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This is a very preliminary version, and will change, (some more examples and exercises
??), but it covers basically what I’ll do this week (and may be next). Both in Silverman
and Milne this is done a little differently. Milne works over Q

p

-adic numbers, but the
core of the arguments there are just the same as here (II.4 in Milne’s book, and a little
from II.3). Silverman uses something called formal groups which are nice things, but
we have no time to dig into that.

Trygve Nagell was born in Kristiania in 1895. He studied mathematics at Det
Kongelige Fredriks Universitet (as the university of Oslo was called at that time) i
Kristiania (as Oslo was called at that time) with Axel Thue as a tutor, and he obtain
his doktorgrad in Oslo (Kristiania changed the name to Oslo in 1925) in 1928 with a
thesis about elliptic curves. In 1931 he was appointed professor in Uppsala. where he
remain except for some extensive travels until his death in 1988. In this chapter we shall
prove one of Nagell’s theorems from 1935— it is may be, his most famous one. A few
years later, in 1937, Elizabeth Lutz who was a student of André Weil, independently
proved a p-adic version and now a days the theorem is named after the two.

The theme of this chapter is elliptic curves over Q and their torsion points. The
group E

tor

(Q) of torsion points is relatively accessible. Given a specific elliptic curve
over Q there is an algorithm to compute it which is based on the Lutz-Nagell theorem,
the main result of this chapter.

During the later part of the 20th century people determined the torsion group
of long series of elliptic curves. The list of torsion groups was strikingly restricted,
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for example no curve with 11-torsion or n-torsion with n > 12 was found. In 1908
the italian mathematician Beppo Levi gave a conjectural1 list of the possible torsion
groups, and it was finally proved by Barry Mazur in 1976 that the list was exhaustive.
The theorem is deep and we don’t even touch a proof.

Theorem �.� (Barry Mazur) Let E be an elliptic curve over Q. Then the torsion
group E(Q) is one of the following:

⇤ A cyclic group Z/nZ with 2  n  10 or n = 12.

⇤ One of the groups Z/2nZ� Z/2Z where 1  n  4.

The Lutz-Nagell theorem is more modest, but still forceful enough to make it pos-
sible to determine the torsion group of any specific elliptic curve, at least if one knows
a Weierstrass equation for it. So the point of departure is an elliptic curve over Q with
an integral Weierstrass equation:

y2 = x3
+ ax+ b (2.1)

where a and b are in Z. Any Weierstrass equation can be brought onto this form by an
admissible change of coordinates. The discriminant � = 27b2 + 4a3 plays prominent
role in the theorem. A given curve has several equations of the form (2.1), e.g., if
one replaces y by c3y and x by c2x, the discriminant changes to c�12

�, and in the
applications of the Lutz-Nagell theorem, to get he most out of the theorem, one should
work with equations whose discriminant is minimal, but it is not a premise for the
theorem.

Theorem �.� (Lutz-Nagell) If the elliptic curve E has the integral Weierstrass equa-
tion (2.1) above, and P = (x, y) is a torsion point of E, then x and y are integers, and
either y = 0 or y2 is a divisor in the discriminant �, that is y2|�.

The core of the theorem is the statement that torsion points ave integral coordinates.
Since if P is torsion 2P will be torsion as well, the divisibility statement follows from
the lemma below:

Lemma �.� Let E be an elliptic curve over Q with the integral Weierstrass equation
(2.1) above, and let P = (x1, y1) be a rational point on E. If both P and 2P have
integral coordinates, then y1 = 0 or y21|�.

Proof: Let 2P = (x2, y2). By assumption the coordinates x1, y1, x2, y2 are are integers,
and we may clearly assume that y1 6= 0. The equation of the curve reads

y2 = g(x)

1The conjecture was later reformulated by Trygve Nagell in 1952, and by Andrew Ogg in 1968. In
modern time it was known as “Ogg’s conjecture”, but today, of course, it is named Mazur’s theorem.
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where g(x) is a cubic polynomial in Z[x]. Hence y21|g(x1). The expression for the x-
coordinate in the duplication formula (1.5) on page 13 in part one reads

2x1 + x2 =
�g0(x1)

2y1

�2
,

and therefore y1|g0(x1). Now, the discriminant is the resultant of g(x) and g0(x), so
one may write � = r(x)g(x) + s(x)g0(x), with r, s 2 Z[x]; in fact one has the explicit
formula (see exercise �.�� on page 25 in part one):

� = �27(x3
+ ax� b)g(x) + (3x2

+ 4a)g0(x)2.

Consequently y21|�. o

Example �.�. Let E be the curve with equation y2 = x3
+ 1. Then E(Q)

tors

= Z/6Z.
Indeed, Q = (�1, 0) is the only two-torsion point. The curve has the two rational
point P = (0, 1) and �P = (0,�1), and using the duplication formula one easily
checks that 2P = �P . Hence P and �P are 3-torsion points. Computing P + Q one
finds P + Q = (2, 3) and therefore (2, 3) and (2,�3) both are 6-torsion points. The
discriminant is � = 27, so by the Lutz-Nagell theorem, the only possible y-coordinates
for torsion points are 0, ±1 and ±3, and from there one easily arrives at the above
points being all torsion points. e

Example �.�. Let a be an odd integer. Then y2 = x3 � ax + 1 has infinitely many
rational points. There are rational points namely (0,±1), so if we can show that e.g.,
P = (0, 1) is not torsion, we are safe. But the duplication formula gives that the
x-coordinate x2 of 2P is

x2 =
��a

±2

�2
=

a2

4

.

By Lutz-Nagell this is an integer contradicting the assumption that a be odd.

e

One consequence of the Lutz-Nagell theorem is that the torsion group E(Q)

tors

is
finite (there are only finitely many divisors in � and for each, y2 = g(x) has only
three solutions). This is of course also a consequence of the group E(Q) being finitely
generated by the Mordell-theorem, but Mordell’s theorem is considerably deeper (to
put it mildly) than this lemma, so it is worth noting.

To establish the integrality statement in Lutz-Nagell, the strategy is to show that
no prime number divides the denominators of x and y. In the process of implemen-
ting this—as in many other contexts with elliptic curves and diophantine equations in
general—reduction modulo a prime p is the essential tool, so this is the place for us to
discuss the reduction map in some detail.
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2.1 Reduction modulo a prime

For any prime number p, there is a reduction mapping Pn

(Q) ! Pn

(F
p

). The image of
P will be denoted by ¯P ; a convention that extends the traditional notation ā for the
residue of an integer a mod p. For a point P in Pn

(Q) with relatively prime integral
homogenous coordinates, it is clear what ¯P should be: We just reduce all the coordinates
mod p, and at least one not being divisible by p, the reduced coordinates do not all
vanish. The point is that the coordinates of any P may be brought on this form by
scaling.

To have some more flexibility, we prefer a slightly more general and, in the end,
more natural approach. Any rational number x not having p as a factor in denominator
when written in reduced form, can be reduced mod p. Indeed, if x = a/b with b not
divisible by p, the residue ¯b is non-zero in the field F

p

; hence x̄ = ā/¯b has a meaning.
Another way of stating this, is that there is a reduction map from the localisation

Z(p) to F
p

. Recall that the elements in Z(p) are the rational numbers a/b with p not a
factor in b. It is a local ring with maximal ideal generated by p and with residue field
F
p

.
Recall the definition of p-adic valuation v

p

(x) of a rational number x. For an integer
a the valuation v

p

(a) is the heighest power of p dividing a. For example v
p

(pv) = v and
v
p

(a) = 0 if and only a and p are relatively prime. If x = a/b is a rational number one
has v

p

(x) = v
p

(a/b) = v
p

(a)� v
p

(b). The valuation complies with the two rules

⇤ v
p

(xy) = v
p

(x) + v
p

(y),

⇤ v
p

(x+ y) � min{v
p

(x), v
p

(y)}.

Every rational number is on the form x = x0 p
vp(x) where neither the enumerator nor

the denominator of x0 is divisible by p.
The numbers of the local ring Z(p) are the rational numbers x with v

p

(x) � 0, that
is, the rational numbers not having p as a factor in the denominator, and the units
Z⇤

(p) are those with v
p

(x) = 0; that is the numbers such that p neither divides the
enumerator nor the denominator.

Lemma �.� Given a point P 2 Pn

(Q). One can find homogenous coordinates (x0; . . . ; xn

)

for P with v
p

(x
i

) � 0 and with v
p

(x
i

) = 0 for at least one index. Two such representa-
tions are up to scaling by a unit in Z(p) identical.

Proof: Assume that P = (x0, . . . , xn

) and let v = min{ v
p

(x
i

) | 0  i  n }. Then
obviously P = (p�vx0, . . . , p

�vx
n

), and v
p

(p�vx
i

) = v
p

(x
i

) � v � 0. This establishes
the existence. For uniqueness, assume that ↵x

i

= �x
i

,for 0  i  n, with ↵ and
� relatively prime integral numbers, and assume that p|↵. For at least one index p
does not divide x

i

the x
i

’s being relatively prime. It follows that p|�, contradicting the
assumption that ↵ and � be relatively prime. Hence v

p

(↵) = v
p

(�) = 0 and ↵��1 is a
unit in Z(p). o
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There is a “global” version of this:

Lemma �.� Assume that P 2 Pn

(Q). Then up to sign, there is a unique way of
representing P = (x0; . . . ; xn

) with the x
i

’s being relatively prime integers.

The phrase “up to sign” means that (x0; . . . ; xn

) = (✏x0
0; . . . ; ✏x

0
n

) with ✏ = ±1.
Proof: If (y0; . . . ; yn) and (x0; . . . ; xn

) are two representations of P by relatively prime
integers, there are integers ↵ and � such that ↵x

i

= �y
i

for all i. Assume a prime q
divides ↵. Since the y

i

’s are relatively prime, q does not divide y
i

for at least one index,
and therefore q divides �. It follows that ↵ and � have the same prime factors, and
↵ = ±�.

Now, if P = (x0; . . . ; xn

) with x
i

2 Q, one scales the x
i

’s by the least common
multiple of their denominators, thus obtaining a representation of P with integral
coordinates, which after scaling by their greatest common divisor (or rather its inverse)
become relatively prime. o

By this lemma any point P 2 Pn

(Q) may be represented as P = (x0; . . . ; xn

) with
the x

i

’s integral and relatively prime, and we then define ¯P = (x̄0; . . . ; x̄n

). Since the
x
i

’s are relatively prime, not all of them are congruent zero mod p, and since the
representation is unique up to sign, ¯P is well defined. In fact, one does not need the
x
i

’s to be integers, by the first lemma, it sufficies that their denominators be without
p as factor, that is one needs that v

p

(x
i

) � 0.
Now we turn to the specific situation of P2. The reduction map P2

(Q) ! P2
(F

p

)

takes rational lines to lines. Indeed, if ax + by + cz = 0 is the equation of a rational
line, one may, after a suitable scaling of the equation, assume that the coefficients are
relatively prime integers. Thus āx+¯by+ c̄z = 0 is the equation of a line in P2

(F
p

) into
which the line ax+ by + cz = 0 is mapped.
Good and bad reduction of an elliptic curve Let E be an elliptic curve
defined over Q. We may put the equation E on Weierstrass normal form,

y2 + a1yx+ a3y = g(x) = x3
+ a2x

2
+ a4x+ a6,

and we may assume that the a
i

’s all satisfy v
p

(a
i

) � 0. A replacement of x by c2x and y
by c3y in any Weierstrass equation where c is an appropriate power of p will do. Often
one will work with an equation with coefficients in Z, and the same argument shows one
can always admissibly change coordinates to arrive at an integral Weierstrass equation.

The curve defined over F
p

by the equation

y2 + ā1yx+ ā3y = x3
+ ā2x

2
+ ā4x+ ā6

obtained by reducing the coefficients mod p is denoted ¯E. It is called the reduction of
E mod p.

The discriminant of an elliptic curve being a polynomial in the Weierstrass coeffi-
cients a

i

, it is clear that the discriminant of ¯E is the reduction of the discriminant of
E mod p. Hence if p 6 |�, the curve ¯E is smooth, and we say that E has good reduction
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at p. In case p|�, the curve has bad reduction at p. It is singular, but in view of propo-
sition �.� in part one, it has at most one singular point. This can either be a cusp or a
node. In the former case, we say that E has additive reduction at p, and in the latter,
E has multiplicative reduction. The multiplicative reduction is either split or non-split
according to the node being split or non-split.

One says that Weierstrass equation is minimal at p if the valuation v
p

(�) is minimal
among the discriminants of all Weierstrass equations of E with coefficients in Z(p).
Such minimal equations always exist, and they are unique up to an admissible change
coordinates of the type in proposition �.�� in part one with c invertible in Z(p):

Proposition �.� Let E be an ellitiptic curve over Q. For any prime p, E has a mi-
nimal Weierstrass equation over Z(p), and it is unique up to an admissible change of
coordinate as in �.�� with c a unit in Z(p).

Proof: Two Weierstrass equations are related by an admissible change of coordinates,
and according to proposition �.�� on page 16 in part one the two discriminants satisfy
� = c12�0. If both � and �

0 are of minimal p-adic valuation, one readily obtains
v
p

(c) = 0. Indeed, one has v
p

(�

0
)  v

p

(�) = 12v
p

(c) + v
p

(�

0
)  v

p

(�

0
). This shows

the uniqueness, existence is no deeper than the fact that any non-empty set of natural
numbers has a least member. o

We saw in example �.� in part one that some properties of the reduced curve is sensitive
to base change, like prime factors of the discriminant. As minimal equation is canonical,
this confusion is eliminated. One of many reasons for using the general Weierstrass
equation, is to be able to do reduction mod 2 and 3, so we stress the fact that the
minimal model is chosen among the general Weierstrass equations.
Reduction map is a group homomorphism For points P 2 E(Q) clearly ¯P 2
¯E(F

p

), and the reduction map induces a map E(Q) ! ¯E(F
p

). When E has good
reduction at p, the set ¯E(F

p

) is a group, and since the reduction map takes rational
lines into lines, the reduction map is a group homomorphism:

Proposition �.� Assume that the elliptic curve E has good reduction at p. Then the
reduction map E(Q) ! ¯E(F

p

) is a group homomorphism.

The kernel of the reduction map The kernel of this map is clearly of high inte-
rest. Of course the neutral element O = (0; 1; 0) is contained there, but there might
certainly be other elements. So let P be a point in the kernel with z 6= 0, that is,
P = (x; y; 1) is a point of E(Q) that reduces to (0; 1; 0) mod p. The coordinates x
and y are rational numbers, and to find the reduced point one must clean the deno-
minators of x and y for powers of p: One replaces (x; y; 1) by (xp�v

; yp�v

; p�v

) where
v = min{v

p

(x), v
p

(y), 0}. Since the y-coordinate of the reduced point is non-zero in
F
p

, one sees that v
p

(y) = v, and hence v
p

(x) > v since the x-coordinate is zero. The
addional points in the kernel therefore are those with v

p

(x/y) > 0. This subgroup is
denoted by E1 (it certainly depends on the prime p, but to keep the things simple, we
do not include p in the notation). This establishes

— 6 —
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Proposition �.� Assume that the elliptic curve E over Q has good reduction at p. Let
E1 be the subset of E(Q) given by E1

= { (x; y; z) 2 E(Q) | v
p

(x/y) � 1 }. Then E1 is
the kernel of the reduction map E(Q) ! ¯E(F

p

).

2.2 The p-adic filtration

In view of the discution of the kernel of the reduction map above, it seems natural to
introduce the following series of subsets of E(Q). For each natural number n we define:

En

= { (x; y; 1) | v
p

(x/y) � n } [ {O}.

The sets {En} clearly form a descending series of subsets (this is what mathemati-
cians call a filtration), and the series is called the p-adic filtration of E(Q). It certainly
depends on the prime p, even if p is invisible in the notation. A priori the subsets En

are, well, just subsets, but soon we shall see that they in fact are subgroups. Our main
application of the p-filtration is the following proposition, from which the Lutz-Nagell
theorem will bw deduced:

Proposition �.� The subgroup E1✓E(Q) is torsion free.

Another nice corollary, very useful when one wants to determine the torsion part of
E(Q), is the following, which by the way, also immediately shows that E

tors

(Q) is finite.

Corollary �.� Assume that E has good reduction at the prime p. Then the reduction
map E

tor

(Q) ! ¯E(F
p

) is injective.

Proof: On one hand E1 is the kernel of the reduction map, ond the other hand it is
torsion free, so E1 \ E

tors

(Q) = 0. o

This corollary impose severe restrictions on the torsion part Etors

(Q). As an illustration,
we study the curves y2 = x3 � q2x+ 1:

Example �.�. Let E be the curve y2 = x3 � q2x+ 1 where q is a prime different from
2 and 3. Then E has no non-trivial rational torsion points. The strategy to see this is
to reduce E mod p for some small values of p, namely p = 3 and p = 5, and then use
corollary �.�.

The discriminant is � = 27� 4q6. Now � ⌘ �1 mod 3 ( one is the only non-zero
square in F3) and � ⌘ 2± 1 mod 5 if q 6= 5 (±1 are the only non-zero squares in F5)
and � ⌘ 2 mod 5 if q = 5. Thus our curve E has good reduction both at 3 and 5.

We first reduce mod 3. The equation becomes y2 = x3 � x + 1, and counting the
nuber of point in ¯E(F3), one finds 7. Hence ¯E(F3) = Z/7Z and |E

tors

(Q)| divides 7.
Next we reduce mod 5, and the equation becomes y2 = x3

+x+1 or y2 = x3�x+1

acoording to q2 ⌘ 1 mod 5 or q2 ⌘ �1 mod 5. In the former case, E has 9 solutions
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mod 5 and in the latter 8. Hence the order |E
tors

(Q)| divides 8 or 9, but we already
showed that it divides 7. The only possibilty is that the order is one, and E

tors

(Q) is
trivial.

It is easy to find some rational points on E, indeed the two points (0,±1) lies on
E. As they are not torsion points, they generate a subgroup isomorphic to Z, and E
has infinitly many rational points. e

The group law in coordinates around (0; 1; 0)

For people used to Lie-groups it is very natural to study a group in a neigbourhood
of the neutral element. This is fruitful for us and will give us the necessay insight to
prove teh Lutz-Nagell theorem. In our case, as the neutral element lies at the point
(0; 1; 0) at infinity, the change of variable t = x/y and s = 1/y brings the neutral
element to the origin. In those coordinates the equation (2.1) takes the form

s = t3 + ats2 + bs3. (2.2)

We need to express the group law in these coordinates. So let P1 = (t1, s1) and
P2 = (t2, s2) be two points on E and denote by P3 = (t3, s3) their sum P1 + P2.

Let s = ↵t + � be the equation of the line connecting the two points, or in case
the two are equal, the tangent to E at that point. The slope ↵ is of course given as
↵ = (s2 � s1)/(t1 � t2) in case t1 6= t2. And in case P1 = P2, one finds by implicit
derivation that

↵ = s0(t1) = (3t21 + as21)(1� 2at1s1 � 3bs21)
�1 (2.3)

By the standard method (plug in the equation for the line in the Weierstrass equation
and compute the coefficient of the second order term) this leads to

t1 + t2 + t3 = �(3↵2�b+ 2↵�a)(1 + a↵2
+ ↵3b)�1 (2.4)

The p-adic valuations of x and y

Our task in proving the Lutz-Nagell theorem, is to show that both v
p

(x) � 0 and
v
p

(y) � 0 if (x; y; 1) is a torsion point, or turned around, we must show that if either
v
p

(x) < 0 or v
p

(y) < 0, then (x, y) is not a torsion point. Now x and y satisfy the
integral Weierstrass equation (2.1) so v

p

(y) < 0 implies that v
p

(x) < 0. This leads us
to study the situation with v = v

p

(x) < 0.

Lemma �.� With the notation above. Assume v
p

(x) < 0. Then v
p

(x) = �2n and
v
p

(y) = �3n for an integer n � 1.

Hence v
p

(x/y) = n if and only if v
p

(x) = �2n and v
p

(y) = �3n.

— 8 —
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Proof: The integral Weierstrass equation (2.1) reads
y2 = x3

+ ax+ b.

One finds v
p

(x3
+ ax+ b) = min{3v

p

(x), v
p

(a) + v
p

(x), v
p

(b)} = 3v
p

(x), since v
p

(x) < 0

and both a and b are integers. On the other hand v
p

(y2) = 2v
p

(y). Hence 2v
p

(y) =

3v
p

(y), and n = �v
p

(x)/2 = �v
p

(y)/3 is a positive integer. o

The p-adic filtration is a filtration of subgroups

This paragraph is devoted to the proof of the in this context fundamental result:
Proposition �.� The p-adic filtration is a filtration of subgroups, that is the subsets
En are subgroups. For each n � 1, the map (x, y) ! t = x/y induces an injective group
homomorphism t : En/E5n ! pnZ/p5nZ.
Recall the definition of the filtration where t(P ) = x(P )/y(P ):

En

= {P = (x; y; 1) 2 E(Q) | v
p

(t(P )) � n }.
Clearly t induces a map from En into pnZ, and by reduction a map to pnZ/pmZ for
any m > n, in particular for m = 5n (this seemingly random choice will be clearer in
a moment). Once we know it to be a group homomorphism, the kernel is by definition
E5n.

That En is a subgroup and t a group homomorphism, is contained in the following
result:
Lemma �.� If n � 1 and P1, P2 2 En, then t(P1) + t(P2) ⌘ t(P1 + P2) mod p5n

Proof: Recall the formula (2.4) relating the t-coordinate of a sum to the t-coordinates
of the two addends:

t1 + t2 + t3 = �(3↵2�b+ 2↵�a)(1 + a↵2
+ ↵3b)�1. (K)

We shall estimate the p-adic valuation of the right side of this equation, and for
that we need a good estimate of v

p

(↵). If P1 6= P2, one finds from the equation (2.2)
on page 8, that

s2 � s1 =t32 � t31 + at2s
2
2 � at1s

2
1 + b(s32 � s31) =

=t32 � t31 + at2(s
2
2 � s21)� as21(t1 � t2) + b(s32 � s31)

this gives
(s2 � s1)A = (t2 � t1)B

where A = 1+a(s1+s2)�b(s21+2s1s2+s22) and B = t22+t1t2+t22�as21. Since v
p

(s
i

) � 3n
and v

p

(t
i

) � n, one has v
p

(A) = 0 and v
p

(B) � 2n, hence v
p

(↵) = v
p

(B) � 2n. In case
P1 = P2, this follows directly from (2.3) on page 8.

In turn we arrive at an estimate of v
p

(�); we have � = s1 � ↵t1, so v
p

(�) �
min{v

p

(s1), vp(↵) + v
p

(t1))} � 3n, and the formula (K) above proves the lemma, since
v
p

(2↵�a) = v
p

(2) + v
p

(↵) + v
p

(�) + v
p

(a) � 5n. o
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Proof of Lutz-Nagell

Finally things come together, and we shall prove

Proposition �.� The subgroup E1 is torsion free.

Proof: By proposition �.� the group E1 does not have torsion relatively prime to p.
Indeed, assume that mP = 0 with (m, p) = 1 and P 6= 0. Let n � 1 be such that
P 2 En, but P 62 En+1. Then mt(P ) = 0, but because the group pnZ/p5nZ has no
m-torsion, it follows hat t(P ) = 0. Hence P = 0, which is a contradiction.

If P is of finite order m � 1, the prime p therefore is a factor of m, and we may
write m = pl for an integer l. The point P 0

= lP is of order p and P 0 6= 0. Let now
n � 1 be such that P 0 2 En, but P 0 62 En+1. We have pt(P 0

) = 0, so pt(P 0
) ⌘ 0

mod p5n, and therefore t(P 0
) ⌘ 0 mod p5n�1. Since 5n� 1 > n+1 this contradicts the

fact that P 0 62 En+1. o

This immediately finihes off the proof of the Lutz-Nagell theorem:

Corollary �.� If (x; y; 1) is a torsion points of E(Q), then x and y are both integers.

Proof: We may assume P 6= O. If either x or y is not an integer, there is at least one
prime p with v

p

(x) < 0. Hence for that p, one has P 2 E1. But P is torsion and E1 is
torsion free, so P = 0. Contradiction. o

Corollary �.� Assume that E has good reduction at p. Then the reduction homomorp-
hism ⇢ : E

tor

(Q) ! ¯E(F
p

) is injective.

Proof: The kernel of ⇢ is equal to E1. Indeed, if the point (x; y; z) with integral
coordinates maps to the point (0; 1; 0), one has v

p

(x) � 1 and v
p(y) = 0. Hence v

p

(x/y) �
1 and P 2 E1.

On the other hand, if P = (x; y; 1) 2 E1, then (x; y; 1) = (x0p
�2n

; y0p
�3n

; 1) =

(x0p
n, y0, p

3n
) which gives (0; 1; 0) upon reduction mod p. o

Application and examples

We shall as

Proposition �.� Assume that E is the elliptic curve y2 = x3
+ Ax = g(x) with A an

integer free from fourth powers. Then

E
tor

(Q) =

8
><

>:

Z/2Z� Z/2Z if �A is a square ,

Z/4Z if A = 4 ,

Z/2Z otherwise .
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The assumptiom that A be without factors being forth powers is not restrictive
as any such factor can be removed by an appropriate scaling as in �.�. The proof of
the proposition depends on E

tors

(Q) being isomorphic to a subgroup of ¯E(F
p

). The
following lemma about the number of points E has modulo certain primes is essential.

Lemma �.� Is p ⌘ 3 mod 4, the curve E has exactly p+ 1 points in F
p

.

Proof: Since p ⌘ 3 mod 4, we know that �1 is not a square mod p. Since g(�x) =
�g(x), not both elements x and �x in Fp are squares (if they were, �1 would be a
square), and hence one of them is not the x-coordinate of a point in ¯E(F

p

). On the
other hand, if a 2 F

p

, either a or �a is a square. This gives p points in ¯E(F
p

), and in
addition, there is the point (0; 1; 0) at infinity. o

Proof of Proposition �.�: First of all, the point (0, 0), is a 2-torsion point since
the y-coordinate is 0. If �A is a square, say �A = a2, then the equation takes the form
y2 = x(x� a)(x+ a), and there are three 2-torsion points. Hence, if the index of E(Q)

is two, i.e., it consists solely of 2-torsion points, it is isomorphic to Z/2Z � Z/2Z if
�A is a square, and to Z/2Z otherwise.

The point (0, 0) is 2-divisible only if A = 4. Indeed, assume that 2(x, y) = (0, 0).
The duplication formulas 1.5 on page 13 then reads

0 = (

3x2
+ A

2y
)

2 � 2x 0 =

3x2
+ A

2y
x� y,

and by simple manipulations one finds A = x2. But as A is free of quadratic factors, x
is free of squares, which contradicts the Weierstrass equation that reads y2 = x3

+Ax =

2x3, unless x = 2.
The rest of the proof is two show that the order of E(Q) divides 4, and that is

where corollary �.� on page 7 comes into play.
First of all, no odd prime q > 3 is a factor in |E

tors

(Q)|. Indeed, by Dirichlet’s
theorem about primes in arithmetical progressions, there are infinity many primes p
with p ⌘ 3 mod 4q. Then p ⌘ 3 mod 4 and p + 1 ⌘ 4 mod q. This shows that q
is not a factor in p + 1, hence not in #

¯E(F
p

) by the lemma, and therefore neither in
|E

tors

(Q)|.
Now choose p sufficiently large,i.e., not dividing �, such that p ⌘ 3 mod 12. then

p ⌘ 3 mod 4 and p+ 1 ⌘ 4 mod 3. Hence 3 is not a factor in E
tor

(Q).
Choosing large p with p ⌘ 3 mod 8 an analogous argument shows that 8 is not a

factor in |E
tors

(Q)|, and the remaining possibilities are 1, 2 and 4 This closes the case
when the index of E(Q) is two, it is isomorphic to Z/2Z�Z/2Z if and only if g(x) has
three roots, that is , if and only if �A is a square. o

Problem �.�. Let p be an odd prime. Show that there is an exact sequence

0

// µ2
// F⇤

p

�

// F⇤
p

 

// µ2
//
0
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where  (x) = x(p�1)/2 and �(x) = x2 and where µ2 = {±1}. Show that if p ⌘ 3 mod 4

then  (�1) = �1 and hence �1 is not a square and if a 2 F
p

, then either a or �a is a
square. X
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