To complete the proof of PNT, let us show how Lemma 7.5 implies that $\theta(x) \sim x$. Assume that for some $\lambda > 1$, there exist arbitrarily large x with $\theta(x) \geq \lambda x$. Then, since θ is nondecreasing, for each such x,

$$\int_{x}^{\lambda x} \frac{\theta(t) - t}{t^2} dt \ge \int_{x}^{\lambda x} \frac{\lambda x - t}{t^2} dt = \int_{1}^{\lambda} \frac{\lambda - t}{t^2} dt > 0,$$

which implies the divergence of $\int_1^\infty [\theta(t)-t]/t^2 dt$, contrary to Lemma 7.5. Similarly, if $\theta(x) \leq \lambda x$ for some $\lambda < 1$ and arbitrarily large x, we would have

$$\int_{\lambda x}^{x} \frac{\theta(t) - t}{t^2} dt \le \int_{\lambda x}^{x} \frac{\lambda x - t}{t^2} dt = \int_{\lambda}^{1} \frac{\lambda - t}{t^2} dt < 0,$$

which would again contradict the convergence of $\int_1^\infty [\theta(t)-t]/t^2 dt$. Thus

$$\lim_{x \to \infty} \theta(x)/x = 1,$$

and the proof is done.

Bibliography

- [A] Lars V. Ahlfors, Complex Analysis, third edition, McGraw-Hill, 1979.
- [C] K. Chandrasekharan, Introduction to Analytic Number Theory, Springer-Verlag, 1968.
- [I] A.E. Ingham, On Wiener's method in Tauberian theorems, Proc. London Math. Soc. (2) 38
- [K] J. Korevaar, On Newman's quick way to the prime number theorem, Math. Intelligencer 4 (3) (1982), 108-115.
- [N] D.J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87
- [Z] D. Zagier, Newman's short proof of the prime number theorem, Amer. Math. Monthly 104 (1997), 705-708.

We o The deta deserve 1

The the nine irrotatio compone ible, thi of confo and dra

not avai In 1 the airf shocks in gener rule ou fact, Pa based of section ever, tl the flow a comp Korn i invisci comple formal a bour even in lating to an case, the sp

> T has it funct

applie