation between the geometric Frobenius morphism of the
algebraic curve X and the induced geometric Frobenius morphism is
given by the following functorial property.

Proposition 5.7. There is a canonical isomorphism

(FX × idBun
n,d
X

)∗(Euniv) ∼= (idX × ϕ)∗(Euniv)

where Euniv is the universal vector bundle on X ×Bun
n,d

X .

Proof. Using representability we know that for any algebraic stack
T over Fq a vector bundle E of rank n and degree d on X × T is
given by a morphism of stacks

u : T → Bun
n,d

X

such that
E ∼= (idX × u)∗(Euniv).

We apply this to the vector bundle (FX × idBun
n,d
X

)∗(Euniv) and
the proposition follows at once.

The moduli stack (Bunn,dX ,OBunn,dX
) is an algebraic stack with

structure sheaf. We can define a genuine geometric Frobenius mor-
phism by raising sections to the q-the power as in the classical case
of the geometric Frobenius morphism for schemes using the atlas of
the algebraic stack Bunn,dX .

In this way we get an endormorphism of algebraic stacks

FBunn,dX
: (Bunn,dX ,OBunn,dX

)→ (Bunn,dX ,OBunn,dX
)

together with its base change extension

FBunn,dX
= FBunn,dX

× idSpec(Fq).
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This genuine geometric Frobenius morphism induces again an endo-
morphism in l-adic cohomology

F
∗
Bunn,dX

: H∗sm(Bun
n,d

X ; Ql)→ H∗sm(Bun
n,d

X ; Ql)

There is yet another Frobenius morphism acting on the moduli
stack Bunn,dX . Let

Frob : Fq → Fq, a 7→ aq

be the classical Frobenius morphism given by a generator of the Ga-
lois group Gal(Fq/Fq) of the field extension Fq/Fq. This induces an
endomorphism of schemes

FrobSpec(Fq) : Spec(Fq)→ Spec(Fq)

which again gives rise to an endomorphism of algebraic stacks

ψ := idBunn,dX
× FrobSpec(Fq) : Bun

n,d

X → Bun
n,d

X .

We will call this endomorphism ψ of algebraic stacks the arithmetic
Frobenius morphism.

The arithmetic Frobenius morphism induces again an endomor-
phism in l-adic cohomology

Ψ = ψ∗ : H∗sm(Bun
n,d

X ; Ql)→ H∗sm(Bun
n,d

X ; Ql).

We will now determine the actions of the various Frobenius mor-
phisms on the l-adic cohomology algebra of the moduli stack Bun

n,d

X

and express its effect on the Chern classes. It turns out that using
the language of algebraic stacks these calculations are straightforward
and topological in flavour.

For the induced geometric Frobenius morphism ϕ the action in
l-adic cohomology of Bun

n,d

X is described by the following theorem
[NS05].

Theorem 5.8. The geometric Frobenius ϕ∗ acts on the l-adic coho-
mology algebra as follows:

ϕ∗(ci) = ci (i ≥ 1)
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ϕ∗(a(j)
i ) = λja

(j)
i (i ≥ 1; j = 1, . . . , 2g)

ϕ∗(bi) = qbi (i ≥ 1)
where the a

(j)
i , bi and ci are the Atiyah-Bott classes generating the

cohomology algebra.

Proof. Using functoriality of Chern classes we get the following equal-
ity

(FX × idBun
n,d
X

)∗(ci(Euniv)) = (idX × ϕ)∗(ci(Euniv))

Using Künneth decomposition for the Chern classes ci(Euniv) of the
universal vector bundle Euniv we have

ci(Euniv) = 1⊗ ci +
2g∑
j=1

αj ⊗ a(j)
i + [X]⊗ bi−1.

where the classes ci ∈ H2i
sm(Bun

n,d

X ; Ql), a
(j)
i ∈ H2i−1

sm (Bun
n,d

X ; Ql)
and bi−1 ∈ H2(i−1)

sm (Bun
n,d

X ; Ql) are again the Atiyah-Bott classes.
Evaluating the two expressions from the equality above we get

the following two equations

(FX × idBun
n,d
X

)∗(ci(Euniv)) = 1⊗ ci +
2g∑
j=1

λjαj ⊗ a(j)
i + q[X]⊗ bi−1

(idX×ϕ)∗(ci(Euniv)) = 1⊗ϕ∗(ci)+
2g∑
j=1

αj⊗ϕ∗(a(j)
i )+[X]⊗ϕ∗(bi−1).

Comparing coefficients of the right hand sides of the two equations
finally gives the desired action of the induced geometric Frobenius
morphism ϕ∗ on the l-adic cohomology algebra of Bunn,dX .

For the genuine geometric Frobenius morphism F the action in
l-adic cohomology of Bun

n,d

X is described by the following theorem
[NS05].

Theorem 5.9. The geometric Frobenius F
∗
Bunn,dX

acts on the l-adic
cohomology algebra as follows:

F
∗
Bunn,dX

(ci) = qici (i ≥ 1)
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F
∗
Bunn,dX

(a(j)
i ) = λ−1

j qia
(j)
i (i ≥ 1; j = 1, . . . , 2g)

F
∗
Bunn,dX

(bi) = qi−1bi (i ≥ 1)

where the a
(j)
i , bi and ci are the Atiyah-Bott classes generating the

cohomology algebra.

Proof. Let Ẽuniv be the universal rank n vector bundle over the clas-
sifying stack BGLn of rank n vector bundles.

The universal vector bundle Euniv of rank n and degree d over
the algebraic stack X × Bunn,dX is given via representability by a
classifying morphism

u : X ×Bunn,dX → BGLn

with u∗(Ẽuniv) ∼= Euniv. We have the following pullback diagram
related to the actions of the geometric Frobenius morphisms

X ×Bunn,dX
u //

F
X×Bun

n,d
X

��

BGLn

FBGLn

��
X ×Bunn,dX

u // BGLn

which gives the following commutativity law for the geometric Frobe-
nius morphisms:

FBGLn ◦ u = u ◦ FX×Bunn,dX
.

Evaluating the geometric Frobenius morphism FX×Bunn,dX
on the

pullback of the universal vector bundle gives now:

(FX×Bunn,dX
)∗(ci(u∗(Euniv)) = (FX×Bunn,dX

)∗(u∗(ci(Ẽuniv)))

= u∗(F
∗
BGLn(ci(Ẽuniv)))

= qiu∗(ci(Ẽuniv))
= qici(u∗(Ẽuniv))
= qici(Euniv)

= qi(1⊗ ci +
2g∑
j=1

αj ⊗ a(j)
i + [X]⊗ bi−1).
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We have also the following general relation between the geometric
Frobenius morphisms evaluated on the Chern classes:

F
∗
X×Bunn,dX

(ci(u∗(Ẽuniv)))

= F
∗
X×Bunn,dX

(ci(Euniv))

= (FX × idBun
n,d
X

)∗(idX × FBunn,dX
)∗(ci(Euniv))

From this we get now the following expression:

(FX × idBun
n,d
X

)∗(idX × FBunn,dX
)∗(ci(Euniv))

= (idX × FBunn,dX
)∗(FX × idBun

n,d
X

)∗(ci(Euniv))

= (idX × FBunn,dX
)∗(FX × idBun

n,d
X

)∗(1⊗ ci+

+
2g∑
j=1

αj ⊗ a(j)
i + [X]⊗ bi−1)

= (idX × FBunn,dX
)∗(FX × idBun

n,d
X

)∗(1⊗ ci+

+
2g∑
j=1

λjαj ⊗ a(j)
i + q[X]⊗ bi−1)

Comparing coefficients again gives the description of the action of the
geometric Frobenius morphism as stated in the theorem.

Finally we can also analyze the effect of the arithmetic Frobe-
nius morphism Ψ∗ on the l-adic cohomology algebra of Bun

n,d

X . The
action is completely described by the following theorem [NS05].

Theorem 5.10. The arithmetic Frobenius Ψ∗ acts on the l-adic co-
homology algebra as follows:

ψ∗(ci) = q−ici (i ≥ 1)
ψ∗(a(j)

i ) = λjq
−ia

(j)
i (i ≥ 1; j = 1, . . . , 2g)

ψ∗(bi) = q−i+1bi (i ≥ 1)
where the a

(j)
i , bi and ci are the Atiyah-Bott classes generating the

cohomology algebra.

Proof. The relations follow from the theorem before by observing that
the arithmetic Frobenius morphism ψ∗ is the inverse of the geometric
Frobenius morphism F

∗
Bunn,dX

.
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5.3 Weil Conjectures for the moduli stack

In order to determine the number of Fq-rational points of the moduli
stack Bunn,dX we need a Lefschetz trace formula for the arithmetic
Frobenius Ψ like in the classical case. In this section we will now
discuss the trace formula and analogues of the Weil Conjectures for
the moduli stack Bunn,dX .

Definition 5.11. Let X be an algebraic stack over the category
(Sch/S) of S-schemes and U an object of (Sch/S). Let [X (U)] be
the set of isomorphism classes of objects in the groupoid X (U). If
convergent, let

#X (U) =
∑

x∈[X (U)]

1
#AutX (U)(x)

be the number of U -points of the algebraic stack X .

We can also define the dimension of an algebraic stack in analogy
to the dimension of schemes as follows:

Definition 5.12. Let X be an algebraic stack and X/X be an atlas
of X i.e. a representable smooth surjective morphism x : X → X .
The dimension of X is defined as

dim (X ) = dim (X)− rel.dim(X/X )

where rel.dim(X/X ) is the dimenson of the fibers of X ×X Y → Y
for any morphism Y →X

The dimension of an algebraic stack X can be determined in the
fundamental examples we have discussed before.

Example 5.13. Let [X/G] be a quotient stack, then we have

dim ([X/G]) = dim (X)− dim (G)

and especially it follows for the special case of the classifying stack
BG that

dim (BG) = −dim (G)

which shows that the dimension of an algebraic stack can actually be
a negative integer.
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Example 5.14. Let Bunn,dX be the moduli stack of vector bundles
of rank n and degree d on a smooth projective algebraic curve X,
then we have for the dimension

dim (Bunn,dX ) = n2(g − 1).

To count the number of Fq-rational points of the moduli stack
Bunn,dX we will need the following Lefschetz trace formula for alge-
braic stacks [Beh93], [Beh03].

Theorem 5.15 (Lefschetz trace formula). Let X be a smooth al-
gebraic stack locally of finite type and Ψ be the arithmetic Frobenius
morphism, then we have

qdim (X )
∑
p≥0

tr(Ψ|Hp
sm(X ; Ql)) =

∑
x∈[X (Spec(Fq))]

1
#AutX (Spec(Fq))(x)

.

Here the expression on the right hand side∑
x∈[X (Spec(Fq))]

1
#AutX (Spec(Fq))(x)

= #X (Spec(Fq))

is the number #X (Fq) of Fq-rational points of the algebraic stack X ,
where #AutX (Spec(Fq))(x) is the order of the group of automorphisms
of the isomorphism class x.

We cannot give a proof of the Lefschetz trace formula here, but
instead look at an interesting example. For a proof and further ap-
plications see [Beh93], [Beh03].

Example 5.16. Let BGm be the classifying stack of line bundles.
For the dimension of this algebraic stack we have

dim (BGm) = −dim (Gm) = −1

The number #BGm(Spec(Fq)) of Fq-rational points of BGm is given
as the number of line bundles (up to isomorphism) over the “point”
Spec(Fq). But all line bundles over the “point” Spec(Fq) are trivial,
so there is just one isomorphism class x in BGm(Spec(Fq)).

Furthermore we have

#AutBGm(Spec(Fq))(x) = #Gm(Fq) = #F∗q = q − 1
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so in other words we have that

#BGm(Fq) =
∑

x∈[BGm(Spec(Fq))]

1
#AutBGm(Spec(Fq))(x)

=
1

q − 1
.

The l-adic cohomology of BGm is basically the cohomology of
an infinite projective space, as we calculated already, so from the
Lefschetz trace formula we get

qdim (BGm)
∑
i≥0

tr(Ψ|H2i
sm(BGm; Ql)) =

1
q

∞∑
i=0

1
qi
.

This simple calculation therefore gives a “stacky” proof for the
well-known formula

∞∑
i=0

1
qi+1

=
1

q − 1
.

We now state an analogue of the Weil Conjectures for the moduli
stack Bunn,dX [Hei98], [NS].

Theorem 5.17 (Weil Conjectures for the moduli stack). Let X be a
smooth projective irreducible algebraic curve of genus g over Fq and
αi the eigenvalues of the geometric Frobenius acting on H1

et(X,Ql).
Then we have

(1) The number of Fq-rational points of the moduli stack Bunn,dX
is given as

#Bunn,dX (Fq) = qn
2(g−1)

∏n
i=1

∏2g
j=1(1− αjq−i)∏n

i=1(1− q−i)
∏n
i=2(1− q−i+1)

(2) The zeta function of the moduli stack Bunn,dX

ZBunn,dX
(t) = exp(

∞∑
i=1

#Bunn,dX (Fqi)
ti

i
)

is a meromorphic function with a convergent product expansion

ZBunn,dX
(t) =

∞∏
i=1

det(1−Ψqdim (Bunn,dX )t|Hi
sm(Bun

n,d

X ; Ql))(−1)i+1
.
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(3) The eigenvalues of the arithmetic Frobenius Ψ have absolute
value qi/2 and the Poincaré series is given as

PBunn,dX
(t) =

∏n
i=1(1 + t2i−1)2g∏n

i=1(1− t2i)
∏n
i=2(1− t2i−2)

Proof. We will only outline the ingredients for the proof here. For
more details we refer to [Hei98] and [NS].

Part (1). The first part is basically a variation of arguments by
Harder and Narasimhan [HN75]. To calculate the number of Fq-
rational points we “stackify” the calculation in [HN75] and use the
Lefschetz trace formula [Beh93] for the arithmetic Frobenius Ψ act-
ing on the moduli stack of vector bundles of rank n and degree d on
X. This takes into account the existence of automorphisms of vec-
tor bundles in contrast with the analogous calculation for the coarse
moduli space in [HN75].

qdim (X )
∑
p≥0

tr(Ψ|Hp
sm(X ,Ql)) =

∑
x∈[X (Fq)]

1
#AutX (Fq)(x)

where for X = Bunn,dX we have dim (Bunn,dX ) = n2(g − 1).

Part (2). The product expansion of the zeta function is proved gen-
erally by [Beh93] for algebraic stacks X of finite type using the Lef-
schetz trace formula. Now let Bunn,d,≤pX ⊂ Bunn,dX be the open
substack where Bunn,d,≤pX (U) is the groupoid of families of vector
bundles E over X of rank n and degree d parametrized by U with
given Shatz polygon sh(E|X × u) ≤ p for all closed points u of
the scheme U in (Sch/Fq). Similarly we have the open substack
Bunn,d,<pX ⊂ Bunn,dX . The complement

Bunn,d,pX ⊂ Bunn,d,≤pX \Bunn,d,<pX

is a closed substack of finite type. The Gysin sequence in l-adic
cohomology for the closed embedding

Bunn,d,pX ⊂ Bunn,d,≤pX
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splits into short exact sequences [Hei98], [NS05]

0→ H∗−2c
sm (Bun

n,d,p

X ,Ql(m))→ H∗sm(Bun
n,d,≤p
X ,Ql)

→ H∗sm(Bun
n,d,<p

X ,Ql)→ 0

and the Lefschetz trace formula gives for the traces

qdim (Bunn,dX )tr(Ψ|H∗sm(Bun
n,d

X ,Ql)) =

=
∑
p

qdim (Bunn,d,pX )tr(Ψ|H∗sm(Bun
n,d,p

X Ql)).

from which the product expansion now follows having reduced it to
substacks of finite type.

Part (3.) The Poincaré series for the moduli stack was derived in the
last chapter by using the approximation via the ind-scheme Divn,d

and the action of the arithmetic Frobenius on the l-adic cohomology
algebra of the moduli stack was determined in the last section.

It is an interesting question to ask if some kind of analogue of the
Weil Conjectures also holds for the geometric Frobenius morphisms.
It turns out that a naive Lefschetz trace formula does not hold [NS05].
The geometry of the actions of the geometric Frobenius morphisms
on the moduli stack is very mysterious. See [NS05], [NS] for more
discussions on the geometry of geometric Frobenius actions on the
moduli stack.

Another open problem is to proof the Weil Conjectures for the
action of the arithmetic Frobenius morphism on any algebraic stack
of finite type over finite fields using the general machinery developed
by Deligne [Del74a], [Del80] for his proof of the Weil Conjectures for
algebraic varieties over finite fields.
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Colóquio Brasileiro de Matemática. [21st Brazilian Mathe-
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ematical Monographs]. Instituto de Matemática Pura e
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algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.].
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2-morphism, 41
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Deligne-Mumford, 71
dimension, 123
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effective, 47

determinant line bundle, 15
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of algebraic curves, 52
of stable algebraic curves,
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universal, 20
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Frobenius morphism
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Grothendieck topology, 28
groupoid, 23, 40, 63
groupoid space, 64
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representable, 19

moduli problem, 18
moduli space, 18
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tion, 30
locally of finite type, 30
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proper, 30
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quasi-separated, 30
separated, 30
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morphism of stacks
has property P, 69, 74, 75
representable, 66

norm
of prime divisor, 114

Poincaré family, 98
presheaf of sets, 34
prestack, 45
principal G-bundle, 13

associated vector bundle,
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associated with fiber F , 14
extension of the structure

group, 14
reduction of the structure

group, 14
pseudo-functor, 24, 43, 45

quotient S-space, 36

quotient problem, 26
quotient stack, 51, 77

representable
sheaf, 35

represents, 85
Riemann Hypothesis, 115

scheme
coarse moduli space, 84
fine moduli space, 84

Shatz polygon, 17
sheaf, 34

cartesian, 89
coherent, 89
constant, 90
equivariant, 91
invertible, 11
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morphism of, 89
of finite presentation, 89
of finite type, 89
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quasi-coherent, 89
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étale, 33
big fppf, 33
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small fppf, 33
small fpqc, 33
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small Zariski, 32

slice category, 29
stack, 48
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associated to a scheme, 49
associated to an object, 48
as category fibered in groupoids,

61
as groupoid space, 65
as pseudo-functor, 46
associated to an object, 62
moduli stack, 23
quotient stack, 27
representable, 66

universal vector bundle, 90

vector bundle, 9
associated to a represen-

tation, 15
stable, 17
global section, 11
Hodge bundle on moduli

stack, 91
morphism, 10
on an algebraic stack, 89
rank, 10
section, 11
semistable, 17
slope, 17
transition function, 10
trivial, 10
trivialization, 10
universal on moduli stack,

90

Weil Conjectures
classical, 99, 113
for moduli stack, 125

Yoneda Lemma for prestacks,
56

zeta function, 112, 125
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