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Roots of unity

The complex n-th roots of unity form a subgroup g, of the multiplicative group C* of
non-zero complex numbers. It is a cyclic group of order n, generated for example by
exp 2mi/n.

Any generator of pu, is called a primitive n-th root of unity, and we shall denote
such a root by &, or merely ¢ if n is clear from the context. If one primitive n-th
root & is chosen, all the primitive n-th roots are of the form £° where s can be any
integer relatively prime to n. Since " = 1, the primitive n-th root are thus in one-one
correspondence with the residue classes of integers relatively prime to n, that is, with
the set of units in the ring Z/nZ. We stress that this correspondence is not canonical,
but depends on the choice of the primitive root €.

We will in the sequel frequently refer to the subset of u,, consisting of the primitive

n-th root, and it is convenient to introduce the notation S, for it.
THE AUTOMORPHISMS Since i, is abelian, the map u,, — u,, sending 1 to n* is a group
homomorphism. It is surjective, hence an isomorphism, precisely when s is relatively
prime to n. Indeed, any primitive root, i.e., a generator for u,, will then be mapped to
a primitive root which is a generator. This shows that there is canonical isomorphism
from Z/nZ to Aut(p,) sending the residue class of s to the s-power map n — n°.

PROBLEM 1. Check that this canonical map is indeed an isomorphism. 3*

The order of Aut(u,) is by definition the value taken by FEuler ¢-function at n,
i.e., ¢(n) = |Aut(u,)|. This is as well equal to the cardinality of the subset S,,. The
following should be well known, but we offer a sketchy proof:

Proposition 1 The ¢-function has the following properties

O It is multiplicative, that is, ¢(nm) = ¢(n)p(m) whenever n and m are relatively
prime.

O If p* is a prime power, ¢(p”) = p*~L(p — 1). In particular, ¢(p) =p — 1.

O For any natural number n one has @ =11 - }D)
PROOF: The last statement follows immediately from the two first. If n and m are
relatively prime, then Z/nmZ ~ Z/nZ x Z/mZ according to the Chinese remainder
theorem, hence (Z/nmZ)* ~ (Z/nZ)* x (Z/mZ)*, and ¢ is multiplicative. That ¢(p) =
p— 1 is trivial, and the statement about the prime powers follows by an easy induction
from the general lemma below with I = p*~1Z/p"Z. U

S
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Lemma 1 Let R — S be a surjective homomorphism between to rings with kernel I.
Assume that I? = 0. Then there is an exact sequence of unit groups

11— 1417 R S* 1

PROOF: Elements 1 + z with « € [ are units since (1 + z)(1 — z) = 1, and they are
exactly the units in R mapping to 1 in S. Every unit s in S can be lifted to an element r
in R, which is easily checked to be a unit: Indeed, since if 7’ lifts s, one has r’ = 1+a
with x € I, and 1 + z is invertible. a

PROBLEM 2. Show that Aut(u,») is cyclic if p is an odd prime and that Aut(ugs) ~
7.)27 x 7.)2°~27. Show that Aut(ppm) =~ Aut(p), X Aut(u),, if n and m are relatively
prime. *

NESTING The groups pu, are nested, meaning that if m|n, then p,,C p,. For any pri-
mitive n-th root of unity &, the subgroup ju, is generated by &%™ . If n and m are
relatively prime, then g, N, = {1} and one has f,, = fnfim-

PROBLEM 3. Show that pi,, = pnptm in case n and m are relatively prime. HINT:

Write 1 = an + bm so that any mn-th root satisfies n = nen®™ *

The Galois group of the cyclotomic fields

Let n be a natural number. The field Q(¢,,) obtained by by adjoining the primitive n-th
root of unity &, to the rationals, is called the n-th cyclotomic field or the cyclotomic
field of order n.

The cyclotomic fields are nested just like the groups of roots of unity. If n and m
are natural numbers such that n|m, then Q(&,)C Q(&,,). This holds since 7/ is a
primitive n-th root of unity whenever ¢ € 5,,.

PROBLEM 4. Show that if n is odd, then Q(&3,) = Q(&,). HINT: If £ is a n-th root
of unity, the 2n-th root of unity —¢ is already in Q(&,). *

The cyclotomic field Q(&,,) is the root field of the polynomial ™ — 1. Indeed, every
root of ™ — 1 is a power of the primitive root &,, and these powers generate Q(&,) over
Q. Hence Q(¢&,) is a Galois extension of Q.

Two natural questions arise. What is the Galois group, and what is the minimal
polynomial of &,7

TH GALOIS GROUP The Galois group Gal(Q(&,)/Q) acts canonically on w, (elements
in Gal(Q(&,)/Q) evidently takes n-th roots of unity to n-th roots of unity), and this
action is faithful since the n-th roots generate the cyclotomic field Q(&,,) over Q, so the
only automorphism of Q(&,) over Q that leaves all of y, untouched, is the identity.
We may therefore consider G to be contained in Aut(pu,), and indeed, we shall soon
see that equality holds. The order of Aut(u,) being ¢(n), the equality is equivalent to

the degree [Q(&,) : Q] being ¢(n).
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THE CYCLOTOMIC POLYNOMIALS We define the n-th cyclotomic polynomial to be the
polynomial

@, (2) = [] (o -9 (%)
£€Sn
where we remind you that S, is the set of primitive n-th roots of unity. The cyclotomic
polynomial ®,,(x) is the monic polynomial of lowest degree whose roots are exactly all
the primitive n-th roots. It is of degree ¢(n), and clearly it is a factor of z™ — 1.

Lemma 2 The cyclotomic polynomial ®,(x) has integral coefficients, that is ®,(z) €
Zlx].

PROOF: An element o € Gal(Q(&,)/Q) permutes the primitive n-th roots of unity,
hence it permutes the factors of ®,(x), and ®,(z) is invariant under Gal(Q(&,)/Q).
But this means that the coefficients are invariant under the action of Gal(Q(¢,)/Q),
and hence they must be rational. By Gauss’s lemma they are integers, since ®,(z) is
a factor in 2" — 1. a

The case of n being a prime power deserves special emphasis. If p is a prime, and n = p”
one has

P —1 .
q)p(x):x_lzxp R |

P _ . .
q)p”(x):h:xp O R |

PROBLEM 5. Apply Eisenteins criterion to ®,(z — 1) to show that ®,, is irreducible. %

PROBLEM 6. Apply Eisenteins criterion to @, (z — 1) to show that ®,. is irreducible.
*

PROBLEM 7. Show that ®,.(z) = @, (2" ). *

As all conjugates of &, are primitive n-th roots of unity, the minimal polynomial
of &, must be a factor of ®,,. A priori there might be n-th roots not conjugate to &,,
but in the end of the day, will shall see that this is indeed not the case. Hence ®,, will
be the minimal polynomial of any primitive n-th root. This is equivalent to ®,, being
irreducible, and since the degree of ®,, is ¢(n), it is as well equivalent to the degree
[Q(&,) : Q] being equal to ¢(n).

THE FUNDAMENTAL THEOREM We proceed to prove the result that the whole theory
of cyclotomic fields is built on. There are close to infinity many ways to organize this

material and a myriads of proofs of the main result, our favorite being one invented by
Dedkind and brushed up by van der Waerden.

Theorem 1 Let n be an integer. Then

— 3 —
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0 Gal(Q(6x)/Q) = Aut (pn)
O [Q(&) : Q] = ¢(n)
L1 The cyclotomic polynomial ®,, is irreducible.

PROOF: We already observed hat these three statements are equivalent, and we attack
the statement in the the middle, i.e., we shall show that [Q(&,) : Q] = ¢(n).

Let f(x) be the minimal polynomial of &,. It divides 2™ — 1, so 2™ — 1 = f(z)g(z)
where both f(x) and g(x) have integral coefficients (by Gauss’ lemma). Let p be a
prime not dividing n. We shall prove the following statement:

[0 If £ is a primitive root n-th root being a root of f(x), then &P is a root of f(z) as
well.

As any primitive root is of the form £° with s relatively prime to n, this shows that
all primitive roots are roots of f(x), and hence that the degree of f equals ¢(n).
Now, g(£”) = 0 implies that g(z?) has f(z) as a factor, i.e., g(zF) = f(z)h(z)
for some polynomial h(z) € Z[x]. Reducing mod p, one obtains the equality g(z?) =
G(x)? = f(x)h(z) in F,[z]. Hence g(x) and f(x) have a common factor, and 2™ — 1 has
a double root in some extension 2 of [F,. However, this can not be the case, since the
derivative nz"! is non-zero in F, (the prime p is not a factor in n) and has no root in
common with 2" — 1. 4

THE GALOIS GROUP AND FROBENIUS ELEMENTS Every automorphism of p,, is given
as power map 1 — n° for some s, and therefore—in view of that we just showed the
Galois group Gal(Q(¢,)/Q) being equal (Z/nZ)*— every element of Gal(Q(¢,)/Q) acts
on the roots of unity n € u, as n — n°. This Galois element we shall denote by o, that
is, o, is given by the expression

US(Z algl) = Z ai55i7

where the summation extends over the range 0 < ¢ < ¢(n) — 1. If p is a prime not
dividing n, the element o), is usually called the Frobenius element. It plays a significant
role in the theory.

Proposition 2 Ifn and m are relatively prime natural numbers, then the two cycloto-
mic fields Q(&,) and Q(&) are linearly disjoint. Their composite Q(&,, &n)is equal to
Q(&Mﬂ)? and @(gn) n @(fm) =Q.

PROOF: Clearly the composite of Q(&,) and Q(&,,) contains Q(&,,), the product
&£, being a primitive nm-th root of unity. The Euler ¢-function is multiplicative,

0 [Q€wm) Q] = [Q(&,)  QI[Q(En) : Q, and we ave done. a
PROBLEM 8. Show that if n and m are relatively prime, then [Q(&,,) : Q(&n)] = ¢(n).
What is the minimal polynomial of £" over Q(&,,)? *

/-
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PROBLEM 9. Let p be a prime. Show that [Q(&v+x) : Q(&)] = pH. *

PROBLEM 10. Show that if A is any finite abelian group, then there exists a finite
extension K of Q with Gal(K/Q) ~ A. *

The prime power case

Assume that n = p” for a prime p. Then we have

17
P —1

[ |

O, () = =P D P ] (+)
Indeed, a p”-th root being primitive means it is not a root of P — 1. Reducing the
cyclotomic polynomial ®,» mod p one finds that the equality

P — 1 (x — 1)

(Dp"(w) = ] = (x — 1)pu71 = (CB - 1)¢(py) (ﬁr)

holds in F,[z|. Hence, it is plausible that the ideal pA is the ¢(7”)-th power of the
principal ideal (1 — &), where A denotes the ring of integers in Q(&,»). If we knew that
A = Z[¢], this would follow directly from Kummer’s theorem about the ring of integers.
It is true that A = Z[], but for the time being we do not know that, and in fact, we
shall use the decomposition of p in A to establish that A = Z[¢]. One has

Proposition 3 Let p be a prime and let & be a p”-th root of unity. Let A be the ring
of integers in the cyclotomic field Q(&yv). The principal ideal (1 — &) A is a prime ideal
of relative degree 1, and (p)A = (1 — £)?P) A,

We remark that Q(&,v) is totally ramified at p. The case v = 1 merits a special men-
tioning. In that case, the prime p decomposes in Q(&,) as (p)A = (1 — &P A.

The following lemma is needed in the proof. It describes certain units in A called
the cyclotomic units:

Lemma 3 Let n be a natural number. If & and & are two primitive n-roots, then
(1=¢&)/(1=¢&) is a unit in A,.

PROOF: There is an integer s, relatively prime to n, such that & = £°. The good old
formula for the sum of a geometric series shows that

1-¢ .
-1 R
e T LHEE e
Hence (1 —=¢')/(1—=¢) lies in A,,. Interchanging the roles of £ and & one sees that
(1—=&)/(1 —=¢) as well lies in A,. a
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PROOF OF THE PROPOSITION: The point of the proof is to compute the value @, (1) of
the cyclotomic polynomial ®,. at one in two different ways. On the one hand, putting
z =11in () one finds ¢, (1) = p. On the other hand, x = 1 in (*>) gives

o) = J[(-€)= (1% I] 11:5’ — (1= €)%

§'eSn §'eSn ¢

where ¢ is a unit in A after lemma 3 above. Hence p = ¢(1 — £)?®") and pA = (1 —
€2 A,

Let (1—&§A=p7 - ¢ be the factorization of the principal ideal (1 —¢)A in a
product of primes. Combining the equality

pA = (1— £)m 4 — poler . potmer

with the fundamental equation relating degree, ramification indices and relative degrees
from theorem 2 on page 15 in Eztensions, we obtain the equality

Q&) : Q] = ¢(n) = Z ei fip(n).

Clearly » = 1 and e; = f; is the only possibility, and therefore 1 — ¢ is prime of relative
degree one. This finishes the proof. Qa

PROBLEM 11. Show that ®,.(z) is irreducible by applying Eisenstein’s criterion to
O, (z —1). HINT: Use the congruence (¥%). *

The discriminant

One of the most important invariants of a number field is the discriminant, and it
is both natural and of great interest to compute the discriminant of the cyclotomic
fields. We do that in two steps. First, the discriminant of the cyclotomic fields of a
prime power order is determined. It turns out to be a (high) power of p up to sign. In
the second step we exploit the fact that cyclotomic fields of relatively prime order are
linearly disjoint to give an induction argument where we appeal to proposition 11 on
page 16.

Proposition 4 Assume that p¥ is a prime power and that & is a primitive p”-th power
of unity. The discriminant A of the power basis 1,€,...,P)=1 is given as

A = (_1)¢(p”)/2ppv’1(pv—v—1)_
PROOF: This is an exercise in norm computations, based on the formula
A = (_1)d(d_1)/2NQ(£pu)/Q((D;V (g))

— 6 —
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where d = [Q(&,) : Q] = p*}(p—1). As a starter, we remark that the sign (—1)%4-1)/2
is the sign indicated stated in the proposition; but leaves the verification to the reader.
Now, as " — 1 = (2P - 1)®,v(x), computing derivatives and evaluating at &, we
obtain
S X

% (0 = By = T

where we have introduced the primitive p-th root of unity n = fpyfl. We proceed by
evaluating the norm of the nominator and the denominator separately.

For the nominator, {~! being a primitive p”-root and hence of norm 1, we find
(remember that the norm is homogeneous of degree the degree of the extension):

Ve— 12 v _ vV =1 (p—
Noe,)/0p"€™") = """ Noge, a6 = p 07" (@)

For the denominator, we split the extension in two along the tower of field extensions
QC Q(&)C Q(&»). We saw that p = e(n—1)P~*, for a unit €, hence Ng,)0(n—1)""" =
Nae,)/o(p) = pP~!, and therefore Ny, )/o(n — 1) = p. Hence

v—1

Nae,)/0(n—1) = Noe,)o(Nae,m/ae) (1—1)) = (Nag,)on—1)P " =p” . (%)

Putting equations (&) and (3#) together we get what we wanted. a

For the moment we do not know that the ring of integers A is equal to Z[¢,n], but once
we have established that, the formula gives the discriminant dq,)/q. However, since
the discriminant divides the discriminant of any integral basis, we can nevertheless
conclude that Q(,~) is unramified over Q at all other primes than p. We proceed to
give the general formula for the discriminant, but give the proof only up to sign.

Theorem 2 Let n ne a natural number. Then the discriminant of the cyclotomic field
Q(&,) is given as

nom)
S0(e.)/Q = (_1)¢(n)/2
Qen)/2 [T, P2/

PROOF: we shall only prove the equality up to sign. Let p(n) denote the absolute value
of the right side of the equality in the theorem. It is a straight forward calculation to
check that p(nm) = p(n)®™ p(m)?™ whenever n and m are relatively prime. Indeed,
we have the two equalities below—based on the multiplicativity of the Euler ¢-function,
n and m being relatively prime—and together they give the claim:

nmPm) — (p0))80m) (1 0m) ()

H p¢(nm)/p—1 - H(p¢(n)/p—1)¢(m) H(p¢(m)/p—1)¢(n)

plnm pln plm

To prove the theorem, we use induction on the number of distinct prime factors in
n. If n = 1 the statement of the theorem is just the prime power case we in proposition

— 7 —
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4 above. If n and m are relatively prime, then the discriminants dg,)/@ and dg,.)0
are relatively prime by induction, and after proposition 2 on page 4 the fields Q(&,)
and Q(&,,) are linearly disjoint. Hence it follows from 11 on page 16 that

00nm)/e = E(6ae0) "™ (o)™,

and by the computation we did in the beginning of this proof, the theorem holds for

|

The ring of integers in Q(¢,)

It is in general difficult to describe the rings of integers in algebraic number fields.
Very seldom they have a primitive element. However, he cyclotomic fields Q(&,) are
exceptions. Their rings of integers all have primitive elements, they are generated by
any primitive n-th root over Q.

The proof of this result is divided into two parts. In the first part, the fact that
cyclotomic fields of relatively prime degree are linearly disjoint, is used—via an induc-
tion on the number of distinct prime factors of n—to reduces the question to the prime
power case. This cases is then treated, the main ingredient being that the prime p is
totally ramified in Q(&»).

Theorem 3 Let n be a natural number and let &, be a primitive n-th root of unity.
The ring A of integers in Q(&,) is generated by &,, that is A = 7Z[¢,).

PROOF: Assume that n and m are two relatively prime numbers. The two cyclotomic
fields Q(&,,) and Q(¢&,,) are then linearly disjoint extensions of the rationals, and the
cyclotomic Q(&,,) is equal to the composite Q(&,, &) of the two. The discriminants of
Q(&,) and Q(&,,,) are relatively prime since their prime divisors are divisors of n and m
respectively. From xxx and by induction on the number of prime factors, it follows that
the ring of integers in the composite field—which is equal to Q(&,,)— is the composite
of the rings Z[¢,] and Z[¢,,]. One easily verifies that this ring coincides with Z[&,,,].
Indeed, the product &,.&,, is a primitive nm-root of one.

We are left with the prime power case, so assume that n = p” for a prime p. By
xxx we know that the principal ideal (1 — §)A is a prime ideal lying over p of relative
degree 1, that is A/(1 — &) = Z/pZ, or in other words, mA + Z[¢{] = A where we have
put 7 = 1 —¢ By induction on s it follows that 7* A+ Z[¢] = A for any natural number
s. Indeed, we have

A=A+ Z[x)]CrTTA+ Z[E)C A

where the inclusion in the middle follows from the induction hypothesis. But 78 AC Z[z],
for s >> 0, which is a consequence of the two facts that the discriminant A of the
power basis is a power of 7, and the that AAC Z[{] as in proposition 24 on page 40 in
Discriminants. Hence AC Z[], and we are done. Q

— 8 —
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Decomposition of primes and Frobenius elements

One of the most fundamental questions about an algebraic number field is how a
rational prime splits in the ring of algebraic integers. So also with the cyclotomic fields,
but in that case, we are in the very lucky situation to have a not only complete answer,
but a very natural, simple and elegant result.

In the proof the Frobenius element o, plays one of the main role, so we start by

recalling what that is and establishing some of its properties. Then, in the cyclotomic
field of order n, we decompose primes p not dividing the integer n. Finally we do the
general case, which is rather simple reduction to the previous case.
THE FROBENIUS AUTOMORPHISM Fix a prime p not dividing n. Recall the definition
of the corresponding Frobenius element in the Galois group Gal(Q(&,)/Q). On a n-th
root 7 it acts as the p-th power, that is o,(n) = 7P, and on a general element « the
action is best described by expanding « in a basis B whose elements all are from n—for
example a power basis B = {1, ... ,52(")_1}, where &, is a fixed primitive n-th root of
unity. So let @ = Zfe 5 ¢€, then the Frobenius map is given simply as

op(a) = Z anEP.

£eB

Of course, to get get the complete description one would have to expand each of the
powers &P in the basis, but luckily, we will not need that. The first property of the
Frobenius we show, is its behavior mod p:

Lemma 4 o0,(a) = o? in A/pA.

PROOF: One has

o = (> al)’ =Y al" = al’ = 0,(q)

ceB ceB £eB

since the a;’s are integers and satisfy al = a; by little Fermat, and where we also use
that the binomial coefficients (;) all are 0 mod p when 1 <17 < p. U

The second important property of the Frobenius element is related to prime ideals
lying over p. So let p be one of them; that is p is a prime in A with pNZ = (p)Z. One
has

Lemma 5 o,(p) = p.

Otherwise said, the Frobenius element o, lies in the decomposition groups of the primes
over p.

PROOF: Pick an element a € p. As pACp and o,(a) = o + pf for some § € A
by lemma 4, we see that a’—and therefore «, the ideal p being prime—belongs to p.
Hence 0,(p)C p. Equality follows since o, is an automorphism. U

— 09—
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Let h be the least positive integer such that p* = 1 mod n. Recall that we say
that h is the order of p modulo n, and indeed, it is the order of the residue class p
in the group of units (Z/nZ)*. As an element of the Galois group Gal(Q(¢,)/Q), the
Frobenius element o, has an order as well, and of course, the two orders are the same:

Lemma 6 The order of the Frobenius element o, € Gal(Q(&,)/Q) is the order of p
modulo n, that is, the least positive integer h such that p" =1 mod n.

PRrROOF: This pretty obvious: If € is a primitive n-th root, a]’;(f) = ¢ and this is equal
to € if and only if p* =1 mod n. a

THE DECOMPOSITION OF PRIMES PRIME TO n Let p be any prime in A lying over
p. Then the residue field F, = A,,/p is a finite extension of the field F, whose degree
f = [Fy : F}] is the relative or local degree of p

From lemma 5 follows that the Frobenius element o, induces an automorphism of
the field F, which leaves elements of I, fixed, hence an element in the Galois group
Gal(F,/F,). This group is cyclic of order f and is generated by the p-power map
x +— xP. After lemma 4, the element o, induces this generating automorphism. This
induced Frobenius automorphism (by the way, also usually called the Frobenius, which
is not a coincidence) has an order which by the structure of finite fields is equal to the
degree [, : IF,], i.e., the relative degree f.

If a;f = id, clearly the same applies to the reduction, so if & denotes the order of oy,
one has f|h. We shall see that in fact equality holds. The point is the following:

Lemma 7 The map p, — F; = A/p* that sends an element to its reduction modulo p
is an injective group homomorphism. Furthermore one has pf =1 mod n.

PROOF: The polynomial has 2™ — 1 all roots distinct in F, since its derivative nz" !

is non-zero modulo p and has no common root with ™ — 1. This means that u, is
isomorphic with a subgroup of the group of units Fy, and its order divides that of Fy,
in other words n|p/ — 1, or p/ =1 mod n. a

This lemma shows that if & is the order of p modulo n, then h|f. On the other hand,

we checked above that f|h, and hence f = h. We have

Proposition 5 Assume that p is a prime not dividing n and let pC A,, be a prime with
pNZ = (p). The relative degree of p over Q is the order of p mod n, that is the least
positive integer f such that p/ =1 mod n. One has pA, = py,--- - ps where the p;’s
are distinct primes in A, and s = ¢(n)/f.

PROOF: Most of this is done. We have checked the statement about the relative degree,
and know that p is unramified. Hence pA,, = p;-- - --p, for some s, and the fundamental
relation gives ¢(n) = [Q(&,) : Q] = sf. a

We remark that this proposition, by Kummer’s theorem, this is equivalent to saying
that the cyclotomic polynomial ®,(z) factors mod p as a product of s irreducible
polynomials, each of degree f, where f and s are as in the theorem. Of course, this
says nothing about the exact shape of those factors.

10 —
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THE GENERAL CASE Now we describe the decomposition of any prime p regardless of
its diving n or not. In line with the comment at the end of the previous paragraph, this
amounts to describe the factorization of the cyclotomic polynomial @, (x) in the ring
[F,[z]. This holds because of Kummer’s result and the fact that the ring of integers in
Q(&,) equals Z[¢,] (which is needed in the ramified primes). The result is as follows:

Theorem 4 Let n be a natural number and let p be a a rational prime. Let n = p"m
where m does not have p as a factor. Then p decomposes in A, as

pAn = (pl """ ps)¢(p”)

where s = ¢(n)/f and f is the order of p modulo m; that is, the least positive integer
with pf =1 mod m.

PROOF: By the beginning remark, we need to show that in the ring F,[z] there is a
factorization

() = (Ty(z) - - - Ty(x))*P")

where the W;’s are irreducible of degree f.

Let n; be the primitive p”-th roots of unity and §; the primitive m-th roots. Then
the products n;§; are all the primitive n-th roots.

The n;’s are all congruent one modulo p, hence in A/p one has

O, (z) = H(x —ni&j) = H(x — £;)P")

J

and the result follows by the unramified case. a

As an immediate application of this result, we can give a precise criterion for when
a prime p splits completely in Q(&,,). By definition, this happens when p is unramified
and the relative degrees of primes over p all are equal to one. By the theorem, this
occurs exactly when p =1 mod n. We have

Proposition 6 Let n be a natural number and let p be a rational prime. Then p splits
completely in the cyclotomic field Q(&,) if and only if p=1 mod n.

Quadratic subfields of Q(¢,)

Let p be an odd prime. The sign (—1)®~1/2 pops up frequently in number theory, and
the notation p* = (—1)®~Y/2p is used by many authors. We shall adopt that convention.
In this paragraph we shall see that p* has a square root in Q(¢,), and we shall exhibit
an explicit formula for that root. This shows that the quadratic number field Q(/p*) is
a subfield of the cyclotomic field Q(¢,), and in fact it turns out to be the only quadratic
field contained there.

Proposition 7 Let p be an odd prime. Then /p* € Q(&,).
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PROOF: The identity (%) with n = p and z = 1 gives

e, (1) = [[(1-¢

£esp

The cardinality of S, is p — 1, and since p # 2 one has § # £~!. The factors in the
product above can be regrouped in the (p — 1)/2 pairs (1 — &)(1 — &), which gives
the following formula where S/ C S, is the subset with (p —1)/2 elements consisting of
one of the elements from each pair {&,£71}.

p=2o(1) = [[ -0 - = ()2 [J(1-¢?

¢es, ¢es,

where € = [, s ¢! is an element in p,, and hence is a square (any element in f, is
since p is odd). It follows that p* is a square. U

As promised, we show that there no other quadratic fields in Q(¢,):

Proposition 8 Let p be an odd prime. The field Q(\/p*) is the only quadratic number
field being a subfield of Q(&,).

ProOF: If KCQ(¢,) is a subfield of degree 2 over Q, it is the fixed field of a subgroup

of the Galois group Gal(Q(¢,)/Q) of index two. But the Galois group Gal(Q(¢,)/Q) is
cyclic, and a cyclic group has a unique subgroup of index two. Hence there is just one
subfield being a quadratic extension of Q. U

PROBLEM 12. Let p be a prime and let & be a primitive p-th root of unity.

a) Show that £ + ¢! is a real number and that it has exactly (p — 1)/2 different
conjugates, all of which are real. HINT: The conjugates are all of the form n + ' for
p-roots 1 of unity.

b) Show that the field Q(¢ 4+ &71) = Q(cos(27/p)) is Galois over Q of degree (p —1)/2.
c) Show that the cyclotomic field Q(€) is an extension of Q(£ + £71) of degree two.

d) The Galois group Q(&) over Q is cyclic of order p— 1. Hence has a unique element of
order two. Show that that element is given by complex conjugation and that Q({)NR =

QE+¢7).
*
PROBLEM 13. Describe all subfields of Q(&5), Q(&7), Q(&11) and of Q(&a3). *

PROBLEM 14. Show that Gal(Q(&s)/Q) is isomorphic to Z/2Z x Z/27Z. Show that Q(&g)
contains exactly three quadratic fields. Give an explicit description of these three fields.
*

12 —
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Quadratic reciprocity

Recall the Legendre symbol (%) where «a is an integer and p is a rational prime. It takes
the value 0 for integers a divisible by p , and 1 or —1 for the rest, according to a being
a square mod p or not.

One has the equation (%) = (a)?Y/2 mod p.

The famous law of quadratic reciprocity states:

Theorem 5 Let p and q be two different rational primes. Then one has

PROOF: We shall make use of the square root 7 of p* in the cyclotomic field Q(&,) and
of the Frobenius automorphism o, in Gal(Q(&,)/Q). The latter acts £ — £? on roots
of unity, hence corresponds to the residue class of ¢ under the canonical isomorphism
Gal(Q(&)/Q) = (Fp)*.

Clearly o,(7) = £7 ( this being true for any automorphism of Q(§,) since p* is
rational) and o,(7) = 7 if and only if o, restricts to the identity in the Galois group of
Q(7). By the Galois correspondence this Galois group is the unique quotient of order
two of the cyclic group F), the kernel of which consists of all squares in F;. Hence o,
restricts to the identity if and only if ¢ is a square mod p, that is, we have o,(7) = (%)7’.

On the other hand, o,(7) = 7¢ mod ¢. Hence in the ring A/qA (which contains
the field F,) we have the equality

o (1) = 777 = (p) V2 = (p—)r

and we are done, since 7 # 0 in A/pA. Indeed if 7 = aq with a € A, taking norms, one
gets the contradiction (p*)?™ = N(a)%¢*™.

J

Linearly disjoint fields and composites

In this section let KC () be a field extension and suppose given two finite, separable
subextensions L and M, that is two subfields of {2 both containing K and both finite
and separable over K. The composite of L. and M-—denoted by LM— is the smallest
subfield of €2 containing both of the fields L and M.

In geometry if you study one space X and are lucky enough to be able to split it in
a direct product Y x Z, where the two factors Y and Z are well known, then you know
as much about X as about the two factors. This in contrast to having a just fibration
(that is, a nice map) X — Y with fibres Z, where the interplay between properties of
X the spaces Y and Z are much complicated.

13 —
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In the worlds of fields, a tower KC LC LM is analogous to a fibration, and we seek
a condition that makes the tower as friendly a direct product. The answer is the notion
of two subfields being linearly disjoint, which we develop in this paragraph.

There is ring-homomorphism L ®x M into €2 defined by sending the decomposable
tensor x ® y to zy and then extending this to the whole of L ®x M by bilinearity. The
image of this map is a subring of 2 of finite dimension over K. And—as any finite ring
extension of K which is an integral domain, is a field—we the image is a field. Clearly
it contains both L and M, and therefore it is contained in any field containing both L
and M. Thus it is equal to the composite LM. What we just argued for, is the first
part of the following lemma

Lemma 8 The composite of L and M 1is the image of the map L Qg M — ) given by
r®y > xy. The degree of the composite field satisfies [LM : K| < [L: K|[M : K].

The second part follows from the first since dim L ® g M = dim - L dim g M.

If {a;} and {;} are basises for L and M over K, the products «;3; form a generating
set of the composite LM over K. In general there certainly will be dependencies, so
that strict inequality holds, and the map induces by * ® y — xy will not be injective,
a naive example being the case that M = L. Then the composite equals L, but the
space L @ L is of dimension [L : K]?. Along this line whenever the intersection LN M
differs from K, the fields L and M are not linearly disjoint over K. Indeed, assume that
x € KN M is an element not lying in K. Then z® 1 and 1 ® x are different elements
in the tensor product, but of course they are mapped to the same element, namely x.

We say that the two fields L and M are linearly disjoint over K if this map is
injective, i.e., if the composite LM is isomorphic to the tensor product L ®x M.
Equivalently, L and M are linearly disjoint if the degree [LM : K] is equal to the
product [L : K|[M : K].

Proposition 9 Let KCQ be a field extension and let KC LC ) and KC MCQ be two
finite subextensions. The following five statements are equivalent.

L1 The fields L and M are linearly disjoint over K.

O [LM: K| =|[L:K]|[M : K|

O [L:K]=[LM: M|

(0 There is one K-basis for L which is an M-basis for LM.

[0 Any K-basis for L is an M -basis for LM .
PROOF: The first point in the proof is the inequality

dimLex M =[L: K|[M:K|>[LM: K|=[LM: M|[M : K|,

fr?m which it follows that L and M are linearly disjoint if and only if [LM : M] = [L :
K.
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Secondly, any K-basis for L form a generating set for LM over M since elements
of LM are sums Y «;5; with a; € L and f; € M. This generating set is a basis for
LM over M if and only if [LM : M| = [L: K]. a

PROBLEM 15. This exercise exhibits an example of two extensions of (Q with intersec-
tion equal Q, but which are not linearly disjoint. Let o = ev/2 and 3 = ¢ 'v/2 where
€ is a primitive cube root of unity.

a) Show that o + a8 + % = 0.

b) Show that Q(a) N Q(B) = Q.

c¢) Show that Q(«) and Q(8) are not linearly disjoint over Q. What is the composite
of Q(a) and Q(B)? HINT: Take a look at the root field of z3 — 27

Dedekind rings in linearly disjoint extensions

Let A be a Dedekind ring with field of fractions K and assume that L and M are
linearly disjoint extensions of K contained in some “big” extension 2 of K. We let
Ap and Ays stand for the integral closure of A in L and M respectively, and Ay,
denotes the integral closure of A in the composite field LM . Clearly the composite ring
Ap Ap—that is, the smallest subring of {2 containing bot Ay and Aj,—is contained in
ALM-

In this paragraph we explore the relations between these integral closures and their
invariants, i.e., their discriminants, with the emphasis on the question when Ay A, =
Apn. Linearly disjointness is a must for such an equality, if that does not hold, not
even the dimensions match. However it is not sufficient.In addition one needs that the
discriminants are disjoint.

We continue working with two linearly disjoint extensions L and M of K.

Any integral basis B for L over K—that is a K-basis for L whose elements all are
in A— is a basis for LM over M contained in ApAjy;. The matrix for the map p, in
the basis B is the same whether we regard p, as a map from L to L or a map from
LM to LM. The characteristic polynomial of the to multiplication map are therefore
the same, and in particular

it holds that trpa/a(8) = trp x(8). Hence the discriminant Ag of the K-basis
B of L is the same as the discriminant of B regarded as an M-basis for LM, and
ApArLuC Ap Ay by proposition 25 on page 25 in Discriminants. Varying the integral
basis B for L over K (recall that the discriminant ideal is generated by the discriminants
of the all the integral basises), we have proven

Lemma 9 With notation above

04, /AALMC AL AN
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Proposition 10 Assume that the discriminants 04,4 and d4,,/4 are relatively prime.
Then ALAM = ALM-

PROOF: Since d4, /4 and d4,,/4 are supposed to be relatively prime, we have the equality
A =04,/4+04,,/4 which when multiplied with Ay, and combined with lemma 9 above,
gives Apnr = 04, yaALm + 04, )4aALmC A Ay The other inclusion is trivial. a

Proposition 11 Let K be the fraction field of the Dedekind ring A. Let L and M be
finite, separable and linearly disjoint field extensions of K of degree n and m. Let the
integral closure of A in L and M be respectively A and Ayy.
Assume that the discriminants 64, /4 and 04,,/4 are relatively prime. Then they
satisfy.
0BC/A = 0B /A0 A-

Let B and C be basises for respectively L and M over K, we introduce the ad hoc
notation B®C denote the basis of L ® M whose elements are the products of the
elements from B and C.

Lemma 10 Agge = AFAL

PROOF: The proof relays on the fact that the discriminant of a basis equals the de-
terminant of the transition matrix between the basis and the dual basis, as shown in
lemma 13 on page 40 in Discriminants.

Let B be {z1,...,x,} and let {xy,..., 2]} be the dual basis. Let C be {y1,...,Ym}
and let {y},...,y,,} be the dual basis. We claim that {z}y}} is the dual basis of {z;y;}.
Indeed, using the linearity and the functoriality of the trace in towers, on obtains

troar/ i (T oY) = troye (troayn(ayegy))) = troe (T troag o(y;y)) =
o
= tro i (v32y) (trar/n(Yy1)) = troy e (2iry,) trar e (Y;91) = dindii

where the equality marked ¢ holds since trpp/(8) = trayx(5) for any element 8 € M
as LM = L ®x M.

The transition matrix between the basises {z;y;} and {xjy}} is the tensor product—
or the Kronecker product as many call it—of the the transition matrix V' between {x;}
and {z;} and the one, W, between {y;} and {y}}. One has

Apgy =det V@ W =det V" @det W" = ARAL
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PROOF OF THE PROPOSITION: First of all, by localizing, we may assume that A is a
principal ideal domain. Chose A-basises B for Ay, and C for A,;. Then the discriminants
Apg and Ac are generators for the (principal) discriminant ideals §4, /4 and 64,,/4.

By proposition 10 we know that Ay, = Ap Ay, and hence B® C is an A-basis for
Apwm, and the discriminant of the basis B® C is a generator for the discriminant ideal
04, /4. The proposition then follows from Lemma 10 above. d
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