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The Mordell theorem tells us that the abelian group E(Q) of rational points of an
elliptic curve E over Q is finitely generated. It can therefore be decompsoed as E(Q) '
Zr ⊕ T where T is the torsion part of E(Q). In one of the previous lectures we studied
the torsion part T . The the theorem of Lutz and Nagell allows to compute T for any
specific elliptic curve, and Mazur’s teorem gives the astonoshingly short list of the finite
groups that occur as torsion groups, and one may say that the torsion part of E(Q)
is very well under control. On the other hand the rank r is an evasive invariant and
almost all natural questions about it remains unanswered.

For example: Is it is bounded? It is generally believed that it is not, and that one
can find elliptic curves over Q with arbitrary large rank.

However, the world record to this day is just 28; to be precise Elkies found a
curve that has rank at least 28 by exhibiting 28 rational points independent points in
E(Q), but he did not show there are no more (so the world record could in principle be
higher). Needless to say that the equation of the curve involves some awesome numbers
not made for human eyes:

y2 + xy + y = x3 − x2−
20067762415575526585033208209338542750930230312178956502x+

34481611795030556467032985690390720374855944359319180361

266008296291939448732243429
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The following curve has rank 19, as shown by xxx; and that is the highest rank that is
known:

y2 + xy + y = x3 + x2+

31368015812338065133318565292206590792820353345x+

30203880269856608733564318842954349862452204168387

4493555186062568159847

Our aim in this lecture is infinitely more modest. We just want to do just a few examp-
les, to get the “feeling” of the rank problem. In some sense it is not very satisfactory
to give a course on the arithmetic of elliptic curves without showing the computation
the rank of any elliptic curve. We are following the expostion in [1] rather closely.

4.1 The weak Mordell theorem
The proof of Mordell’s theorem (which we shall not give) is divided into two parts.
The first is to establish what often is called the Weak Mordell theorem and consists
of proving that the group E(Q)/2E(Q) is finite. This is certainly nessecary for the
full Mordell’s theorem to be true, but far from sufficient. Any divisible group A has
A = 2A, but need not be finitely generated as the example A = Q shows. The second
part of the proof copes with these problems, and relies heavily on what is called height
functions.

Back to the weak Mordell’s theorem and the rank of E. Assuming Mordell’s thoerm
and writing E(Q) = Zr ⊕ T , one sees that E(Q)/2E(Q) = Z/2Zr ⊕ T/2/. One may
further decompose T =

⊕
p Tp where Tp is the p-primary torsion part of T (i.e., . those

points killed by a power of the prime p).
If p is odd, 2Tp = Tp and Tp does not contribute to T/2T . In case p = 2, the group

T2 is a direct sum of cyclic groups S of the form S = Z/2aZ. In each there is one
non-trivial two-torsion element, and S/2S ' Z/2Z. Hence T/2T ' (Z/2Z)s where s is
such that E2(Q) ' (Z/2Z)s. We have shown the following lemma (assuming Mordell’s
theorem):

Lemma .
E(Q)/2E(Q) ' Z/2Zr+s.

There is an analogous statement for any integer m, but to stay with our principle of
simplicity, we only treat the case m = 2.

The proof of the Weak Mordell’s theorem has two parts as well. In the first one
treats the particular class of elliptic curves over Q having three rational two-torison
points. That is, those curves whose Weierstrass equation is on the form

y2 = (x− a1)(x− a2)(x− a3) (A)
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where the ai are integers. We let g(x) = (x− a1)(x− a2)(x− a3).
For these curves one constructs an inclusion ψ : E(Q)/2E(Q)→ 3Q∗/Q∗2 and there

is a fairly good description of the image. The group Q∗/Q∗2 of rational numbers modulo
the squares is not finite, but one has a sufficiently firm grasp on the image of ψ to tell
that is finite. In a few simple cases, one can even give a complete description of the
image, and thus compute the rank of E.

The second part of the weak Mordell’s theorem is basically a replica (with some
tribulations) of the above procedure, not done over Q, but over the root field of g(x).

There are two ways of presenting this material. One using group cohomology and
the other relying on a few trivial computations. The cohomology way is scientifically
the best without doubt, but unnavigable when presenting this material in a few hours
for students lacking any cohomological background.

4.1.1 The group Q∗/Q∗2

Inside the multiplicative group Q∗ one has the (multiplicative) subgroup of squares (if
a and b are squares clearly ab is). The use of the quotient Q∗/Q∗2 of rational numbers
mod squares goes at least back to Kummer and appears in a part of algebraic number
theory that is called “Kummer theory”.

Any rational number n may be written as a product

n = sign(n)
∏
p

pεp(n)

where sign(n) ∈ µ2 denotes the sign of n, and where the product extends over all
primes p. The exponents εp are all integers, and of course only finitely many of them
are different from zero.

How do we detect that n is square? Well, it must be positive, i.e., sign(n) = 1 and
all the exponents εpn must be even, and these conditions are as well sufficient. This
means that the map

Q∗ → µ2 ⊕
⊕
p

Z/2Z

sending n to sign(n) in µ2 and to the mod 2 class of εp(n) in the Z/2Z-summand
corresponding to the prime p induces an isomorphism

Q∗/Q∗2 ' µ2 ⊕
⊕
p

Z/2Z

A convenient notation, conform with common usage, is to let < p > stand for the
subgroup of Q∗/Q∗2 generated by the prime p. This is just the direct factor isomorphic
Z/2Z corresponding to p.
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4.1.2 A criterion for two divisibility

We proceed under the standing assumptun that E is an elliptic curve over Q with all
two-torsion points being rational.

Pick a point (x0, y0) in E(Q), the aim in this paragtaph is to give a criterion for
when P is divisible by two. that is, when there exists a rational point (x1, y1) with
2(x1, y1) = (x0, y0). In geometric terms, this happens when tehre is a line through
(x0, y0) with rational slope that touches E in another rational point. The equation of
the line is y = mx + y0, and finding the intersection bestween the line and the cubic
amounts to solving the equation

(x− a1)(x− a2)(x− a3)− (mx+ y0)
2 = 0

hence if x0, x21 and x2 are the x-coordinates of the three intersection points, one has

(x− a1)(x− a2)(x− a3)− (mx+ y0)
2 = (x− x0)(x− x1)(x− x2) (E)

Assume the line is tangent touching in artional point. Then x1 = x2 is rational, and
putting x = ai in E gives

(x0 − ai) = (mx0 + y0)
2(x1 − ai)−2

Hence if (x0, yo0) is two-divisible, each (x0− ai) is a square in Q. It turns aout that
this also is a sufgicient condition:

Proposition . Assume that E is an elliptic curve over Q having three rational two-
torison points and with Weierstrass equation of the form (A). Then a point (x0, y0) ∈
E(Q) is two-divisible (in E(Q)) if and only if each (x0 − αi) is a square in Q.

Proof: We just need to argue for one of the implications. So assume that the (x0−ai)
all are squares in Q. Changing the x coordinate we may assume that x0 = 0. the
assumption then becomes that each −ai is a square in Q. So for i = 1, 2, 3, let αi be a
rational number with α2

i = −ai.
We want to determine a line through (x0, y0) tangent to E. The equation of a line

through (x0, y0) is y = mx+ y0. It will be convienint to write

(x− a1)(x− a2)(x− a3) = x3 + s1x2 + s2x+ s3

where (−1)isi is the i-th elementary symmetric function in the ai’s.
With a little elementary algebra, one brings equation (E) on the form

x2 + (s1 −m2)x+ (s2 − 2my0) = 0,
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and we want to determine a rational m such that this equation has a double root. The
condition for this is that the discriminant vanishes, that is

(s1 −m2)2 = 4(s2 − 2my0).

This is an equation of degree four, which is troublesom to solve, unless you happen
to know the solution. And we do! (Just look it up in textbook). Any combination of
the αi’s of the form m =

∑
i εiαi with the εi’s being ±1 with ε1ε2ε3 = −1 will do, for

example α1 + α2 − α3.
Indeed:

α2
1 + α22 + α2

3 − (α1 + α2 − α3)
2 = −2(α1α2 − α1α3 − α2α3)

Hence the left side is

4(α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3 −−2(α1 + α2 − α3)α1α2α3)

but this is just the right side! o

4.1.3 The definition of ψ

We now proceed to the definition of the homomorphism ψ. For each of the ai’s there
is a group homomorphism ψai . The salient point is that the map ψ = ψa1 × ψa2 × ψa3
defines an injection

ψ : E(Q)/2E(Q)→ Q∗/Q∗2 ×Q∗/Q∗2 ×Q∗/Q∗2.

Indeed, using only two of them will do. Here comes the definition of the ψai ’s. It is
convenient to let a denote one of ai’s and b and c the two others (this is often expressed
in the slightly more fancy way {a, b, c} = {a1, a2, a3}). We start by giving a map
ψ̃a : E(Q) → Q∗/Q∗2 that vanishes on 2E(Q) and hence descends to a map ψa on
E(Q)/2E(Q).

ψ̃a(P ) =


x− a if P = (x, y) and x 6= a

(a− b)(a− c) if x = a, that is P = (a, 0)

1 if P = O

where the expressions on the right side are understood as classes in Q∗/Q∗2. The basic
property of the ψa’s is the following:

Proposition . The maps ψ̃a are group homomorphisms that vanish on 2E(Q).

The second statement shows that ψ̃a descends to E(Q)/2E(Q) and gives us a group
homomorphism ψa as announced above.
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Proof: Firstly, the criterion for two-divisibility . immediately gives the vanishing in
the second statement. We do the first statement for ψ̃a1 . One has z = z−1 in the group
Q∗/Q∗2 since all squares are equal to one. Since P and −P have the same x-coordinate
(if P = O they are even equal), one has ψ̃(−P ) = ψ̃(P ) = ψ̃(P )−1. From this follows
that ψ̃(P − P ) = ψ̃(P )ψ̃(−P ) both being equal to 1.

We shall therefore be through once we have establisted that (x1−a1)(x2−a1)(x3−a1)
is a square in Q whenever the xi’s are the x-coordinates of the intersection points of E
with a non-vertical line. Let y = mx+ b be the equation of the line. The basic relation
is

(x− a1)(x− a2)(x− a3)− (mx+ b)2 = (x− x1)(x− x2)(x− x3) (E)

which determines the x-coordinates of the intersection points of the line and the cubic.
There are three cases to establish:
� None of the xi’s equals a1: Put x = a1 in the basic relation (E) above to get

(x1 − a1)(x2 − a1)(x3 − a1) = (ma1 + b)2 ∈ Q∗2

� One of the xi is equal to a1, say x1. The equation of the line then becomes m(x−a1),
and the relation above reduces to

(x− a2)(x− a3)−m(x− a1) = (x− x2)(x− x3).

Upon setting x = a1 this leads to

(a1 − a2)(a1 − a3) = (x2 − a1)(x3 − a1),

and therefore (
(a1 − a2)(a1 − a3)

)
(x2 − a1)(x3 − a1) ∈ Q∗2

� A possible third case would occur when two of the xi’s are equal to a1, but then the
line is vertical. o

The main tool in this paragraph is the map ψ : E(Q) → Q∗/Q∗2 ×Q∗/Q∗2 having
components ψ1 and ψ2. By proposition xxx is P = (x, y) is two-divisible x − ai is a
sqaure, and ψ takes the value one on 2E(Q). Therefore it factors thorugh the quotient
E(Q)/2E(Q) and induces a map ψ̃ : E(Q)/E(Q)→ Q∗/Q∗2 ×Q∗/Q∗2

Corollary . The map ψ̃ is an injective group homomorphism.

Proof: The only thing that is left to prove, is that ψ̃ is injective. If x− a1 and x− a2
both are squares, then x − a3 is a squarere as well, the product of the three being
y2. So if ψ̃(P ) = 1 and P 6= (a1, 0), (a2, 0) it follows from proposition xxx that P is
two-divisible. If say ỹ(a1, 0) = 1, then a1 − a2 is a square, and as (a1 − a2)(a1 − a3) is
a square as well,(a1 − a3) will be a square, and by xxx (a1, 0) is two divisible. o
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Description of the image

The next issue is the image of ψ̃. If P is a point of E, the components of ψ̃(P ) are
sign(x) and the residue classes of vp(x− ai) modulo 2 for 1 = 1, 2 and p a prime. The
point is as we shall see, that a the components of ψ̃(P ) only can be non-zero at primes
dividing the discriminant ∆ of E. This shows the finiteness of E(Q)/2E(Q) and for
very small discriminants makes it possible to compute the rank of E. Recall that the
discriminant is given as

∆ =
∏
i<j

(ai − aj)2.

Recall further that

ψ̃ : E(Q)/2E(Q)→ (Q∗/Q∗2)2 = µ2 ⊕ µ2 ⊕
⊕
p

Z/2Z⊕ Z/2Z (G)

Let P = (x, y) be a rational point of the curve E, which we recall has the Weierstrass
equation

y2 = (x− a1)(x− a2)(x− a3) (C)

where the ai are integers, and as usual, we let g(x) = (x− a1)(x− a2)(x− a3).

Lemma . If vp(x) < 0, then vp(x− ai) ≡ 0 mod 2

Proof: Since the ai’s by assumption are integers it holds that vp(ai) ≥. Hence vp(x) <
vp(ai) and

vp(x− ai) = min{vp(x), vp(ai)} = vp(x).

It follows from the Weierstrass equation (A) that 2vp(y) =
∑

i vp(xai) = 3vp(x). Hence
n = vp(y)/3 is an integer and vp(x− ai) = vp(x) = 2n. o

Lemma . If vp(x) ≥ 0 and vp(x− a1) ≡ 1 mod 2, then p|∆.

Proof: Since vp(ai) ≥ 0 it holds that vp(x−ai) ≥ min{vp(x), vp(ai)} ≥ 0. In particular
it follows that vp(x− a1) > 0. One has

∑
i

vp(x− ai) = 2vp(y),

so if vp(x− aj) = 0 for j = 2, 3 it follows that vp(x− a1) is even, which is not the case.
Hence vp(x−aj) > 0 for at least one j 6= 1. But then vp(a1−aj) = vp(x−aj−(x−a1)) >
0, and p|(a1 − aj), hence p divides the discriminant. o
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Proposition . Let ψ̃(P ) be a point in the image of ψ̃. Then if p is a prime not
dividing the discriminant of E, then the corresponding components of ψ̃(P ) in the
decomposition xxx vanish.

Proof: If x 6= a1 and x 6= a2 this is just the statements in the two lemmas above.
If e.g., x = a1, the image is the pair (a1 − a2, (a1 − a2)(a1 − a3)) mod squares. Since
vp(a1−a2) ≥ 0, the congruence vp(a1−a2) ≡ 1 mod 2 implies that vp(a1−a2) > 0, and
p divides the discriminant. In a similar fashion, if vp((a1 − a2)(a1 − a3)) ≡ 1 mod 2,
at least one the factors is divisible by p. o

Examples
Before we start on the examples, we make one general observation. The sign-component
of ψ(P ) is confined to the subgroup of µ3

2 isomorphic to µ2 consisting of the two elements
(+,−,−) and (+,+,+). This is generally true when the three roots are ordered so that

a1 < a2 < a3,

because then
x− a1 > x− a2 > x− a3

for all x. Indeed, since the product of the three is a square, necessarily x− a1 > 0, and
the sign-distribution for two smaller is either ++ or −−.
Example .. — y2 = x(x − 1)(x + 1). We take closer look at the curve E whose
equation is y2 = x(x− 1)(x+ 1), and we shall see that E(Q) ' Z/2Z⊕ Z/2Z, that is,
the only rational points E has are the obvious ones: O, (0, 0) and (±1, 0).

The discriminant of E equals 24, so 2 is the only bad prime, and the image of ψ
is confined to the subgroup µ3

2 ⊕ 〈 2 〉3 of Q∗/Q∗2 where only the sign-components and
the two-components are non-trivial.

Counting points in E(F3) one finds 4, since g(x) vanishes for all values of x ∈ F3.
Since E has good reduction at 3, there is an inclusion Etors(Q)⊆E(F3), and we conclude
that Etors(Q) = E2(Q) = (Z/2Z)2.

We proceed by computing the images of the three two-torsion points under the
map ψ = ψa1 × ψa2 × ψa3 . The result is shown in the table below where the i-th line
represents ψ((ai, 0)); the first column shows the values as in the definition before we
reduce mod Q∗2, the next three the ±-components and last three the 2-components.
The computation is trivial using the definition of ψa, which we for convenience recall:

ψa(P ) =


x− a if P = (x, y) and x 6= a

(a− b)(a− c) if x = a, that is P = (a, 0)

1 if P = O

where {a, b, c} = {a1, a2, a3}.
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a1 = −1 (2,−1,−2) + − − 1 0 1

a2 = 0 (1,−1,−1) + − − 0 0 0

a3 = 1 (2, 1, 2) + + + 1 0 1

The next thing to see is that the image ψ(P ) of any rational point of E appears among
those vectors listed in the table, thus showing that Imψ ' (Z/2Z)3, and consequently
that the rank is zero.

To that end pick a rational point P = (x, y) in E(Q) that is not two-torsion. If
v2(x) < 0, it follows from lemma . that v2(x − ai) ≡ 0 mod 2, and the point has
only trivial 2-components. Assume that v2(x) > 0. Then v2(x± 1) = 0, and it follows
that 2v2(y) =

∑
i v2(x− ai) = v2(x), so v2(x) ≡ 0 mod 2. The 2-components of ψ(P )

are therefore zero. In both these cases ψ(P ) is either 0 or equal to ψ((0, 0)).
The last case is v2(x) = 0. Then 2v2(y) = v2(x+ 1) + v2(x− 1), and v2(x+ 1) and

v2(x− 1) are of the same parity. After the remark about the sign-distributions, which
must be + + + or +−−, ψ((x, 0)) is either trivial or among the listed vectors. e

Example .. — y2 = x(x + 2)(x− 2). This time we examination the curve E with
equation y2 = x(x + 2)(x − 2), which is slightly more delicate than the previous one.
The discriminant in this case is 26, so the only place where E has bad reduction is at
the prime 2. As in the previous example we construct the table showing the images of
the two-torsion points under ψ. Subsequently we shall use the map ψa1 × ψa2 , and the
projection onto the corresponding factor Z/2Z ⊕ Z/2Z is coulored dark green in the
table.

a1 = −2 (8,−2,−4) + − − 1 1 0

a2 = 0 (2,−4,−2) + − − 1 0 1

a3 = 2 (4, 2, 8) + + + 0 1 1

The trick is to add a combination of two-torsion points to the point P to obtain a
new rational point P ′ whose two-components corresponding to ψa1 and ψa2 vanish (the
“darker green” ones). To complete our task, we must see that this vanishing of two-
components implies that ψ(P ′) itself vanish, i.e., that the sign distribution is + + +.
A counter example would be a point such that there are rationals a, b and c with

x+ 2 = a2 x = −b2 x− 2 = −c2.

� Assume v2(x) > 1. Then 2v2(a) = v2(x+2) = min{v2(x), 1} = 1 which is impossibel,
so v2(x) ≤ 1. But v2(x) being twice, v2(a) one has v2(x) ≤ 0.
� Assume that v2(x) = 0. Then 2v2(c) = min{v2(x), 1} = 0, and of course v2(b) = 0
as well. Hence we have the relation 2 = c2 − b2 with v2(c) = v2(b) = 0. Reducing mod
8 we arrive at contradiction, since the only invertible square in Z/8Z is 1(the non-zero
squares are (±1)2 = 1, (±2)2 = 4 and (±3)2 = 1)
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� Hence v2(x) < 0, and it follows that v2(a) = v2(b) = v2(c) = ν < 0. Clearing powers
of two from the denominators, we arrive at the relations

22νx+ 22ν+1 = α2 22νx = −β2 22νx− 22ν+1 = γ2,

where now the numerators and denominators of α, β and γ are free from powers of
two. Hence we get the equation α2 ≡ −β2 mod 8 with v2(α) = v2(β) = 0. Impossible.

A final remark about this example. Eleminating x from the three equations above
and introducing a new variable d to make them homogenous, we arrive at the two
quadratic equations

a2 + b2 − 2d2 = 0 c2 − b2 − 2d2 = 0.

This is the intersection of two quadrics in P3 (with coordinates a, b, c and d). Such
intersections are genus one curves, if they are smooth! And what we just have done,
is to see that this curve does not have any rational point. (Hence it is not elliptic).
One may show that it is isomorphich to our original curve over C, but not over Q
of course. Over Q it is another manifestation of E ; such “shadow curves” are often
called “torsors”. This phenomenon is notorious when one tries to analyse the image of
ψ. That leads to a bunch of new genus one curves for which one has to decide if they
have rational points or not! e

As the final example we shall prove the proposition below about the curves from
the family y2 = x(x2 − p2) where p is an odd prime. The discriminant is 22p6, so the
only places where the curve has bad reduction are the primes 2 and p. The rank is
computed only in case it is zero, else the proposition merely gives an upper bound for
the rank.

Proposition . Let E be the elliptic curve y2 = x(x − p)(x + p). If r denotes the
rank of E, one has

� r ≤ 2 if p ≡ 1 mod 8

� r = 0 if p ≡ 3 mod 8

� r ≤ 1 if p ≡ 5 or 7 mod 8

Before we start the proof we remark that the discriminant of E equals 22p6 so the only
bad places are 2 and p. Except for p = 3 the curve E has good reduction at the prime
3, and the equation reduces to y2 = x(x− 1)(x+ 1) mod 3. It follows that #E(F3) = 4
and since Etors(Q) maps injectively into E(F3) one has Etors(Q) = Z/2Z ⊕ Z/2Z. If
p = 3 one has #E(F3) = 4 as well, and Etors(Q) = Z/2Z⊕ Z/2Z even in that case.
Proof of proposition .: The beginning of the computation is a tabulation of the
images of the two-torsion points. Here it comes:
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a1 = −p (2p2,−p,−2p) + − − 1 0 1 0 1 1

a2 = 0 (p,−p2,−p) + − − 0 0 0 1 0 1

a3 = p (2p, p, 2p2) + + + 1 0 1 1 1 0

where the p-components are coloured light green and the two-components not so light
green. To ease reading (and writing!) let H ' µ3

2 × (Z/2Z)3 denote the subgroup of
(Q∗/Q∗2)3 consisting of the elements all whose components are trivial but the sign-
and the 2-components.

Again, one whishes to apply the trick from the previous example applies and change
the point P by a combination of two-torsion points so that ψ(P ) has no p-component,
but for this to work, one must be sure that any p-component lies in the space generated
by the p-components of the two-torsion points (the light green rows to the right in the
table) and as theses are linearly dependent an argument is needed.

If vp(x) < 0, all p-components vanish by lemma ., and the argument given there
applies to the case vp(x) = 0 as well. If vp(x) ≥ 2, one has vp(x± p) = 1. Hence vp(x)
is even, and the vector is (0, 1, 1). If vp(x) = 1, one checks that vp(x + p) + vp(x − p)
is odd, so vp(x+ p) and vp(x− p) are of opposite parities. The vectors are (1, 0, 1) and
(1, 1, 0).

These modified values of ψ form a set of representatives for the quotient Imψ/H ∩
Imψ, so the number of them being independent will equal the rank of E. Except for
the zero vector there are exactly three possible such vectors:

x x+ p x− p x x+ p x− p
+ − − 0 0 0

+ + + 0 1 1

+ − − 0 1 1

This is easy to figure out using the three following properties:
� The sign configuration is either + + + or −−−.
� v2(x) = 0. Indeed, if v2(x) < 0, one has v2(x − ai) ≡ 0 mod 2 and ψ(P ) ∈ H. If
v2(x) > 0, one finds v2(x±p) = v2(x) and using the Weierstrass equation one sees that
v2(x) is even. Again all non-sign components vanish and ψ(P ) ∈ H.
� v2(x+p) ≡ v2(x−p) mod 2. Indeed, since v2(x) = 0, the Weierstrass equation gives
that v2(x+ p) + v2(x− p) is even, and hence the two have the same parity.

The relations in the table above are relations modulo Q∗2. Lifting to equalities in
Q∗ one arrives at three sets of equations the quantities x+ p, x and x− p satisfy. They
are listed in the next table, where a, b, c ∈ Q∗.

x+ p x x− p
1 a2 −b2 − c2

2 2a2 b2 2c2

3 2a2 −b2 −2c2

— 11 —
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These conditions may be expressed in a common form as

x+ p = εa2 x2 = ηb2 x− p = κc2

where ε, η and κ stands for appropriate number among ±2 and ±1 as in the table
above. As a side remark, eliminating x, one finds the two quadratic equations

εa2 − ηb2 = p ηb2 − κc2 = −p

that cut out the three shadow curves of this case.
The next step is to eliminate powers of p from the denominators of a, b and c. Now
vp(x + p) is even, so vp(x) ≤ 1, hence vp(x) ≤ 0 being even. It follows that vp(x) =
vp(x ± p) ≤ 0, and consequently that vp(a) = vp(b) = vp(c) = ν ≤ 0. Clearing powers
of p from the denominators, one finds the three equations:

p2νx+ p2v+1 = εα2 p2νx = ηβ2 p2νx− p2ν+1 = κγ2 (7)

Reducing these equations modulo p one finds

εα2 ≡ ηβ2 ≡ κγ2 (77)

From here we proceed case by case:
� Assume that the vector number one survives. In this case the values of ε and η are
ε = 1 and η = −1. Hence α2 ≡ −β2 mod p, so −1 has a square root mod p, and it
follows that p ≡ 1 mod 4, or p ≡ 1 or 5 mod 8.
� Assume that the vector number two survives. Then 2α2 = β2, so 2 has a square root
mot p. This occurs if and only if p ≡ ±1 mod 8.
� Assume that the vector number three survives. Then ε = 2 and η = κ = −1, and the
equations become −2α2 = β2 and −β2 = −2γ2 so both −2 and 2 have square roots. It
follows that p ≡ 1 or 3 mod 8 and p ≡ ±1 mod 8, that is p ≡ 1 mod 8.

Summing up, we see that if p ≡ 3 mod 8, none of vectors survive and the the rank
is zero. If p ≡ 3 or 5 mod 8, one of them possibly survives, and the rank is at most
one. In the last case when p ≡ 1 mod 8, all three vectors can survive, but as they
dependent, the rank of E is bounded by two. o

Example .. — The cases p = 5 and p = 13. If p = 5 one finds with a little
thought and a short search the rational point (−4, 6) on E. This is not a torsion point
since there is only two-torsion. Hence one has E(Q) = Z⊕ Z/2Z⊕ Z/2Z with (−4, 6)
as a generator for an infinite subgroup (what are the others?).

The next prime p that is congruent 5 mod 8 is p = 13. One finds in that case the
rational point (6

2

52
, 6·17·19

53
) (may be with some deeper thought and some more work, but

once the point is given, it is trivial to check). So in that case one also has E(Q) =
Z⊕ Z/2Z⊕ Z/2Z. e

— 12 —
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The congruent number problem

An old problem with deep roots in the antiquity concerns areas of right angled triangles.
Which whole numbers n can be the area of a right angled triangle all of whose sides
are rational? That is, which numbers n are of the form n = ab/2 for rational numbers
a and b such that a2 + b2 = c2 with c rational? Keith Conrad ([2]) has written a nice
introductuon to this circle of ideas. The following exercise links the problem of the
congruent numbers to the problem of determining the rank of certain elliptic curves
like the ones we just studied:
Problem .. Let the elliptic curve E be given by

y2 = x3 − n2x

where n is a natural number.
a) Assume that n is congruent with a, b and c as above. Set x = n(a + c)/b and
y = 2n2(a+ c)/b2. Show that (x, y) is a point on E.
b) If (x, y) is a rational point on E wich is two-torsion (i.e., y 6= 0) show that n is
congruent. Hint: a = (x2 − n2)/y , b = 2nx/y and c = (x2 + n2)/y.

X

The to first example in this paragraph that n = 1, which in fact goes back to
Fermat, and n = 2 are not congruent. The congruent number problem is still partly
open despite the effort of several of the cleverest mathematicians. The conjecture is
that n should be congruent if it lies in one of the congruence classes 5, 6 or 7 modulo
8. If n = p is a prime, we are in the third case of the proposition ., and the prime
case solved completely, the first one to claim a solution was the german mathematician
Kurt Heegner, but it was unclear whether it was proved or not. Paul Monsky settled
the prime cases in 1990, unnecessary to say, with very advanced techniques.

In our context we can thus formulate as a complement to proposition . the
following proposition:

Proposition . Let p be a prime such that p ≡ 5 or 7 mod 8, and let E be the
ellitiptic curve

y2 = x3 − p2x.
Then E(Q) ' Z⊕ Z/2Z⊕ Z/2Z.

The arithemtic of ellitiptic curves is filled with awfully big numbes, so also here.
As an (modest) illustration is the case p = 53, which is a congruent number after the
proposition. The right angled triangle with sides a = 18731803252 − 11583131562 and
b = 2 · 1873180325 · 1158313156 has area 53 · 2978556542849787902!
Problem .. Show that the triangle with sides 20/3, 3/2 and 41/6 is right angled
and has area 5. X

Problem .. Use the rational point in example . above to find a right angled
triangle with rational sides and area 13. X
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