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This part is devoted to the proof of a famous theorem of Hasse’s about the number
of points on elliptic curve that are rational over a finite field. So the setting is that E
is an elliptic curve defined over the finite field Fq where q = pr is a prime power—for
simplicity, you may well assume that q = p. The question is:

Can you say something reasonable of the number #E(Fq)?
And, indeed one can, and there is a very suggestive heuristics about it. Let y2 = g(x)
be the Weierstrass equation of the curve (so the coefficients are in Fq). Half of the
elements in Fq are squares, but each one has two square roots (except 0) so there are
exactly q point of the form (y2, x). Assuming that the polynomial g(x) behaves well,
that is the distribution among the x-values such that g(x) has a square root or not
is about 50 − 50, one should suspect that there are about q + 1 points in #E(FQ)
(the 1 comes from the point at infinity). Hasse’s theorem states that is in fact a good
guess, the discrepancy between #E(Fq) and q+ 1 is no more than 2

√
q. If q is big, the

approximation is good. For example if q is of the order 106, which finally is not very
big, the relative error is of the order one in thousand.

Theorem . Let q = pr be a prime power and let E be an elliptic curve over the field
Fq. Then

|q + 1−#E(Fq)| ≤ 2
√
q.
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Example .. This example is about the elliptic curve y2 = x3 + x + 1 over finite
fields F101 with powers of p = 101. We have computed the number Nq = #E(Fq) of
rational points over Fq for the nine first successive powers 101n of the prime 101 (and
for q = 101300 just to be convincing). Nowadays such computations are done in second
using computer systems like e.g., SAGE. One sees in column three that the fraction
between the true error term αq = q + 1 − Nq and the estimate 2

√
q stays relatively

close to one, but that the relative error (column four) tends rapidly to zero.

n Nq (q + 1−Nq)/2
√
q 2

√
q/Nq

1 90 0.597022 0.223 330 569 35
2 10260 -0.287128 0.019 688 109 16
3 1032210 -0.939866 0.001 966 726 61
4 104077440 -0.835114 0.000 196 027 11
5 10510112250 -0.057296 0.000 019 508 59
6 1061518570740 0.76669 0.000 000 194 11
7 107213515065810 0.766699 0.000 000 019 31
8 10828566974108160 0.972769 0.000 000 001 92
9 1093685273732923290 0.394831 0.000 000 000 19

...

...
300 197884662619. . . . . . . . . 0.955896 0.000 000 000 00

e

Problem .. Show that there is an exact sequence of multiplicative groups:

1 // µ2
// F∗q // F∗q // µ2

// 1

Conclude that exactly half the members of F∗q are squares. Show that −1 has a square
root if and only if q ≡ 1 mod 4. Conclude that −1 has a square root in Fp2 for all odd
primes p. X

Problem .. Show that if q 6≡ 1 mod n, then every element of Fq has a unique n-th
root. X

The proof of Hasse’s theorem is rather easy once one has the full theory of isogenies,
or at least significant part of it, at ones disposal, so the exposition starts with that. At
the end comes the proof of Hasse’s theorem, and it is so simple one might feel it as an
anticlimax.
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5.1 Isogenies
Let E and E ′ be two elliptic curves over the field k. They are both abelian groups
having neutral elements O and O′ respectively. Recall that an isogeny between them
is a regular map φ : E → E ′ that respects the neutral elements, i.e., φ(O) = O′. It is a
fact, slightly astonishing however, that such a regular map φ automatically is a group
homomorphism.

Over the complex numbers this is rooted in the curves having C as their universal
covering spaces. They are represented as quotient C/Λ and C/Λ′ with lattices Λ and
Λ′ both as Riemann surfaces and abelian groups, and the map φ lifts to analytic map
C that one shows is the multiplication by a complex number and hence additive. But
as already announced, the result holds generally true:

Proposition . Assume that E and E ′ are elliptic curves over the field k and that
φ : E → E ′ is an isogeny defined over k. Then φ is a group homomorphism; that is,
φ(P +Q) = φ(P ) + φ(Q) for all points P,Q ∈ E.

Proof: We use the identification of the group E(k) with the group Div0E of divisors of
degree 0 on E. This goes via the assignment P 7→ D = P −O. Now, the map φ induces
a map φ∗ : Div0E → Div0E ′ by sending a divisor D =

∑
P nPP to φ∗D =

∑
nPφ(P ).

This is a group homomorphism, and as φ(O) = O′, one has φ(P − O) = φ(P ) − O′.
The following diagram, where the horizontal maps are group isomorphisms, therefore
commutes, and we are done:

E(k) ' //

φ

��

Div0E

φ∗
��

E ′(k) '
// Div0E ′

o

The set isogenies from E to E ′ will be denoted by Hom(E,E ′). As for any abelian
groups, it is an abelian group under the usual addition defined by (φ+ψ)(x) = φ(x) +
ψ(x). In case E ′ = E, one writes End(E) for Hom(E,E), and its elements are called
endomorphisms of E. Composition gives End(E) a ring structure.

Problem .. Assume that E is an elliptic curve over C. Show that End(E) is a
subring of C containing Z, and hence commutative. From this originate the notion
that E has complex multiplication if End(E) 6= Z. X

Problem .. Let E be the complex elliptic curve given by Λ = Z⊕ Zi = Z[i]. Show
that E has complex multiplication. Show that End(E) = Z[i]. X

Problem .. Let ρ = exp 2πi/3. Show that the elliptic curve given by the lattice
Λ = Z⊕ Zρ has complex multiplication. What is End(E)? X
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Problem .. Assume k to be a field of characteristic different from 2. Assume that
there is an element i ∈ k such that i2 = −1. Let E the curve given by y2 = x3 + ax
where a ∈ k is non-zero. Show that E has an endomorphism ι such that ι2 = −idE
(the − is the − in the elliptic curve, so −idE(x, y) = (x,−y)). Hint: Use the map
(x, y)→ (−x, iy). X

Problem .. Assume k to be a field of characteristic different from 2 and 3. Assume
that there is an element ρ ∈ k such that ρ3 = 1. Let E the curve given by y2 = x3 + a
where a ∈ k is non-zero. Show that E has an endomorphism r such that r3 = idE.
Hint: Use the map (x, y)→ (ρx, y). X

The degree os a regular map It is a deep and fundamental theorem in algebraic
geometry that any non-constant map φ : C → C ′ between to complete curves C and
C ′ is finite—in fact, it holds for maps between two complete varieties of the same
dimension. This means that for any open U ⊆C ′ with ring of regular functions A, the
ring of regular functions B on φ−1U is a finite extension of A.

In particular the extensionK(C ′)⊆K(C) is finite, and its degree is called the degree
of φ and is denoted by deg φ. For a constant map one declares the degree to be zero.

Suppose we are given another non-constant map ψ composable with φ, say ψ : C ′ →
C ′′. The three function fields constitute a tower of fields

K(C ′′)⊆K(C ′)⊆K(C),

and as the degrees of field extensions behave multiplicatively in tower, one has, after
remarking that any composition with a constant map is constant, the following lemma:

DegMultiplikativ

Lemma . Assume that φ and ψ are composable maps between complete curves. Then

deg φ ◦ ψ = deg φ degψ.

The field extension K(C ′)⊆K(C) may be split into the tower K(C ′)⊆K ⊆K(C)
where K(C ′)⊆K is the separable closure of K(C ′) in K(C). One shows that the
composite of two separable field extensions is separable, so there is a largest separable
extension, and this is the separable closure. Hence K ⊆K(C) is purely inseparable, no
element in K(C) is separable over K.

Any regular map φ may be written as a composition φ = φsφi with φs separable
and φi purely inseparable, and the degree can correspondingly be factored as deg φ =
deg φs deg φi.

The degree has another more geometric interpretation, at least in the case φ is
separable. Then general theory tells us that the degree is equal to the number of
elements in a generic fibre. Ramification points can of course occur, but they are finite
in number and away from those, the fibres contain exactly deg φ points. To be precise,
there is a non-empty open subset U ⊆C ′ such that all the fibres φ−1(x) with x ∈ U
has exactly deg φ points.

In the case of elliptic curves a translation trick allows us to say more. We have
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Lemma . Assume that φ : E ′ → E is a separable isogeny between the two elliptic
curves E and E ′. For any point P ∈ E, the number of points in the fibre φ−1(P ) is
equal to the degree deg φ. In particular the degree is equal to the order of Kerφ.

Proof: This follows from the commutative diagram

E ′
τP ′ //

φ
��

E ′

φ
��

E
τP // E

where P ′ ∈ E ′ is a point with φ(P ′) = P , and τP are the translation maps. The diagram
commutes since φ being a group homomorphism, one has φ(P ′ + x) = φ(P ′) + φ(x) =
P + φ(x). The translation map τP sends O to P and τP ′ therefore induces a bijection
between Kerφ = φ−1(O) and the fibre φ−1(P ). For a generic point P in E, general
theory tells us that the fibre has exactly deg φ points. o

Example .. — Multiplication by m. Let m ∈ Z be an integer. As E is a group,
we have the multiplication-by-m map [m] : E → E with [m]P = P , which plays a
particular important role. Clearly [m] is an isogeny, an the assignment m → [m] is a
ring homomorphism Z→ End(E). Indeed, is obvious that one has nmP = n(mP ) and
(n+m)P = nP +mP so it behaves well with respect to the algebraic operations. It is
slightly more subtle that the map is injective, i.e., that [m] is never constant:

Lemma . For any m ∈ Z, the multiplication-by-m map [m] is not the zero map.

Proof: From general principles it follows that the derivative of [m] at O is multipli-
cation by m in the tangent space TOE. Hence the derivative of [m] is not zero and [m]
is not constant at least as long as the characteristic p of k does not divide m.

In the process of bringing every elliptic curve on Weierstrass form, we checked
that over an algebraically closed field there is exactly four two-torsion points if the
characteristic is not 2, and in that case there are at most one. Anyhow, as E(k) has
infinitely many points, not all can be two-torsion, and the multiplication-by-two map
[2] is not constant. The composition of surjective maps is surjective and therefore
[2r] = [2]r is not constant whatever the natural number r is, so we are done if the
characteristic is 2 by factoring m = 2rn with n odd.

Assume that [p] = O and that p 6= 2. Then [−1] = [p − 1] = [2r] for some r that
obviously does not have p as a factor, and we get the contradiction 1 = deg[−1] =
deg[2] deg[r] = 4 deg[r] > 1. Hence [p] is not constant neither is [pr], and therefore by
factoring m as m = prn with (p, n) = 1 we are through. o

e
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Example ..—The Frobenius endomorphism. The Frobenius map is ubiquitous
in number theory, it is indispensable when you want to count points on a variety rational
over a finite field. It plays the leading role in the xxxx.

Let p be a prime and let k be a field of characteristic p. For example k can be one
of the finite fields Fq with q = pr elements or their algebraic closure F. The function
field K(E) of an elliptic curve defined over F is another example we shall meet.

Recall that the map θ : k → k rising an element to the p-th power— that is θ(a) =
ap—is a ring homomorphism. To precise, the field k should be visible in the notation
and one should write θk, but we systematically break that rule since the field is almost
always clear from the context.

It is no miracle that θ is multiplicative, but its additivity is more subtle and is due
to the vanishing of the binomial coefficients

(
n
p

)
. The map θ is named after the great

german mathematician Ferdinand Georg Frobenius who lived from 1849 to 1917. In
Galois theory there is also a number of automorphisms of number fields bearing his
name. They are all lifts of the maps in characteristic p we described above.

Fermat’s little theorem tells us that if a ∈ Fp, then θ(a) = a. The converse is true
as well since the equation xp−x has at most p solutions. Similarly, the fixed field of the
iterated Frobenius map θr, is the field Fq with q = pr, elements. Indeed, the equation
xq − x is separable (the derivative is −1) and has therefore exactly q roots.

Problem .. Show that any two fields with q = pr elements are isomorphic extensions
of Fp. Hint: They are both root fields of xq − x. X

After this small excursion to the finite fields, we rush back to our main objects of
study. Let E an elliptic curve over an algebraically closed field k of characteristic p,
the basic example being F. Assume that E is given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 = g(x).

where we have used the extended version to include the cases p = 2 and p = 3.
Replacing every coefficient in the Weierstrass equation by its q-th power, we obtain a
new elliptic curve E(p) with equation

y2 + ap1xy + ap3y = x3 + ap2x
2 + ap4x+ ap6.

The discriminant of E(p) is the p-th power of the one of E, so E(p) is smooth. The
Frobenius map induces an isogeny θE : E → E(p) that sends a point (x, y) of E to
(xp, yp), and the point at infinity of course goes to the point at infinity. This isogeny is
called the Frobenius isogeny .

FrobSep
Lemma . The Frobenius map θE : E → E(p) is purely inseparable and of degree p.

Proof: Let x and y be Weierstrass coordinates on E. First assume that p 6= 2. Then
x and y satisfy a Weierstrass equation y2 = g(x), and the extension of function fields
corresponding to the Frobenius map θE is k(xp, yp)⊆ k(x, y). Now p is odd so we may
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write p = 2r + 1. Hence y = ypy−2r = ypg(x)−2r. This shows that k(x, y) = k(x, yp),
and that the extension k(xp, yp)⊆ k(x, y) is generated by x, whose minimal equation
is T p − xp.

In case p = 2, either a1 or a3 is non-zero since E is smooth. So one has y =
(g(x) − y2)(a1x + a3)

−1 and k(x, y) = k(x, y2). Again, k(x, y) is generated by x over
k(x2, y2), and the minimal equation is T 2 − x2. o

One may iterate the Frobenius construction and for every power q = pr arrive at a
curve E(q) and regular map θrE : E → E(q). From lemma . above, by an immediate
induction, follows that θrE is purely inseparable of degree q.

There is a converse to lemma .:
FactorSepFrob

Lemma . Assume that φ : E → E ′ is purely inseparable isogeny of degree q = pr.
Then up to an isomorphism of E ′ one has φ = θrE. Hence any isogeny φ : E → E ′

factors as φ = φsθ
r
E where φs is separable.

Proof: The first remark is that k(xq, yq) = { aq | a ∈ k(x, y) } since the base field k is
perfect (any of its elements is a q-power). Since k(x, y) is purely inseparable of degree
q over K(E ′), both xq and yq lie in k(E ′) (they satisfy equations of type T pr

′−a with
a ∈ K(E ′) and r′ ≤ r) and k(xq, yq)⊆K(E ′). But we just saw that k(x, y) is of degree
q over k(xq, yq), hence k(xq, yq) = K(E ′). o

If the elliptic curve E is defined over the prime field Fp, we may find a Weierstrass
equation all whose coefficients belong to Fp. The curves E and E(p) then coincide since
api = ai, and the Frobenius becomes an endomorphism of E. The same goes with the
powers θr whenever E is defined over the field Fq with q = pr elements; indeed, in that
case θr(ai) = aqi = ai.

The following result is fundamental when it comes to counting the number of points
in E(Fq):
Lemma . Assume that the elliptic curve E is defined over Fq where q = pr. The
isogeny 1− θrE is separable, and one has

E(Fq) = Ker(1− θrE).

Hence #E(Fq) = deg(1− θrE).

Proof: The derivative of 1−θrE is the identity, since DOθE = 0, and 1−θr is separable.
The coordinates P = (x, y) of a point in E(F) lie in E(Fq) if and only if xq = x and
yq = y, that is if and only if θE(x, y) = (x, y), i.e., (θE − 1)P = O. o

The Frobenius construction is functorial in the sense that if φ : E → F is an isogeny,
there is a unique isogeny φ(q) : E(q) → F (q) making the following diagram commutative:

E
φ

//

θrE
��

F

θrF
��

E(q)

φ(q)
// F (q)

(N)
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Indeed, one may express the Weierstrass coordinates x′ and y′ of F in terms of those
FrobIsog

on E as x′ = Φ1(x, y) and y′ = Φ2(x, y) where each Φi is a rational function with coef-
ficients in k. Let Φ

(q)
i denote the rational function obtained by rising all the coefficients

of Φi to the q-th power, and let φ(q) be the map whose components are the Φ
(q)
i .

We claim that φq takes points of E(q) into points of F (q). Indeed, if (x, y) ∈ Eq one
may write x = xq1 and y = yq1 with x1, y1 ∈ k. (k algebraically closed). Then the Wei-
erstrass relation Φ2(x1, y1)

2 = g(Φ1(x1, y1)) implies that Φ
(q)
1 (x, y)2 = g(q)(Φ

(q)
2 (x, y))

where g(q) is the polynomial g with all coefficients risen to the q-power.
From the diagram (N) we arrive at

(1− θrF )φ = φ(q)(1− θrE).

Taking degrees and cancelling deg φ one sees that deg (1− θrF ) = deg(1− θrE). Hence

Proposition . Assume that E and F are isogenous elliptic curves over F. Then for
every q they have the same number of rational points over Fq; i.e., #E(Fq) = #F (Fq)

e

5.1.1 The formation of quotients

Assume that G⊆E is a finite group. Just as in the theory of groups, one wants to have
the quotient E/G. It certainly exists as an abelian group, but we want as an elliptic
curve and we want the quotient map to be regular. And all these wishes are fulfilled:

EksistesKvotient
Proposition . Let E be an elliptic curve over k, and let G⊆E(k) be a finite group.
Then there is an elliptic curve E/G with origin O′ = π(O), and a separable isogeny

π : E → E/G

with Ker π = G. One has deg π = |G|. This construction is unique in the sense that if
φ : E → E ′ is an isogeny with Kerφ = G, then there is an isomorphism α : E/G ' E ′

such that απ = φ.

Proof: The subgroup G acts on E by the translations τg, given as τg(P ) = P + g.
These maps are regular and the action of G on E therefore induces an action of G on
the function field K(E). Let K = K(E)G be the fixed field. Galois theory tells us that
K(E) is an extension of K that is separable and finite of degree |G|.

By general theory there is a smooth and projective curve—that we denote by E/G—
and a separable, regular map π : E → E/G of degree |G| such that π∗ identifiesK(E/G)
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with the subfield K of K(E). As G acts trivially on K, one has πτg = π, that is, one
has commutative diagrams

E
τg

//

π
!!

E

π
}}

E/G

The most salient point of the proof, is to show that E/G is of genus one. This will
follow once we show that the map π is unramified. Indeed, if P ∈ E/G, then the fibre
π−1(P ) contains the set A = {P +g | g ∈ G } since πτg = π. Now surely P +g = P +g′

implies that g = g′, so the set A has exactly |G| elements in it, one for each g ∈ G.
It follows that the fibre equals A, and we can conclude that all fibres consist of deg π
different elements—which is equivalent to π being unramified.

Letting π(O) be the origin in E/G, it becomes an elliptic curve and π an isogeny.
Finally, one easily checks that Kerφ = G using πτg = π once more.

Since Kerφ = G, the map φ identifies K(E ′) as a subfield of K(E)G, and the
[K(E) : φ∗K(E ′)] = deg φ = |Ker|φ = |G| = [K(E) : K(E)G], it follows that K(E ′) =
K(E)G = K(E/G) and the statement about uniqueness follows. o

5.1.2 The dual isogeny

The principal tool in the proof of the Hasse theorem is a quadratic form on the group
End(E). This form is best defined in terms of what is called dual isogenies. To every
isogeny E → E ′ we are going to construct another one φ̂ that goes the other way—i.e.,
φ̂ : E ′ → E—called the dual isogeny . The defining property of φ̂ will be φ̂◦φ = [deg φ].

In other part of mathematics one often has a quadratic form or scalar product
of some sort, and then defines “dual maps” , like for example transposed matrices or
adjoint linear maps. But here it is convenient to do it the other way around: First
construct the dual objects and subsequently extract the scalar product from them !

Proposition . Given an isogeny φ : E → E ′ of degree deg φ. Then there exists a
unique isogeny φ̂ : E ′ → E with φ̂ ◦ φ = [deg φ]

Proof: One easily checks that if φ has the dual φ̂ and ψ has the dual ψ̂, then ψ̂φ̂ is
the dual of φψ. Hence once we have constructed the dual of any separable isogeny and
of the Frobenius θ, we are done, by lemma ..

Assume first that φ is separable, and to ease notation, put m = deg φ. The kernel
Kerφ has m elements and is consequently annihilated by m. Hence Kerφ⊆Em =
Ker[m]. Let G⊆E ′ be the subgroup Em/Kerφ = φ(Em). This is clearly a finite group,
and we may form the quotient E ′′ = E ′/G, denoting the quotient map by φ̂. There is
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the commutative the diagram, where c = φ̂φ:

E
φ

!!

c

��

E ′

φ̂}}

E ′′

Now, the kernel of the composition c is Em = Ker[m], and after the uniqueness state-
ment in proposition . on page 8 one has E ′′ = E and c = [m] up to isomorphism ( if
necessary, change φ̂ by an automorphism).

In the case of the Frobenius θ , which is of degree p, we start with factoring the
multiplication-by-p map [p] as a composition of a separable isogeny α and a power
of the Frobenius; i.e., [p] = αθr. This can be done according to lemma ., and the
exponent r is greater than one since [p] is inseparable. Then α̂θr−1 will do as the dual
θ̂, since we obviously have α̂θr−1θ = [p].

The isogeny φ̂ is unique: If ψφ = φ̂φ = [m], then (ψ − φ̂)φ = 0, but φ being
surjective, this implies that ψ − φ̂ = 0. o

The isogeny φ̂ is called the dual isogeny of φ. In the case E ′ = E, the dual φ̂
maps E to E as well, and φ̂ ∈ End(E). The “hat” therefore is an involution on the ring
End(E). It is called the Rosati involution after the italian mathematician Carlo Rosati.
The formal definition of an involution is that it should be a ring homomorphism whose
square is the identity, and in the next proposition we verify this among several other
properties of the dual isogeny.

DuaslProperts
Proposition . Let φ and ψ be isogenies that either can be composed or added (accor-
ding to the different requirement of the statements). One has

� ̂(ψ + φ) = ψ̂ + φ̂

� φ̂φ = φφ̂ = [deg φ]

� (̂φψ) = ψ̂φ̂

� [̂m] = [m] and deg[m] = m2

� deg φ̂ = deg φ and ˆ̂φ = φ

Proof: The only substantial statement is the first statement about the additivity of
the “hat”, the rest follows formally from this. Normally the additivity is proved in the
more general context of abelian varieties, and the proof relies on two results respectively
called the theorem of the square and the theorem of the cube. There are proofs in our
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context, but to our taste they are gnarled and not very enlightening, so we refrain from
giving one and shall only do the (easy) formalities

So we start with the second statement. The isogeny φ being a group homomorphism,
it commutes with any multiplication map [m]; hence one has

φφ̂φ = φ[deg φ] = [deg φ]φ.

Since φ is surjective, it can be cancelled from the right, and we arrive at φφ̂ = [deg φ].
The second now follows as

φ̂ψ̂ψφ = φ̂[degψ]φ = [degψ]φ̂φ = [degψ][deg φ] = [degψφ]

The forth is an easy induction on m. By the additivity and induction we have

̂[m+ 1] = [̂m] + [̂1] = [m] + [1] = [m+ 1].

The statement about deg[m] follows by induction as well, via the following elementary
calculation:

̂[m+ 1][m+ 1] = [m+ 1][m+ 1] = ([m] + [1])([m] + [1]) = [m][m] + 2[m] + [1]

= [deg[m] + 2m+ 1] = [m2 + 2m+ 1] = [(m+ 1)2].

That deg φ̂ = deg φ is now clear, indeed

deg φ̂φ = deg φ̂ deg φ = deg[deg φ] = (deg φ)2

o

Proposition . Let k be algebraically closed. Assume that m is prime to characteri-
stic of k and that E is an elliptic curve over k. Then Em(k) ' (Z/mZ)2.

Proof: We know that for any divisor n of m the multiplication-by-n map [n] is sepa-
rable and of degree n2. Hence |Ker[n]| = |En(k)| = n2. Indeed, this follows since if l is
a prime factor in m, the l-primary part of Em(k) is a direct sum

⊕
Z/liZ with say s

summands, so on one hand El(k) is of order ls but on the other El(k) of order l2, so
s = 2. o

The quadratic form on End(E)

In general, let A be an abelian group and let q : A→ Z be a function. We say say q is
a quadratic function

� q(−a) = q(a) for all a ∈ A

� The form 〈 a, b 〉 = q(a+ b)− q(a)− q(b) is bilinear.

— 11 —
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The last request mimics the so called “polarization formula” for a scalar product, in its
simplest form it is just the identity 2xy = (x+ y)2− x2− y2. In the setting above, A is
just a group and there is no reason for elements to be divisible by 2, hence the factor
2 is kept in the polarization formula. One could be tempted to extend the scalars and
replace A by A⊗Q to be in standard situation with quadratic form on a vector space
over a field.

Clearly the expression for 〈 a, b 〉 is symmetric in a and b, so once it is bilinear,
〈 a, b 〉 will be a “scalar product” on A.

One easily verifies that q(0) = 0—by bilinearity 〈 0, 0 〉 = 0, and hence q(0) =
2q(0)— and one has 〈 a, a 〉 = 2q(a). Indeed, adding the two identities

−〈x, x 〉 = 〈−x, x 〉 = q(0)− 2q(x)

〈x, x 〉 = q(2x)− 2q(x)

one obtains q(2a) = 4q(a), and hence 〈 a, a 〉 = 2q(a).

Proposition . Let E an elliptic curve over k. 〈φ, ψ 〉 = q(φ + ψ) − q(φ) − q(ψ) is
a positive definite quadratic form on End(E) with 〈φ, φ 〉 = 2 deg φ

Proof: This is where the dual isogeny comes into play: We compute

[deg(φ+ ψ)− deg φ− degψ] = ̂(φ+ ψ)(φ+ ψ)− φ̂φ− ψ̂ψ =

= (φ̂+ ψ̂)(φ+ ψ)− φ̂φ− ψ̂ψ = φ̂ψ + ψ̂φ.

The last expression is clearly linear in both φ and ψ thanks to the first property in . on
page 10 and since [n] = [m] implies n = m, we are done. The equality 〈φ, φ 〉 = 2 deg φ
is just the generalities we explained above. By definition deg φ ≥ 0, and the only isogeny
of degree 0 is [0]! o

A fundamental result on inner products is the Cauchy-Schwarz inequality which
states that

|〈 a, b 〉| ≤
√
‖a‖ ‖b‖

where the norm an element is ‖a‖ = 〈 a, a 〉. In our slightly more general situation
it is of course still valid, but there is factor 2 appearing due to the factor 2 in the
polarization formula:

Proposition . (Cauchy-Schwarz) Then

〈φ, ψ 〉 ≤ 2 deg φ degψ

Proof of Hasse’s theorem

Theorem . Let E be an elliptic curve over the field Fp. Then

|q + 1−Nq| ≤ 2
√
q

— 12 —
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Proof: Once the theory of the isogenies is established this is a direct application of
the inner product on End(E) and the Cauchy-Schwarz inequality. One computes

2#E(Fq) = 2 deg([1]− θ) =

= 〈 [1]− θ, [1]− θ 〉 =

= 〈 [1], [1] 〉 − 2 〈 [1], θ 〉 + 〈 θ, θ 〉 =

= 2 deg[1]− 2 〈 [1], θ 〉 + 2 deg θ =

= 2− 2 〈 [1], θ 〉 + 2q

Hence
|q + 1−#E(Fq)| = |〈 [1], θ 〉| ≤ 2

√
deg[1] deg θ = 2

√
q

o

Problem .. Let E have equation y2 = x3 + a with a ∈ k non-zero. Show that if
q 6≡ 1 mod 3, then #E(Fq) = q + 1. Hint: Every element in Fq has a unique cube
root. X

Appendix

5.1.3 The derivative of the addition map

Any varietyX has a tangent spaces TX,x at smooth points x. At a point x ∈ X (assumed
to be smooth) it equals the k-vector space (m/m2)∗ dual to the space mx/m

2
x.

The intuition being as follows. Take a function f defined near x and assume that
f(x) = a. One may write f = a+ df mod m2 where df ∈ mx/m

2
x. This is just what is

left of a Taylor-development when one disregards terms of degree 2 or more. In analogy
with what we learned in calculus courses, df is corresponds to the gradient ∇f . The
directional derivative along a vector v is just v·∇f , i.e., the value of the linear functional
w 7→ v ·w on the gradient. So linear functionals on the space of possible quadratic terms
in Taylor-developments correspond to “directions”, that is tangent vectors.

If φ : X → Y is a regular map with φ(x) = y, both points being smooth, there
is induced a derivative Dxφ = TX,x → TY,φ(x) which is a k-linear map. This simply
because the ring homomorphism f → f ◦φ takes mx into mφ(x). The derivative satisfies
the chain rule: Df(x)f ◦ gxD = Df(g(x))f ◦ g.

For varieties over C, this definition coincides of course both with the one from
differential geometry and the analytic one.

The tangent space of E×E at (0, 0) is in a natural way identified with TE,0⊕TE,0.
If ι1 and π1 respectively denotes the projection onto the first factor and the inclusion
ι1(P ) = (P, 0), the first summand in the splitting of T(0,0)E ×E lies split via D0ι1 and
D(0,0)π1; indeed, π1 ◦ ι1 = id, so the chain rule gives D(0,0)π1 ◦D0ι1 = id.

— 13 —
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Let t be a parameter at the origin 0 ∈ E, that is t generates m0/m
2
0. The dual of t

in T0E is denoted by dt. The two elements ti = D0ιi(dt) form a basis for the tangent
space T(0,0)E × E.

Now let µ : E × E → E be the addition map. One has

Lemma . The derivative of D(0,0)µ of µ at (0, 0) is the addition map T0E⊕T0E →
T0E.

Proof: One may write D(0,0)tj = αjdt. As µ ◦ ιj = idE, one finds dt = D0µ ◦ ιj(dt) =
D(0,0)µ(tj). o

Lemma . The derivative D0[m] of the multiplication map [m] is the multiplication
map m, i.e., D0[m](v) = mv for all tangent vectors v ∈ T0E.

Lemma . If p is the characteristic of k. Then [m] is a separable map if and only if
p does not divide m.

Proof: If p 6 |m the derivative of [m] is an isomorphism at 0. By a translation argument
shows it follows that it is iso everywhere. Indeed if P ∈ E, one has the commutative
diagram

E
τP //

[m]
��

E

[m]
��

E τmP

// E

where the translations τP and τmP are isomorphisms. (the translation is given as
τP (Q) = P + Q). On the other hand, if p|m, the derivative vanishes at 0, and by
the same translation argument above, it vanishes everywhere, that is to say, it is inse-
parable. o

5.1.4 Alternative approach

There are several ways of establishing this fact, and a completely different line of
attack, is to appeal to a result of Mumford’s called the ridgity lemma. It has the virtue
of being very general and also work for so called abelian varieties, but it uses some
algerian geometry, and in that sense is on the edge of this course. The ridgity lemma
says basically that if a family of regular maps from a complete variety depending
regularly on a parameter, is constant for one value of the parameter, then it is constant
for all parameter values.

Lemma . Assume that X, Y and Z are varieties over k with X being complete.
Let f : X × Y → Z be a regular map. and assume that f(x, y0) is constant. Then there
is a map g : Y → Z such that f(x, y) = g(y).

— 14 —
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Proof: Let f(x, y0) = z0 and let U ⊆W be an affine open neigbourhood of z0. Let T
be the complement of f−1(U). Then T is closed and since X is complete, π(T ) is closed
where π : X × Y → Y denotes the second projection, and as y0 6∈ T , V = Y \ T is non
empty. Clearly f restricts to a map X × V → U , but X is complete and U is affine, so
for each fixed y the map f(x, y) is constant. o

To apply this lemma in our situation, we let X = Y = Z = E, and the map f will be
f(P +Q) = φ(P +Q)−φ(P )−φ(Q). Since φ and the addition maps all are regular, this
is a regular map. Of course f(x,O) = φ(P +O)− φ(P )− φ(O) = O′ since φ(O) = O′,
so the hypothesises of the lemma are satisfied and conclude that f(P,Q) = g(Q).
Substituting P = O, we arrive at g(Q) = f(P,O) = O′ and we are done.
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