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To complete the proof of PNT, let us show how Lemma 7.5 implies that
f(x) ~ x. Assume that for some A > 1, there exist arbitrarily large z with 6(x) = Az.
Then, since 6 is nondecreasing, for each such z,
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which implies the divergence of [;° [9 (t)—t]/t?dt, contrary to Lemma 7.5. Similarly,
if 8(z) < Az for some A < 1 and arbitrarily large z, we would have
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which would ag_'a'.it; contradict the coﬁvergehce of [[6(t) —t)/ t2dt. Thus
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and the proof is done.
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