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This is a raw and preliminary version, and will be expanded, but it covers basically what

I’ll do to day (monday). It is to found in Milne chapter III and Silverman chapter VI.

Historically the theory of elliptic curves grew out of the theory of elliptic integral,
and the first such to be considered was the integral one has to solve when trying to
compute the length of elliptic arc (i.e., a portion of an ellipse). In the computation
the following integral comes up

Z a

0

r
1� k2x2

1� x2
dx, (M)

where k is the eccentricity of the ellipse. This integral is not expressible in terms of the
ellint

classical elementary functions, so one undertook a separate study of it, and of course
of the greater class of so called elliptic integrals shearing the basic properties with
the integral. These integrals have thousands of applications and there is an enormous
literature about them, but we leave them here in the historical introduction.

It turns out that the inverse functions to these integrals are simpler to work with,
as discovered by Abel and Gauss. And they are what concerns us in this chapter. They
are the doubly periodic meromorphic function in C. Such functions have two periods
!1 and !2 that are independent over the reals, i.e., there is no real number t with
t!1 = !2. The double periodic functions satisfy f(z + !i) = f(z) for all z, and one
sees immediately that f(z+n1!1+n2!2) = f(z) for all integers n1 and n2. The subset
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of C of these integral linear combinations form what one calls a lattice, the period

lattice of f . Among the doubly periodic functions having a given lattice ⇤ as period
lattice, there is one that stands out, namely the Weierstrass }-function (which even
has the specially design glyph } for it self). Together with its derivative, it satisfies the
differential relation

}02
= 4}3 � g2}� g3

so using x(x) = }(z) and y(z) = }0
(z) one arrives at a parametrization of an elliptic

curve on Weierstarss form (and of course, this is the origin of the term Weierstrass

form). And one proves that any elliptic curve over C arise equivalent to one of this
type.

3.1 Lattices

There is a general definition of a lattice—it is a discrete subgroup of an euclidean
space—but in our context we simply say that a lattice ⇤ is an additive subgroup of the
complex numbers C free of rank two that generate C as a real vector space.

If !1 and !2 are group-generators for ⇤ one has

⇤ = {n1!1 + n2!2 | n1, n2 2 Z },

and we say !1,!2 form a Z-basis for ⇤. Of course Z-basis are no more unique than
other bases.

A subset of the form { z+�1!1+�2!2 | 0 < �1,�2 < 1 } where z 2 C is any element
is called an open fundamental parallelogram for the lattice. Of course there are may
such, they depend on the chosen basis and the point z.

Three different fundamental domains for the Gaussian lattice.

Including the four line segments bounding the parallelogram, we a closed fundamen-

tal parallelogram, and the set F = { z0 + �1!1 + �2!2 | 0  �1,�2 < 1 }, where the two
bounding line segments emanating from z are included, is what one calls a fundamental

domain

1. It has the property that in any translation class { z + ! | ! 2 ⇤ }, there is
exactly one element belonging to F :

1
In general, if the group G acts on X a subset A✓X is a fundamental domain if every orbit Gx

has exactly one point in common with A. That is a is a set of representatives of the quotient X/G.

We reserve the term fundamental domain for a parallelogram that is a fundamental domain
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Lemma �.� Let A be a fundamental domain for the lattice ⇤. Every point a 2 C has

exactly one translate a+ ! lying in A.

Proof: Indeed, z � z0 = a1!1 + a2!2 with the ai’s real numbers. One may write
ai = ni + �i where ni 2 Z and 0  �i < 1, and the ni’s and �i’s are uniquely defined
by these properties. Then one has z � ni!1 + n2!2 = z0 + �1!1 + �2!2 2 F . o

The quotient C/⇤ Any lattice acts on the complex numbers by translation, i.e., a
lattice element ! acts as z 7! z+!, and the quotients C/⇤ of C by this action, are the
real heros of this story. The reason is that the functions on C/⇤ correspond exactly to
the doubly periodic functions on C having ⇤ as period lattice, that is functions f(z)
satisfying f(z + !) = f(z) for all z and all ! 2 ⇤.

Indeed, if one denotes by ⇡ the quotient map ⇡ : C ! C/⇤ and if g is a function on
C/⇤, the composition f = ⇡ � g has ⇤ as period lattice:

f(z + !) = g(⇡(z + !)) = g(⇡(z)) = f(z)

since ⇡(z + !) = ⇡(z).
On the other hand, if f(z) is doubly periodic, f takes by definition the same value

on all elements in the equivalence class { z + ! | ! 2 ⇤ }, and therefore it descends to
a function on C/⇤.

We shall put a lot of more structure on the quotient. The first thing is a topology.
We equip the quotient C/⇤ by the quotient topology, a subset U✓C/⇤ being open
if and only if the inverse image ⇡�1U✓C is open, where ⇡ denotes the quotient map
C ! C/⇤.

One may think of this construction as taking any closed fundamental parallelogram
and identifying opposite sides. If you are in a playful mood imagine cutting the paral-
lelogram out with scissors, fold it and glue opposite sides together—of course you need
a copy of C made of a sufficently flexile material. In this manner you obtain a space
looking like a doughnut—the precise statement being that C/⇤ is homeomorphic to
the product S1 ⇥ S1 of two circles.

Secondly, we equip the quotient C/⇤ with an analytic structure and thus making
it into a Riemann surface. The genus of this Riemann surface is one, and we shall
later on, in a canonical manner, identify such quotients with elliptic curves in P2

(C)
in Weierstrass form. On of the fundamental theorems about elliptic curves over the
complex numbers states that every elliptic curve C is isomorphic to such a quotient
and describes precisely the relation between lattices giving rise to isomorphic elliptic
curves. This is the main content of this chapter.

To put an analytic structure on any topological space, is to specify for any open
set U which function in U are holomorphic. For C/⇤ one simply declares a function f
on C/⇤ to be holomorphic in the open set U if the composition f � ⇡ is holomorphic
in the inverse image ⇡�1U .

Now C/⇤ is the quotient of the additive group of complex numbers by an addi-
tive subgroup, and thus it is an abelian group. One easily verifies that this group is
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isomorphic to the direct product S1 ⇥ S1 of two copies of the group S1 (addition in C
is componentwise addition of the coordinates with respect to any real basis of C, in
particular !1,!2). And we shall prove that the isomorphism above indeed is a group
homomorphism.

Of special interest is the field of meromorphic functions on C/⇤. We shall denote
this field by K(C/⇤). As we saw, if f 2 K(C/⇤) the composition g = f � ⇡ is a
meromorphic function in C, and it is doubly periodic with
Lambda as period lattice. In this way the field K(C/⇤) is identified with the field of
meromorphic function with period lattice ⇤.

Problem �.�. Show that the torsion subgroup of C/⇤ is isomorphic to Q/Z ⇥ Q/Z.
X

Problem �.�. Show that the subgroup of n-torsion points in C/⇤ is isomorphic to
Z/nZ⇥ Z/nZ. X

3.2 Basics of double periodic functions

Liouville prove several results about double periodic functions, and the following three
results are among them.

The first one is just an asaption of his famous theorem from complex anaøysis
stating that bounded holomorphic functions in C are constatnt, an the ohters all rely
on versions of Cauchy’s integral theorem. We fix a lattice ⇤ and basis !1,!2. Recall
that a closed fundamental parallelogram for ⇤ is a set of the form

Az = { z + �1!1 + �2!2 | 0  �1,�2  1 }.

Geometrically it is the parallelogram whose corners are z, z+!1, z+!2 and z+!1+!2.
The first of Liouville’s theorems is a special case of a very general theorem about

holomorphic functions on a compact Riemann surface (or even variety of higher di-
mension as long as it is compact), if they are globally holomorphic, they are constant.

Liouville1

Proposition �.� (Liouville’s first) Is f(z) is a ⇤-periodic function holomorphic eve-

rywhere in C, the f(z) is constant.

Proof: Let A be a closed fundamental domain, e.g., the parallelogram with corners
0, !1, !2 and !1 + !2. Then A is compact, and f being continuous on A, the absolute
value |f | is bounded on A, say by M . For any point z 2 C, some translate z + ! lies
in A, but then |f(z)| = |f(z + !)|  M , and by Liouville’s theorem about bounded
holomorphic functions, f is constant. o
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The boundary @A of a fundamental domain A consists four line segments �i oriented
as in the figurer below. If f(z) is double periodic and continuous on @Az, one has

Z

�1

f = �
Z

�3

f

Z

�2

f = �
Z

�4

f.

Indeed, the substitutions z 7! z+!2 and z 7! z+!1 take respectively �1 to �3 reversed
and �2 to �4 reversed, and one has d(z + !1) = dz and d(z + !2) = dz.

�1

�2

�3

�4

z

A fundamental domain with oriented boundary

This means that
R
@A f = 0. Combined with Cauchy’s residue theorem this gives:

Liouville2
Proposition �.� (Liouville’s second) Let A be fundamental parallelogram for the

lattice ⇤, and assume that the ⇤-periodic meromorphic function f has no poles on the

boundary of A. Then

P
a2A resa(f) = 0

Proof: Indeed, by Cauchy’s theorem
X

a2A

resa(f) =
1

2⇡i

Z

@A

f = 0.

o

It might of course happen that f has a pole on the boundary of A. One may then
slightly translate the fundamental parallelogram and apply the proposition with the
new parallelogram and in that manner obtain information about the residues. For
example, using an A based at a non-lattice-point z, one proves that there is no doubly
periodic function with simple poles at the lattice points as the only singularities. A
little more generally one has:

Corollary �.� There is no ⇤-periodic meromorphic function having as only singula-

rities simple poles at the translates of a point a.

Proof: Indeed, choose a fundamental domain A so that a lies in the interior of A.
Then there is no poles on the boundary @A, and a is the only pole in the interior of A.
By the proposition one has resa(f) = 0. But since the pole was supposed to be simple,
this means that f does not have a pole at a. o
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The derivative f 0
(z) is ⇤-periodic whenever f(z) is, indeed the identity f(z + !) =

f(z) for all z gives f 0
(z + !) = f 0

(z). Hence the meromorphic function f 0
(z)/f(z)

is ⇤-periodic as well. Recall that the order ⌫ = ordz(f) of a meromorphic2 function
at a is the integer ⌫ such that f(z) = (z � a)⌫g(z) where g(z) is holomorphic and
non-vanishing at a. Hence

f 0
(z)

f(z)
=

⌫

z � a
+

g0(z)

g(z)
.

Since g(z) does not vanish at a, the quotient g0(z)/g(z) is holomorphic at a, and it
follows that the residue of f(z)/f(z) at a equals the order orda(f). Applying Cauchy’s
residue theorem one arrives at

1

2⇡i

Z

@A

f 0/f =

X

a2A

resa(f
0/f) =

X

a2A

orda(f).

Liouville3

Proposition �.� (Liouville’s third) Let f be a ⇤-periodic meromorphic function.

Assume that A is a fundamental domain without any of the poles of f lying on the

boundary. Then

P
a2A orda(f) = 0.

Proof: After what we just did, it suffices to say that

0 =

Z

@A

f 0/f =

X

a2A

orda(f).

o

A ⇤-periodic function therefore has as many zeros as poles in any fundamental domain
A (they must of course be counted with multiplicities). One can even say a lot more.
Given any complex number w and let g(z) be defined such g(z) = f(z) � w. The of
course the zeroz of g are the soliutions of the equation

f(z) = w. (E)

Clearly a is a pole of g(z) if and only if it is a pole of f(z) and the pole orders at
BanalEqu

a are the same (adding a constant does not change the principal part of a function).
So it follows that the equation (E) has the same number of solutions in A as f(z) has
zeros, or phrased slightly differently, the number of solution is independent of w! And
this nuber equal the number of poles. In particular if f(z) is not constant, it has at
least one pole by proposition �.�, and therefore the equation (E) has a solution.

Any meromorphic function defines a map C/⇤ ! P1
(C) which we continue to

denote by f(z). Intuitively one extends the definition of f in the obvious way by sending
2
Not all functions have an order at a even if they are holomorphic on a (deleted) neigbourhood.

Being meromorphic is almost by definition equivalent to having an order at every point.
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the poles of f to the point (1; 0) at infinity. Formally on extends f by sending z to
(f(z); 1) when z is not a pole and to (1; 1/f(z)) when z is not a zero. The coordinates
being homogenous, the two assignments coincide in points which are neither poles nor
zeros.

MeroSurjective

Proposition �.� Assume that f(z) is a meromorphic ⇤-periodic function. Then f is

surjective.

The last result we give in this section is of a slightly more subtle nature than the
precedeeing ones. It says that the difference between the sum of the zeros and sum
of the poles of a ⇤-periodic function is a period when counted with multiplicity. The
converse problem is substantially more complicated to resolve. The question is: Given
a finite collection of points ai with corresponding integers ⌫i, when can one find a ⇤-
periodic function having the prescribed order ⌫i at ai (and order zero elsewhere)? The
answer, found by Abel, is that

P
i ⌫iai has to be a period. It is the genus one case of a

similar result he proved for any compact Riemann surface.
Abel

Proposition �.� (Liouville, Abel) Let f be a ⇤-periodic meromorphic function. As-

sume that A is a fundamental domain without any of the poles of f lying on the boun-

dary. Then one has

P
a2A orda(f) · a 2 ⇤.

Proof: The idea is to apply Cauchy’s residue theorem to the function zf 0
(z)/f(z),

the residue of this function at a being a · orda(f). This function is no longer periodic,
so the simple cancellation argument for integrals along opposing line segments of the
boundary is not valid. However the substitution z 7! z + !2 gives

Z

�3

zf 0/f = �
Z

�1

zf 0/f � !2

Z

�1

f 0/f = �
Z

�1

zf 0/f � (log f(z)� log f(z + !1))

since f 0/f = d log f . Now f(z) = f(z + !1), but complex logarithms can be tricky
stuff3. They are not uniquely defined, so it does not follow that log f(z) = log f(z+!1).
However, the ambiguity in the logarithm is always an integral multiple of 2⇡i, and we
can conclude that Z

�3

zf 0/f +

Z

�1

zf 0/f = 2⇡in!2

for an integer n. In a similar fashion one finds
Z

�2

zf 0/f +

Z

�4

zf 0/f = 2⇡in0!1

for an n0 2 Z. Together with the observation about the residues in the beginning of
the proof, these two equalities and Cauchy’s residue theorem give

X

a2A

orda(f)a =

1

2⇡i

Z

@A

zf 0/f = n!2 + n0!1 2 ⇤,

since n, n0 2 Z. o

3
The integer n is the winding number of the closed curve f(�1) around the origin
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3.3 Weierstrass } - function

As we mentioned, there is a special function attached to every lattice. In some sense it
is the simplest non-constant meromorphic doubly periodic function with period lattice
the given lattice ⇤. We saw that a non-constant function with period lattice ⇤ has at
least two poles, and the Weierstrass }-function will be a function with double poles at
the lattice points having residue zero at the poles. It goes without mentioning that it
be double periodic with the given lattice ⇤ as period lattice.

We start out with a criterion for convergence of sums over lattices that will be
useful

Lemma �.� If ⇤ is a lattice and s > 2, then the series

P
!2⇤\{0} !

�s
is absolute

convergent.

Proof: The starting point is a reduction to the case when the lattice is the Gaussian
lattice G = { (n,m) | n,m 2 Z }. Let A be the 2⇥2-matrix with columns (Re!i, Im!i)

t

for i = 1, 2. It is invertible, and since the unit circle S1✓R2
= C is compact and Av 6= 0

for all non-zero v’s, we know that |Av| attains a non-zero minimum, say M , for v 2 S1.
Then M |v|  |Av| for all v, and we arrive at the inequality

X

!2⇤

|!|�s
=

X

v2G

|Av|�s  M�s
X

v2G

|v|�s ,

so once we have proven the last sum being finite, we are through.
For the Gaussian lattice, let Q⌫ be the set of lattice points (n,m) with max{|n| , |m|} =

⌫. There are 8⌫ points in Q⌫ , and their distances to the origin are all greater than ⌫.
Hence X

!2G

|!|�s  8

X

⌫

⌫ · ⌫�s
= 8

X

⌫

⌫�(s�1)

where the last series converges since s� 1 > 1.

o

One should be careful working with functions like zs when z complex since the
logarithm is not well defined. We shall stick wiyh s being an integer. For any integer n
with n > 2 the series

P
!2⇤0 !�n, where ⇤

0
= ⇤ \ {0}, is called an Eisenstein series. It

is absolute convergent, and the standard notation is

Gn(⇤) =

X

!2⇤0

!�n. (3.1)

If n is odd one has Gn(⇤) = 0, since
Eisenstein
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X

!2⇤0

!�2k�1
=

X

!2⇤0

!�2k�1
= 1/2

X

!2⇤0

�
!�2k�1

+ (�!)�2k�1
�
= 0.

Problem �.�. If c is non-zero complex number, c⇤ denotes the lattice c⇤ = { c! | ! 2
⇤ }. Show that G2k(c⇤) = c�2kG2k(⇤). X

One standard way to obtain functions invariant under a group is to take averages
over the group elements. If the group G acts on X, and f(x) is a function on X,
then g(x) =

P
g2G f(gx) is invariant. This works perfectly well when G is finite, but

in the infinite case, one must give a meaning to the infinite sum. For us, a tempting
way to construct ⇤-periodic functions, or functions invaraint under the action of ⇤ by
translation, is to use sums of the form

g(z) =
X

!2⇤

(z � !)�s,

where z 62 ⇤, and where s is a natural number. Of course, we must be sure that the
series converges, that is s � 3. If !0 is any lattice point ! + !0 runs through ⇤ when
! does, so as long as the series converges absolutely and one freely can rearrange the
terms, the series defines indeed a ⇤-periodic function:

g(z) =
X

!2⇤

(z � !)�s
=

X

!2⇤

(z � ! � !0)
�s

=

X

!2⇤

((z + !0)� !)�s
= g(z + !0).

In view of this anf the next proposition, the function

g(z) =
X

!2⇤

(z � !)�3 (N)

is a ⇤-periodic meromorphic function whose only singularities are triple poles at the
PDerivert1

period points. The function g is—as we subsequently shall see—up to the factor �2

the derivative of the }-function, and it easier to construct than the }-function it self.
Subsequently we find the }-function by term-wise integration.

NormKonv
Proposition �.� Let ⇤

0✓⇤ be a subset. If s > 2, then the sum

P
!2⇤0(z � !)�s

con-

verges absolutely if z 62 ⇤

0
and uniformly on any compact subset U disjoint from ⇤

0
.

Before giving the proof let us see that the statement about the function g(z) in (N )
above follows. The series for the function g(z) converges uniformly on small compact
neigbourhoods of points not in ⇤, so g(z) is holomorphic off ⇤. For !0 2 ⇤ let ⇤

0
=

⇤\{!0}. Then g(z) = (z�!0)
�3

+

P
!2⇤0(z�!)�3 where the series converges absolutely

and uniformly on compact neighbourhoods of !0 not meeting ⇤

0, and therefore it is
holomorphic around !0. This shows that g(z) has a pole at !0 with principal part
(z � !0)

�3.
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Proof of Proposition �.�: Only finitely many ! in ⇤

0 satisfy |z/! � 1|  3/2 for
z 2 U . For those finitely many !’s, the functions |z/! � 1| have a common non-zero
lower bound when z belongs to the compact set U , say ✏. Then ✏ |!|  |z � !| for all
z 2 U and ! 2 ⇤

0 (we clearly can require that ✏ < 3/2), and it holds true that

X

!2⇤0

|z � !|�s  ✏�1
X

!

|!|�s ,

showing that the series converges absolutely. Uniform convergence follow from Weier-
strass’ M -test. o

Now we move on to the construction of the }-function. Recall that we are looking
for the simples possible non-constant ⇤-periodic function. All holomorphic functions
are constant and there no meromorphic doubly periodic one with just one pole in a
fundamental domain. Our function thus must have two poles, and place both at the
lattice points, that is we are looking for a function having double poles at the lattice
points and, to keep it simple, with residue zero.

The series
P

!(z � !)�2 would be a good try, but it does not converge. However
the series

}(z) = z�2
+

X

!2⇤0

�
(z � !)�2 � !�2

�
(F)

where we have written ⇤

0 for ⇤ \ {0}, will work. Except for the z�2 term this series
WeierP

is obtained by termwise integration of the function g(z) from (N) (or more precisely
�2g(z) ) between 0 and z. It remains to be seen that series converges absolutely and
uniformly on compact subsets disjoint from ⇤, and to that end we establish the following
estimate:

��
(z � !)�2 � !�2

��
= |z| |2! � z| |!|�2 |z � !|�2  A |z| |!|�3

where A is a constant only depending on the compact set U (and of course on the
lattice ⇤). Indeed, just as in the proof of proposition �.� there is an ✏ > 0 such that
|z � !| � ✏ |!| for z 2 U . Now w = min{ |!| | ! 2 ⇤

0 } > 0, and letting Z = sup{ |z| |
z 2 U }, one finds |2! � z| < (2 + Z/w) |!|. Then put A = ✏�1

(2 + Z/w).

Proposition �.� The Weierstarss }-function associated to the lattice ⇤ has the following

three properties

⇤ It is even, i.e., }(�z) = }(z)

⇤ It is ⇤-periodic,i.e., }(z + !) = }(z) for ! 2 ⇤ and z 2 C.

⇤ It has as its only singularities double poles with residue zero at the lattice points.
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Proof: We already saw the last property. Since �! runs through ⇤

0 when ! does, and
since the series (F) defining }(z) converges absolutely, we can rearrange the terms,
and hence arrive at

}(�z) = (�z)�2
+

X

!2⇤0

�
(�z � (�!))�2 � (�!)�2

�
= z�2

+

X

!2⇤0

�
(z � !)�2 � !�2

�
.

We checked that the derivative }0
(z) is periodic, from which follows that }(z) is perio-

dic. Indeed, take thing derivative of }(z + !)� }(z) we find

}0
(z + !)� }0

(z) = 0

since }0
(z) is periodic, Therefore }(z + !) � }(z) is constant. Putting z = �!/2 and

using that }(z) is an even function, one concludes that }(z) is periodic. o

Problem �.�. Show that the series

⇣(z) = z�1
+

X

!2⇤0

�
(z � !)�1

+ !�1
+ z!�2

�

converges absolute and uniformly on compact sets disjoint from ⇤. Show that ⇣(z) has
simple poles at the lattice points as its only singularities and that ⇣ 0(z) = �}(z). Show
that ⇣(z + !)� ⇣(z) = ⌘(!) where ⌘(!) is a nontrivial additive function on ⇤. X

3.3.1 The Weierstrass equation

Recall that on an elliptic curve E with equation y2 = x3
+ ax+ b the y coordinate has

a pole at 1 of other three and the x-coordinate one of order 2. This behavior resemles
the behavior of the functions }(z) and }0

(z), and indeed, they satisfy a differential
equation analogous to Weierstarss equation:

WeierDiffProp
Proposition �.� The Weierstrass function }(z) satisfies an equation

}0
(z)2 = }(z)3 � g4}(z)� g6. (3.2)

WeierDiff

The coefficients g2 and g4 are given as g4 = 60G4(⇤) and g6 = 140G6(⇤) where Gk(⇤)

are the Eisenstein series as defined in (3.1) on page 8.
This shows that the assignments x(z) = }(z) and y(z) = }0

(z) give a parametriza-
tion of the elliptic curve in C2 given by the equation 3.2; well, for the moment we can
only say that the map C ! C2 given by z 7! (}(z),}0

(z)) takes values in the elliptic
curve E whose equation is 3.2. In the end, the map induces an analytic isomorphism
between C/⇤ and the projective curve E, lattice points being mapped to (0; 1; 0), but
we are not there yet. One should also add that the group structures —the geometric one
on the elliptic curve and the additive quotient structure on C/⇤—coincide (of course!).
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Proof: The starting-point of the proof is the Laurent developments of }(z) and }0
(z)

around 0. To obtain the one of }(z) one uses the good old classic
1

(1� t)2
=

X

n�0

(n+ 1)tn

from which we deduce
1

(z � !)2
� 1

!2
=

X

n�1

(n+ 1)zn

!n+2
.

Summing up over the lattice one arrives at

}(z) =
1

z2
+

X

!2⇤0

X

n�0

(n+ 1)zn

!n+2
=

1

z2
+

X

n�0

(n+1)zn
X

!2⇤0

1

!n+2
=

1

z2
+

X

n�0

Gn+2(⇤)(n+1)zn.

Writing out the few first remembering that the odd Eistenstein series vanish, one finds

}(z) = z�2
+ 3G4(⇤)z

2
+ 5G6(⇤)z

4
+ . . . . (3.3)

Taking the derivative we get
LaurentP

}0
(z) = �2z�3

+ 6G4(⇤)z + 20G6(⇤)z
3
+ . . . .

With these formulas it is a matter of simple book-keeping to see that the function
LaurentPder

}0
(z)2 � 4}(z)3 + 60G4(⇤)}(z) + 140G6(⇤)

has no principal part at 0. Being ⇤-periodic it has no poles at any lattice point, and
hence it is holomorphic in the whole plane. By Liouville’s theorem, it must be constant.
The same book-keeping procedure shows that the value at the origin is 0, so the function
vanishes identically, and we are done. o

Problem �.�. Do the computation and verify the statement about the principal part
above. X

The half periods The points !/2 where ! 2 ⇤ are called the half periods and
they play a special role. In every fundamental domain, not having lattice points on
the boundary, there are exactly three half periods. Their images in the quotient C/⇤
are the two-torsion points. We therefore suspect their y-coordinates, that is }0

(z), to
vanish; and of course, this holds true. The point is that }0

(z) is an odd function (as
the derivative of an even one). Hence we have, since }0

(z) is doubly periodic as well:

�}0
(!/2) = }0

(�!/2) = }0
(! � !/2) = }0

(!/2).

The half periods are the only zeros of }0
(z). In an appropriate fundamental domain

A the derivative }0
(z) has as only singularity a pole of order three, and because the

number zeros in A is the same as the number of poles by proposition �.� on page 5,
}0
(z) can only have three zeros. These zeros must for the same reason be simple, so

the double derivative }00
(z) never vanishes in a half period.
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A

The half periods in a fundamental domain A.

The value of }(z) at a half period is a root of the polynomial 4x3 � g4x� g6; indeed

0 = }0
(!/2)2 = }(!/2)3 � g4}(!/2)� g6.

Assume that !1,!2 is a basis for the lattice ⇤. Then the values of }(z) at the three
half period !1/2, !2/2 and (!1+!2)/2 are different. Indeed, the function }(z)�}(!1/2)
vanishes doubly at !1/2 since the derivative vanises there, but like any doubly periodic
function, it has as many zeos as poles in a fundamental domain A, so it can not vanish
elsewhere in A. We have established:

HalfPeriods

Proposition �.� Let !1 and !2 form a basis for the lattice ⇤.

⇤ The half periods !/2 are the only zeros of }0
(z), and }0

(z) vanishes simply there,

that is }00
(!/2) 6= 0.

⇤ The values }(!1/2), }(!2/2) and }((!1 + !2)/2) of }(z) at the half periods are

different, and they are the three roots of the polynomial 4x3 � g4x� g6.

As remark, we observe that this implies that the discriminant 27g26 � 4g34 is non-zero
and that the curve given by (F) below is nonsingular.

3.3.2 The isomorphism

In this section we prove that for any lattice ⇤ the quotient C/⇤ is analytically iso-
morphic to an elliptic curve over C as we defined it early, that is a nonsingular, cubic
curve with point singled out. The elliptic curve E(⇤), or just E for short, will be given
by the Weierstrass equation

y2 = 4x3 � g4x� g6 (F)

where the gi’s are the modified Eisenstein series as defined just after proposition �.�
WeierHer

on page 11, and of course the specified point is as usual the point (0; 1; 0) at infinity. It
will correspond to the origin in C/⇤ (that is, the equivalence class consisting of lattice
points).

The isomorphism rely heavily on the Weierstrass }-function, which together with
its derivative defines a map � : C/⇤ ! E by the assignment z 7! (}(z);}0

(z); 1). This
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expression is valid in C \ ⇤ where both functions }(z) and }0
(z) are holomorphic,

and around the lattice points the map � is given as (}(z)/}0
(z); 1; 1/}0

(z)). Clearly �
is an analytic map (meaning just that the coordinate functions in affine coordinates
are analytic) off the lattice, and as }0

(z) has a pole at the lattice points, its inverse
1/}0

(z) is holomorphic in a vicinity of any such. Similarly as ord!(}(z))�ord!(}
0
(z)) =

�2� (�3) = 1 for any ! 2 ⇤, the quotient }(z)/}0
(z) is holomorphic at !—in fact it

has a simple zero there.
In proposition �.� we established the differential equation

}0
(z)2 = 4}(z)3 � g4}(z)� g6, (A)

so our map � takes values in E(⇤). We shall show
WWW

TheIsomorphism Proposition �.�� The map � : z ! (}(z);}0
(z); 1) induces an analytic group homo-

morphism � : C/⇤ ! E.

Before making our way into the proof we restate some of the properties of the
}-function as a lemma:

Lemma �.� The map } : C/⇤ ! P1
(C) given by z 7! (}(z); 1) is a surjective two-to-

one map whose only ramification points are the half periods.

Proof: The map is surjective by proposition �.� on page 7. And having a double poles
at the lattice points as sole singularities, it is two-to-one by the discussion preceeding
that proposition. The ramification points are the points where the derivative }0

(z)
vanishes, and by proposition �.� on page 13 this happens only in the half periods. o

Proof: First of all, on C/⇤ and E we have the natural involutions ◆ and ◆0, that
respectively are given by ◆(z) = �z and ◆0(x; y; 1) = (x;�y; 1). Since }(z) is an even
function and }0

(z) an odd one, the map � is compatible with the involutions, that is,
◆0 � � = � � ◆.

Secondly, let X denotes the function that gives the x-coordinate of a point in E.
Then X � � = }, as illustrated in the the commutative diagram below:

C/⇤ �
//

}
##

E(⇤)

X
{{

P1
(C)

Both maps are surjective and two-to-one, and both commute with the corresponding
involution (if (y; x; 1) lies on E, then (�y; x; 1) does as well, and }(�z) = }(z))

Outside the ramification loci, the fibers of the two maps consist of two distinct points
exchanged by the corresponding involutions. And the maps ramify at corresponding
points, indeed, the Weierstrass map } ramifies at the points where �z = z (mod the
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lattice), that is at the half periods, and the x-coordinate map ramifies at the points
where y = 0, that is over the roots of 4x3 � g4x� g6. In proposition �.� on page 13 we
showed that these roots were exactly the values of } at the half periods. This shows
that � is bijective.

To finish off the proof that � is an isomorphism, it suffices (By the analytic implicit
function theorem) to show that � is immersion into P2

(C), i.e., that its derivative is
injective everywhere. But the derivative of � at the point z is the linear map C ! C2

sending ⇠ to (}0
(z)⇠,}00

(z)⇠). Off the two-torsion points }0
(z) does not vanish, and at

a two torsion point }00
(z) does not vanish; hence the derivative is injective. That � is

a group homomorphism will br done in the next paragraph. o

3.3.3 The addition formula

When working with the group structure of an elliptic curve E✓P2
(k) on Weierstrass

form, we proved (proposition �.� on page 13 in part 1 with a1 = 0) the following formula
for the x-coordinate of the sum of two points (x1, y1) and (x2, y2), valid whenever
x1 6= x2:

x =

� y2 � y1
x2 � x1

�2 � x1 � x2.

Translated into the language of Weierstrass functions this formula appears as in equa-
tion (3.4) below (the factor 1/4 in that equation comes from the factor 4 in the leading
term of the equation satisfied by }(z) ), and once this is established, we have proved
that � is a group homomorphism. That said, there are several other ways to see this.
May be the most natural one follows from the fact that all regular maps between com-
plete curves with a regular group structure (or more generally, between any abelian
varities) are homomorphism once they respect the origins.

Proposition �.�� Whenever z 6= z0 one has:

}(z + z0) =
1

4

�}0
(z)� }0

(z0)

}(z)� }(z0)

�2 � }(z)� }(z0) (3.4)

Additionformula

Proof: We fix z0 and regard z as the variable. The strategy of the proof is to verify that
the two sides have the same principal part everywhere except for a possible discrepance
in the residue at one point at most (in a fundamental domain A). The difference of the
two sides is then a function having at worst one simple pole in the fundament domain
A, and therefore it must be constant (Liouville’s third, proposition �.� on page 6). It
remains to verify that the two sides coincide at one point.

The left side of (3.4) has a pole for z = �z0, and the possible pole of the right side
are z = 0 and z = ±z0. We analyze each case separately. We Assume that z0 is not a
half period, leaving that case as an exercise.
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The case z = 0. In the fraction
}0
(z)� }0

(z0)

}(z)� }(z0)
(E)

the enumerator has a pole of order three and the denominator one of order two, so the
The Fraction

fraction has simple pole. One computes the residue:

lim

z!0
z
}0
(z)� }0

(z0)

}(z)� }(z0)
= lim

z!0

z3(}0
(z)� }0

(z0))

z2(}(z)� }(z0))
= �2.

The dominant term of the Laurent series of one fouth of the square is then 1/z2, which
is the same as the one of }(z). Hence the right side has at most a simple pole at 0.

The case z = z0: By l’Hopital’s rule, the fraction (E) has the value }00
(z0)/}0

(z0) and
there is no poles as long as z0 is not half period since then }0

(z0) 6= 0.

The case z = �z0: Then the fraction(E) ha a simple pole with residue �2, and the
principal part of its square equals 1/z + z0. The left side has a double pole with the
same principal part (substitute z + z0 in the Laurent series for }(z) round the origin).

o

Problem �.�. Complete the proof by checking the formula for z0 one of the half
periods. X

3.4 Mappings between elliptic curves

In any mathematical theory the relations between the objects one studies are as im-
portant than the objects themselves. Usually the relations appears as maps respecting
the structure of the objects. This has been formalized in theory of categories, where
“maps” usually are called morphisms.

Elliptic curves posses two structures. They are varieties as well as groups. So our
morphisms should respect both these structures, they should group homomorphisms
as well as regular. It is common to call such maps isogenies . Now, it happens that a
regular map between two elliptic curves respecting the neutral elements automatically
is a group homomorphism! Even if this might appear as a miracle, it is not very deep
(certainly not for curves over C), and we shall soon prove it.

However we start with some examples, which in the end are not merely examples
but the generic situation.

3.4.1 Examples

Let ⇤

0 and ⇤ be two lattices, and let a 2 C be a complex number such that a⇤✓⇤

0.
Then the map z 7! az is an additive map that takes ⇤

0 into ⇤, and by elementary
group theory it induces a group homomorphism �a : C/⇤0 ! C/⇤. This map will also

— 16 —



Elliptic curves—curves over C MAT2200 — Vår 2014

be regular, indeed, it follows since z 7! az is analytic, and the quotient maps are locally
analytic isomorphisms. The situation is summed up by the usual commutative diagram

C ◆a //

✏✏

C

✏✏

C/⇤0 �a
// C/⇤

where we temporarily have denoted z 7! az by ◆a. The kernel of �a is isomorphic to
⇤/a⇤, so there is the exact sequence

0

//
⇤/a⇤ // C/⇤0 // C/⇤ //

0

Indeed, the kernel clearly is equal to a�1
⇤/⇤0, but this quotient is isomorphic to ⇤/a⇤

via the multiplication-by-a map.
The quotient between to finitely generated free abelian groups of the same rank is

always finite; slightly more general, the cokernel of an injective map between two such
groups is finite. In order to see this, we choose basises for the two groups and represents
the map by a matrix M with integral coefficients. Since the two groups are of the same
rank, the matrix is a square matrix and since the map is injective, M has a non-zero
determinant. Now the if M c is the cofactor matrix of M , one has the identity

detM · I = MM c

hence detM · x = MM cx 2 ImM for any element x, so the integer detM kills the
cokernel, and consequently the cokernel is finite. We have proved
Proposition �.�� Let ⇤

0
and ⇤ be two lattices and let a 2 C be a complex num-

ber such that a⇤✓⇤. Then multiplication-by-a map z 7! az induces a regular group

homomorphism �a : C/⇤0 ! C/⇤ whose kernel is finite and isomorphic to ⇤/a⇤.

This proposition merits a few comments. Firstly, as we soon shall see, it covers
every regular group homomorphisms. They are all induced by multiplication by some
complex number, see proposition �.�� on page 19 below. Secondly, �a is an isomorphism
if and only if a⇤ = ⇤. Thirdly, the case a = 1 is a highly nontrivial and interesting
case. The condition on the lattices is then that ⇤

0✓⇤, and up to isomorphisms, the
isogneis with a given curve C/⇤ as target are classified by the sublattices of ⇤:
Example �.�. Assume that ⇤0 is a sublattice of ⇤. Then the identity map on C induces
an isogeny

�⇤/⇤0
: C/⇤0 ! C/⇤.

This is nothing but the good old group homomorphism sendig a translation class mod
⇤

0 to the one mod ⇤. The kernel of �⇤/⇤0 is the quotient ⇤/⇤0 between the two lattices,
and there is an exact sequence

0

//
⇤/⇤0 // C/⇤0 �⇤/⇤0

// C/⇤ //
0.

The quotient ⇤

0/⇤ is finite, and the degree of �⇤/⇤0 is the index of ⇤

0 in ⇤, i.e.,

deg �⇤/⇤0
= [⇤ : ⇤

0
], since the degree is the number of elements in the fibres. e
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Example �.�. Let n 2 N be a natural number. A lattice ⇤ gives rise to the two lattices
by n⇤ = {n! | ! 2 ⇤ } and 1/n⇤ = {!/n | ! 2 ⇤ }. The curve C/⇤ is isomorphic
to both C/n⇤n and C/1/n⇤. An isomorphism with C/⇤ as source being induced by
multiplication by n respectively 1/n. e

Example �.�. Let n 2 N be a natural number. The multiplication-by-n-map z 7! nz
takes any lattice ⇤ into itself and hence induces a map [n] : C/⇤ ! C/⇤, which is
nothing but multiplication by n on the elliptic curve C/⇤, a map we already have
encountered. The quotient ⇤/n⇤, being isomorphic to the cokernel of the map Z2 ! Z2

sending x to nx, is isomorphic to (Z/nZ)2. So we have the exact sequence

0

//
(Z/nZ)2 // C/⇤ [n]

// C/⇤ //
0

and [n] is of degree n2.
The two pairs of sublattices n⇤✓⇤ and ⇤✓n�1

⇤ both realises [n] up to isomorp-
hism. The meaning of this sentce is that there are the two commutative diagrams with
exact rows, the first one being

0

//
Ker[n] //

'
✏✏

C/⇤ [n]
//

n
✏✏

C/⇤ //

=
✏✏

0

0

//
⇤/n⇤ // C/n⇤ �

// C/⇤ //
0

where n and � are shorthand notation for the maps �n and �n⇤/⇤ as defined above.
The second diagram is the following with a similar shorthand notation:

0

// n�1
⇤/⇤ //

'
✏✏

C/n�1
⇤

�
//

n
✏✏

C/⇤ //

=
✏✏

0

0

//
Ker[n] // C/⇤ [n]

// C/⇤ //
0

e

Example �.�. Let G = Z[i] be the Gaussian lattice generated by 1 and i. Then
multiplication by i takes G into G, and hence induces an automorphism of C/G denoted
by [i] satisfying [i]2 = [�1]. Such an isomorphism is called a complex multiplication,
and are pretty rear. Another example is the Eisenstein lattice H = Z[⇢] where ⇢ =

exp 2⇡i/3. Multiplication by ⇢ induces an automorphism C/H ( one has ⇢2 = �⇢� 1).
e

Problem �.�. Show that the lattice 1,↵ has complex multiplication if and only if ↵
is quadratic over Q. X

Example �.�. Assume that G✓C/⇤ is a finite subgroup. Thw ⇤G = { z 2 C | ⇡z 2 G }
is discrete subgroup of C, hence a lattice. e
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Given any pair of lattices one contained in the other, say ⇤

0✓⇤. As the quotient
⇤/⇤0 is a finite group, it is killed by som integer n. This means that n⇤✓⇤

0. The two
isogenies

C/⇤ ! C/⇤0

C/⇤0 ! C/n⇤

have as composition [n].

3.4.2 Every map is linear

Recall that any C-linear map C ! C is of the form az + b. In the previous section we
saw that the homotethy z 7! az induces isogenies of elliptic curves. In a similar way
the translations z 7! z+b induces a regular map , denoted by Tb, of every elliptic curve
C/⇤, sending the translation class of z to the one of z + b. This map is however no
more an isogeny since it does preserve the origin, but Tb(0) = b. The aim of this section
is to show that any regular map between to complex elliptic curves is the composition
of a translation map and multiplication map:

EveryMapIsLinear
Proposition �.�� Let � : C/⇤ ! C/⇤0

be a non-constant regular map.

⇤ If � is an isogeny, that is �(0) = 0, then � is a group homomorphdism.

⇤ For a general �, there is a translation map T : C/⇤0 ! C/⇤0
and an isogeny

�0 : C/⇤ ! C/L0
such that � = T�0

Proof: The proof consists in finding a linear map �0 : C ! C, that is a map with
�0(z) = az + b for constants a, b 2 C, that fits into the commutative diagram

C �0
//

⇡
✏✏

C

⇡0

✏✏

C/⇤
�
// C/⇤0

where the two vertical arrows represent the quotient maps sending a complex number
to its translation class.

If �(0) = 0, clearly b = 0, and �0 is additive. This immediate implies that � is
additive and hence a group homomorphism. The second item follows once we have
proven the first; just use the translation T��(0).

In the attack on the first item we need a fact from topology. The quotient map
⇡ : C ! C/⇤ is the universal covering map of the elliptic curve C/⇤. It has the property
that any continuous map  : X ! C/⇤ where X is a simply connected topological
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space, lifts to C; that is, there is a continuous map  0 : X ! C such that  = ⇡ 0, or
as one says, the following diagram commutes

X
 0

//

 !!

C

✏✏

C/⇤

If now X = C and  is holomorphic, as will be the case in our application, the lifting  0

will be holomorphic as well. This is more or less the definition of the complex structure
on C/⇤, and we leave it as an exercise.

So given a regular map � : C/⇤ ! C/⇤0. In particular it is continuous, and one
may fill in the diagram below by a continuous map �0 making it commutative (take
 = �⇡), and after the comment above �0 is holomorphic.

C �0
//

⇡
✏✏

C

⇡0

✏✏

C/⇤
�
// C/⇤0.

Now pick any lattice element ! from ⇤. Clearly the difference  0(z+!)� 0(z) belongs
to the lattice ⇤0 since both terms map to  (⇡0

(z)) in C/⇤0, and of course, the difference
depends on z in a continuous way. So the difference is a continuous map from the
connected space C to the discrete space ⇤0 and must be constant. By taking derivatives,
we conclude that  0

0(z) is ⇤-periodic. Being holomorphic everywhere it is therefore
constant after Liouville I. Thus  0

0(z) = a for some a, and integrating we conclude that
 0(z) = az + b, which is exactly what we were aiming at. o

3.4.3 First attempt of moduli-space

One wants to classify the isomorphism classes of the elliptic curves over C. They are
all of the form C/⇤ for a lattice ⇤, but of course several different lattices give birth to
isomorphic curves. If E denotes the set of isomorphism classes of elliptic curves over C
and L the set of lattices, we have the map

L ! E (B)

sending a lattice ⇤ to the curve C/⇤. It is surjective but far from injective.
ModuliMap

To cope with this problem, one tries to normalize the lattices, that is, imposing
conditions on them and thus cutting down the set L . For example, one can demand
that 1 2 ⇤ and even that 1 is a primitive element; meaning that it is not divisible (i.e.,
that n�1 62 ⇤ for any natural number n > 2). This equivalent to ⇤ having a basis of

— 20 —



Elliptic curves—curves over C MAT2200 — Vår 2014

the form 1, ⌧ , and one can further normalize and impose the condition Im ⌧ > 0. The
last condition says that ⌧ belongs to the upper half plane H.

We introduce the notation ⇤t for the lattice generated by 1, ⌧ where ⌧ 2 H. The
map in B may now be replaced by

H ! E

that sends ⌧ to C/⇤⌧ . Still the map is not injective since but there is a good condition
for ⇤⌧ and ⇤⌧ 0 to define isomorphic elliptic curves:
Lemma �.� For ⌧ and ⌧ 0 numbers in the upper half plane H, the two elliptic curves

C/⇤⌧ and C/⇤⌧ 0 are isomorphic if and only if there are integers a, b, c and d with

ad� bc = 1 such that

⌧ 0 =
a⌧ + b

c⌧ + d
.

Looking at the matrix

A =

✓
a b
c d

◆

the condition on the coefficients is that detA = 1, equivalently it belongs to the group
Sl(2 )Z.
Proof: By proposition �.�� there is a complex number ↵ with the property that
↵⇤⌧ 0 = ⇤⌧ . Hence we may write

↵⌧ 0 =a⌧ + b

↵ =c⌧ + d

where a, b, c, d 2 Z. So matrix A is just matrix of the Z-linear map ↵ between the two
free abelian groups ⇤⌧ and ⇤⌧ 0 with respect to the two basises 1, ⌧ and 1, ⌧ 0.

This gives
⌧ 0 =

a⌧ + b

c⌧ + d
.

Since the map ↵ is invertible (an inverse being multiplication by ↵�1), its matrix is
invertible and so detA = 1.

o

The group Sl(2, Z ) acts on H by the rule

A⌧ =

a⌧ + b

c⌧ + d

Some work is required in order to see that this is an action; i.e., that A(Bz) = (AB)z
but it just a matter of trivial computations. And what we just proved amounts to the
statement that the set E of complex elliptic curves is bijective to the quotient of the
upper half plane H by the group Sl(2, Z ):
Theorem �.� The map ⌧ ! C/⇤t induces a bijection

H/ Sl(2, Z ) ' E
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