It is easy to see that the Euler product for $\zeta(s)$ converges absolutely for Re s>1 and uniformly for Re $s\geq 1+\varepsilon$ for each $\varepsilon>0$. These facts will be used without further mention below.

Our next result contains the function-theoretic heart of the proof of PNT. Define

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s}.$$

Since the series converges absolutely for $\operatorname{Re} s > 1$ and uniformly for $\operatorname{Re} s \geq 1 + \varepsilon$ for each $\varepsilon > 0$, Φ is analytic in $\operatorname{Re} s > 1$.

LEMMA 7.3. $\Phi(s) - \frac{1}{s-1}$ extends analytically to Re $s \geq 1$, and $\zeta(s) \neq 0$ for Re s = 1.

PROOF. The proof of Lemma 7.2 shows that $\zeta(s) \neq 0$ for Re s > 1. A simple calculation based on the product representation then yields

(7.9)
$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{p} \frac{\log p}{p^s - 1} = \Phi(s) + \sum_{p} \frac{\log p}{p^s(p^s - 1)}.$$

The last term on the right converges and defines an analytic function for Re s>1/2, so it follows from Lemma 7.1 that $\Phi(s)$ extends to a meromorphic function on Re s>1/2 with poles only at s=1 and at the zeros of $\zeta(s)$ and that $\Phi(s)-\frac{1}{s-1}$ is analytic at s=1. Thus, it remains only to show that $\zeta(s)$ does not vanish for Re s=1.

To this end, recall that if a meromorphic function f vanishes to (exact) order k at s_0 , then

(7.10)
$$\lim_{s \to s_0} (s - s_0) \frac{f'(s)}{f(s)} = \operatorname{Res}\left(\frac{f'}{f}, s_0\right) = k$$

and, similarly, that if f has a pole of order k at s_0 ,

(7.11)
$$\lim_{s \to s_0} (s - s_0) \frac{f'(s)}{f(s)} = \text{Res}\left(\frac{f'}{f}, s_0\right) = -k.$$

Suppose now that $\zeta(s)$ has a zero of order $\mu \geq 0$ at $s = 1 + i\alpha$ ($\alpha \neq 0$, $\alpha \in \mathbb{R}$); since $\zeta(s)$ is real for real s, it follows that $\zeta(s)$ has a zero of the same multiplicity at $1 - i\alpha$. Denoting the multiplicity of the zeros (if any) at $s = 1 \pm 2i\alpha$ by $\nu \geq 0$ and applying (7.10) and (7.11) to the function $\Phi(s)$, which differs from $-\zeta'(s)/\zeta(s)$ by a function analytic on $\operatorname{Re} s > 1/2$, we obtain

(7.12)
$$\lim_{\varepsilon \to 0^+} \varepsilon \Phi(1+\varepsilon) = 1 \quad \text{and}$$
$$\lim_{\varepsilon \to 0^+} \varepsilon \Phi(1+\varepsilon \pm i\alpha) = -\mu \quad \lim_{\varepsilon \to 0^+} \varepsilon \Phi(1+\varepsilon \pm 2i\alpha) = -\nu.$$

But for $\varepsilon > 0$,

$$(7.13) \qquad \sum_{k=-2}^{2} {4 \choose 2+k} \Phi(1+\varepsilon+ik\alpha) = \sum_{p} \frac{\log p}{p^{1+\varepsilon}} \left(p^{i\alpha/2} + p^{-i\alpha/2}\right)^4 \ge 0,$$

since the quantity in parentheses on the right is real. Multiplying (7.13) by ε and using (7.12) to calculate the limit of the left hand side as $\varepsilon \to 0+$, we obtain $-2\nu - 8\mu + 6 \ge 0$. Thus $\mu = 0$, i.e., $\zeta(1+i\alpha) \ne 0$. This concludes the proof of Lemma 7.3.

We focuses of

We shall

while for

 $\theta(x)$

First

LEM

PRO

so that θ

Summing $\theta(x) \le 20$

LEMI

Proof to the fur Lemma 7

so that

Φ

which ext

which cor