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Characters of finite abelian groups

Let A be a finite abelian group. Abelian groups can be both additively and multiplica-
tively written, but in our theoretical deliberations they will always be a multiplicative
groups if the contrary is not explicitly stated.

Recall the group p, C C* of n-th roots of unity; that is u, = {z € C* | 2" = 1}.
It is cyclic of order n, a generator being exp 2mi/n. This is not the only generator;
indeed any power exp 2wim/n where (n,m) = 1 will generate. A generator is called a
primitive root of unity. The groups Z/nZ and p,, are isomorphic. Choosing a generator
n of p, we can define an isomorphism Z/nZ — p, by sending the residue class of a to
the power n®. This isomorphism depends on a choice of the primitive root 1 so Z/nZ
and ,, are not canonically isomorphism, and we shall distinguish between them.

By a character of A we mean a group homomorphism x: A — C*. As every element
in a in A is of finite order, the character x takes values in the subgroup of C* of roots
of unity. That is, if a” = e, then x(a)" = x(a™) = x(e) = 1, so the values of x belong
to u, if n = |A|.

The set of characters of A is denoted A. It is an abelian group; indeed, if y; and y»
are two characters, the product y;x2 is defined as usual by a — xi(a)xz(a), and one
trivially sees that this is a group homomorphism (C* is abelian). The neutral element
in the character group is the trivial character given as a — 1. It is usual written as 14
or sometimes as xg.
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The two following examples are fundamental:

EXAMPLE 7.1. One has Z/nZ ~ u,. Since every character on Z/nZ takes values in p,,
there is the obvious map Z/nZ — p, sending x — x(1). This is a group homomorphism

by the definition of the group structure of the character group Z/nZ, and it is obviously
injective since 1 generates Z/nZ. To see it is surjective, pick any n-th root of unity
n € p, and take a look at the homomorphism Z — pu,, sending a to n®. It vanishes on
nZ, and thus furnishes us with a homomorphism from Z/nZ to u, taking the value n
at 1. S

EXAMPLE 7.2. One has fi,, ~ Z/nZ. There is a natural map Z/nZ — [i, sending a resi-
due class [a] to the a-th power map n — n®. The power map is a group homomorphism
fn, — i, € C* that only depends on the residue class of @ modulo n (if @’ = a+ bn one
has 7% = 1" = n%). Hence the a map Z/nZ — fi, is well defined, and it is easily
checked to be a group homomorphism.

It is injective since if n* = 1 holds for all € p,, it holds in particular for a primitive
n-th root, and it follows thta n|a. To see that the map is surjective let 79 be a primitive
n-th root. It generates p,, so x(n) = n§ for some integer a. Now any other 7 € p, is

of the shape n = n with b € Z, and one has x(n) = x(n}) = x(n0)* = ns® = n*. *

Functoriallity

Assume that A; and A, are two finite abelian groups and that ¢: A; — A, is
a group homomorphism. If y is a character of A,, the composition y o 1) will be a
character of A;. This gives a map Ay — A;, obviously a group homomorphism, which
is denoted by 1&, and by common usage it is called the dual map. The following lemma
is usual expressed by saying that the hat construction is functorial’:

Lemma 7.1 One has iEl\A = id ;. Assume that ¢ and 1) are composable group homo-
morphisms. Then

~ ~

bod=dod.
PROOF: Obvious, but here are the details:
B(B00) = blx o ¢) = (xod) o = x o ($01) = §oh(x).
a

EXAMPLE 7.3. If BC A and i denotes the inclusion map, then @ZA)()O = x 01 is nothing
but the restriction x|p of x to B. *

For the cognoscenti: The map A — A is a contravariant functor from the category of finite abelian
group to itself. It is a very special case of a general duality functor called Matlis duality. It can also
be generalized in another direction to what is callet Pontrjagin duality,

9
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PROBLEM 7.1.

a) Let a € Z and let ¥: Z/nZ — Z/nZ be the multiplication-by-a map. Show that the
dual map ©: u, — p, is the a-th-power map n — n®.

b) Let a € Z and let ¢: p, — p, be the map n — n®. Show that ngﬁ is multiplication by
a.

PROBLEM 7.2.

a) Show that if ¢: Ay — Aj is a surjective map, then 1/; is injective.

b) Let 1o be a primitive n-t root of unity. Assume that d|n. Show that n¢ is a primitive
n/d-th root of unity. Use this to show that if i: g — p, is the inclusion, then i: i, —
(g s surjective.

*

PROBLEM 7.3. Let B C A be two finite abelian groups. Show that any character y on
B extends to a character on A. HINT: Use induction on the index [A : B], and that
C* is divisible. *

Character groups and direct products

A natural question to ask is how the character group behaves in relation to direct
products. And, as we soon shall see, the behavior is immaculate: The character group
of a direct product is the direct product of the character groups of the factors—to
be precise one should say that it is canonically isomorphic to the direct product of
the character groups. Combining this with the fundamental theorem for finite abelian
groups—that says a finite abelian group is isomorphic to a direct product of cyclic
groups—and the examples 7.1 and 7.2 above, we can conclude that A and A are iso-
morphic. The isomorphism is not canonical so care must be taken, but it tells us what
the group structure of A is. For example, the order is the same as the order of A.

Let A be an abelian group and let A; C A be two subgroups such that A is the
direct product of A; and As. This amounts to the intersection A; N Ay being trivial
and |A| = |A;||Az|. Every element a € A may be written as a product a = ajas with
a; € A; in a unique way.

The inclusions A; C A induce maps A — A, sending x to the restriction x|4, (which
is just the same as ;(x) = x o ¢; if ¢;: A; — A denote the inclusion maps). These are
group homomorphisms, and together they define a map A= A x A,

Proposition 7.1 Given two finite abelian groups Ay and As. The map A— Al X Ag
given by x — (x|a,, X|4,) s an isomorphism of groups.

— 3 —
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PROOF: First we check that it is injective. Assume that both maps x|, are trivial.
As any a € A may be written as a product a = ajas with a; € A;, we find x(a) =
x(a)x(az) =1-1=1. )

We proceed by checking that the map is surjective. So let x; € A; for i = 1,2 be
two given characters. Any a € A can be expressed as a product a = ajas with unique
elements a; € A;. Hence we may form x(a) = x(a1)x(az). One checks without trouble
that x in this way is well defined (because the factorization a = ajas is unique), and
that it is a character of A. a

—

Corollary 7.1 If {A;}ies is a finite collection of finite abelian groups, then [],.; Ai =
Hz‘e] AZ

PRrRoOOF: Induction on the number of elements in 7. d

Corollary 7.2 Let A be a finite abelian group, then A and the character group A have

the same number of elements; that is, |A| = |A|.
PrOOF: If A ~ [[..;Z/n;Z, then A~ [Lc; #n; by proposition 7.1 on page 3 and
example 7.1 on 2; and of course, |u,| = |Z/nZ| = n. Q

The characters of the characters

As already hinted at, the formation of characters is a kind of duality. In this it lies,
among other things, that performing the hat operation twice brings us back to the
group we started with.

For every group element a € A there is the character on the character group A best
described as “the evaluation at a”: It is the map A — C~ sending the character y to the

value x(a) at a. In this way we arrive at a map A — A sending a € A to the “evaluation
at a”; and of course this is a group homomorphism (check it!). The construction is
natural, or functorial as one says, in the sense that every group homomorphism ¢: A; —
As between finite abelian groups fits in the following commutative diagram:

A1—>14:1

|k

~

A2—>A2

PROBLEM 7.4. Check that the diagram is commutative. *

Proposition 7.2 The map A — A is an isomorhism.

/R
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PROOF: Since the groups on both sides have the same number of elements, it suffices to
show that the map is injective. If a € A is not the neutral element, we have to provide
a character y not vanishing® at a.

We first examine the case A = Z/nZ. Let a € Z/nZ be a non-zero element. If 7 is
a primitive n-the root, one has n* # 1, and by example 7.1, there is a character with
x(1) =n. Hence x(a) =n* # 1.

In the case of a general A, there is for some n a surjection 7: A — Z/nZ mapping
a to a non zero element, say a’. This follows from the fundamental theorem for finite
abelian groups. By what we just did, there is a character x on Z/nZ not vanishing on
a’, and hence 7 o x is a character on A not vanishing at a. a

The orthogonality relations

There are some important relations between the different characters of an abelian
group A called the orthogonality relations. These relations come in pairs and the for-
mulations are dual to each other; that is to say, the one interpreted for the dual group
A gives the other for the group A. The orthogonality relations are not very mysterious,
and finally they boil down to the equation

L4n+n+-- 49" =0,

satisfied by any non-trivial n-th-root of unity; one sees this by factoring the polynomial
2™ — 1. As an illustration, assume that A is cyclic of order n with a generator g. A
character Y on A is given by the value x(g) = 7. Now x(g") = 1", so if  # 1 the above

relation becomes
> xlg)=>_x(a) =0,

0<i<n acA
and of course, if n = 1, we get
> x(a) = A].
acA

These two relations correspond to the ones below with respectively y; = x and o = 1.
Recall that if n € C* and |n| = 1 one has n~! = 7.

Proposition 7.3 (The first orthogonality relation) Let A be a finite abelian group.
Then for any pair of characters x1 and xo on A the following relation holds

S vi(@)Xa(a) =

a€A

0 ile#Xz,
Al ifxi=x2 .

2In this setting vanishing means that x(a) = 1. That abelian groups can both be additive and
multiplicative sometimes creates inextricable linguistical knots.

— 5 —
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PROOF: If x; = Y2 then X,(a) = x1(a)™! and the sum is obviously equal to |A|.

Assume that y; # x2. Then there is at least one element b € A such that x;(b) #
xz2(D). Let ' = 3" _,xi(a)Xs(a). Now, the product ab runs through A when a does,
and therefore one has

F =3 xi(ab)xs(ab) = xa(0)%a(b) Y x1(a)¥a(a) = x1 (0)X2(b)F,

acA a€A

from which one infers that F' = 0, since x1(b)X5(b) = x1(b)x2(b) ™! # 1. a

In a dual version, that is reformulated for the character group, these relations
become:

Proposition 7.4 (The second orthogonality relations)

{0 ZfCLl %CLQ

> xla(a) =4 T

xEA

PrOOF: By 7.2 A is the character group of fl, an element a € A corresponding to
the character y +— x(a). The relation in the proposition is then just the orthogonality
relation in proposition 7.3 translated to the dual setting. U

Dirichlet characters

Johann Peter Gustav Lejeune Dirichlet was a german mathematician living from 1805
to 1859. He was born in the small town Diiren which to day has about 90 000 inhabi-
tants. Diiren lies in the western part of Germany not far from Aachen.
At the time of Dirichlet’s birth Diiren was part of France,
but after the Napoleon wars it was ceded to Prussia. Di-
richlet studied in Paris, held positions in Breslau, Berlin
and finally he became Gauss’ successor in Gottingen.

When in 1837 Dirichlet proved his celebrated theorem
of primes in arithmetic progressions, he introduced what
is now called Dirichlet characters. They still play an irre-
placeable role in the proof, and in general they are priceless
tools in number theory.

Let m € N be a natural number greater than one. The
ring Z/mZ of residue classes modulo m has a unit group Lejeune Dirichlet
Z/mZ* whose elements are the residue classes of integers relatively prime to m. By
definition of Euler’s ¢-function the order of Z/mZ* is ¢p(m).

For m = p a prime Z/pZ is the field with p elements which usually is denoted by
[F,. The unit group F, of non-zero elements is a cyclic group of order p — 1. In the case

— 6 —
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m is a composite number, say m = ab with a and b relatively prime, the ring Z/mZ
decomposes as the direct product Z/mZ = 7Z/aZ x 7Z/bZ (this is the Chinese residue
theorem or the Sun-Tze theorem that some like to call it), and consequently the unit
group decomposes as well: Z/mZ* =7 /aZ* x Z]bZ*.

The Dirichlet characters are intimately related to the characters of the unit groups
Z/mZ*, but there are subtle differences. We prefer to define a Dirichlet character
modulo m as a function y: Z — C satisfying the following three properties:

O Periodicity: x(n +m) = x(n) for all n € Z,
O Multiplicativity: x(nn') = x(n)x(n') for all n,n’ € Z,
[0 Vanishing: x(n) = 0 if and only if (m,n) # 1.

The last property specifies the value of y on the integers having a common factor with
m, and this is compatible with the periodicity since (n + m,m) = (n,m). The last
property implies that x(1) # 0, and from the multiplicativity we infer that x(1) = 1.

There is a special character called the principal character modulo m. It is mostly
denoted by xo, but 1,, would be a better notation since it depends on m. It takes
the value 1 at n when (n,m) = 1 and, as imposed by the third condition, 1,,(n) = 0
whenever (n,m) # 1; i.e., one has

1 incase (n,m)=1,

0 in case n and m have a common factor .
The first of the three requirements above says that y has m as a period, however m is
not necessarily the smallest period. The set of periods of x is closed under addition. It
is thus a subgroup of the integers Z, and as such it has a unique positive generator. This
is the smallest positive period of x, and it is called the conductor®of . The Dirichlet
character y modulo m is said to be a primitive character modulo m if the conductor is
equal to m; that is, if m is the smallest period for y. If this is not case, one says that
X is imprimitive. For a prime modulus p, every character is primitive.

One distinguishes between even and odd Dirichlet characters according to the value
they take at —1. The character x is even if x(—1) = 1 and odd if x(—1) = —1.

By the first of the three properties above the value x(n) depends only on the
residue class of n modulo m, hence x induces a map x’: Z/mZ* — C. The map x’ is
multiplicative since y is, and hence it is a character of the multiplicative group Z/mZ*.
Conversely, given a character y’ on Z/mZ*, one may define a Dirichlet character modulo
m by

{0 if (n,m) #1
X'([n]) if (n,m) =1

3Before World War II the german terminology for the conductor was der Fiihrer. For political
reasons this was changed in 1945.

— 7 —
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where, conform to the conventions, [n] stands for the residue class of n modulo m. The
only thing to check is that x behaves in multiplicative way also for those n having
a common factor with m. But in that case nn’ and m have a common factor as well
whatever the integer n’ is, and hence both y(nn') and x(n’)x(n) vanish.

In this way one establishes a one-to-one correspondence between the characters of
the unit group Z/mZ* and the Dirichlet characters modulo m. It also follows that
non-zero values of a Dirichlet character are roots of unity whose orders divide ¢(m).

The Dirichlet characters modulo m form a group under multiplication; the product
of two is obviously a Dirichlet character modulo m, and the principal character acts as
a unit element. They are all invertible; the inverse of y being the complex conjugate
X- Indeed, if (n,m) # 1, all character vanish at n, the principal one included, and if
(n,m) = 1, the value x(n) is a root of unity and therefore one has y(n)~' = x(n). To
sum up what we have said so far, we have:

Proposition 7.5 Let m > 1 be a natural number. The Dirichlet characters modulo
m form a group under multiplication of order ¢(m) with the principal character as the
neutral element and the complex conjugate as inversion. If w: 7 — 7/mZ is the natural
map, the assignment X' — X' o sets up a group isomorphism between the character
group of Z/mZ* and the group of Dirichlet characters modulo m.

EXAMPLE 7.4. It is high time to look at a few examples with small m, and we start
with the simplest case m = 2. The field Fy has two elements and the unit group F3 is
reduced the trivial group. The only Dirichlet character is the principal one. It vanishes
on all even numbers and takes the value 1 at the odd ones. E S

EXAMPLE 7.5. Assume that m = 3. The field F3 has the two units £1, hence 5 =
pe = {£1}, and there are two Dirichlet characters modulo 3, the principal one xq and
another one given as x(3n + 1) = +1. *

EXAMPLE 7.6. Assume that m = 4. The unit group Z/4Z* has two elements, the
residue classes of +1. There are two Dirichlet characters, the one that is not principal
satisfies x(4n + 1) = 1 and x(4n — 1) = —1, and of course it vanishes on the even
numbers. Be aware of the subtle point that the groups of units Z/3Z* and Z/4Z* are
isomorphic and have the same characters, but the Dirichlet characters are certainly
different. %

EXAMPLE 7.7. Let us take a look at the case m = 5. The unit group F} is of order 4
consisting of 1 and £2; it is cyclic generated by either the residue class of 2 or of —2.
Therefore if x’ denotes the character on F} corresponding to the Dirichlet character x,
one sees that y/(2) can be one of i or +1. Using this it is easy to fill in the following
table of the values the different characters take:

— 8 —
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Classmod 5 || x1 X2 X3 Xo
on + 2 i -1 -1 1
5n —1 -1 -1 1 1
on — 2 -1 -1 1
on+1 1
5n 0O 0 0 O

The character group is cyclic generated by either of the two odd characters x; or x».
The even non-principal character y3 generates a subgroup of order 2. %

PROBLEM 7.5. This exercise is about the Dirichlet characters modulo 8. Show that
Z/8Z* is isomorphic to pg X pg, and consists of the residue classes of £1 and £3. One
has (£3)? = 1 and 3 and —3 generate Z/8Z*. And hence that any character is given
as x(8n +3) = ¢ and x(8n — 3) = €2 where ¢; and €, are elements from {£1}, and all
combinations the two signs can occure. Show that x(8n—1) = €€, and that x(2n) = 0.
Verify the table

Classmod 8 || x-— X-+ X+— Xo
8n+3 -1 -1 1 1
8n — 3 -1 1 -1 1
8n —1 1 -1 -1 1
8n 0 0 0 0

Show that y__ is an imprimitive non-trivial character which in fact coincides with
the non-trivial character modulo 4. Show that the two other non-trivial characters are
primitive. *

PROBLEM 7.6. Constuct the table like in example 7.7 for the case m = 7. *

PROBLEM 7.7. Show that if p is an odd prime, then there is only one real non-trivial
character modulo p. Can you indentify it? *

ExAMPLE 7.8. The concept of a primitive character is slightly subtle, so hopefully this
example, treating the case m = 15, will be clarifying. One has Z /157 = Z/3Z x 7 /5Z,
and the unit group Z/15Z* is the group Z/3Z* x Z/5Z*. 1t is of order 8 and is isomorphic
to o X pg.

There are thus altogether four non-trivial imprimitive Dirichlet characters modulo
15. Three induced from the three non-trivial characters xi, x2 and ys of Z/5Z* and
one from the only non-trivial character i) on Z/37Z*.

Additionally, there are three non-trivial primitive characters. They are the three
products ¥y; with ¢ = 1, 2 and 3, and of course, there is the principal one.

— 09—



CHARACTERS MAT4250 — Hgst 2014

We take a closer look at the three characters y;. These all have period 5, and they
vanish on the set 57Z U 3Z of integers having 3 or 5 as a factor. Now, the same three
characters on Z/5Z* induce Dirichlet characters modulo 5 as well, our friends from
example 7.7. These all have period 5, but contrary to the previous case, they do not
vanish on multiples of 3 unless they also are divisible by 5. So the point we want to
illustrate, is that the same characters on the same unit group Z/5Z* induce different
Dirichlet characters modulo 5 and modulo 15! S

Orthogonality relations

In view of the correspondence between Dirichlet characters modulo m and the
characters on group Z/mZ*, the orthogonality relations we proved for the characters
of an abelian group in propositions 7.3 and 7.4 on page 5 migrate immediately to
corresponding orthogonality relations for the Dirichlet characters modulo m:

Proposition 7.6 Let m > 1 be a natural number and let a and b be two integers. Then

ZX(CL)Y(b) _ {qﬁ(m) ifa=b mod m and (a,m) = (b,m) =1

0 otherwise ,

where the sum s taken over all Dirichlet characters modulo m.

PROOF: If either a or b has a common factor with m, all terms of the sum on the left
vanish. If (a,m) = (b, m) = 1, the formulas are just the orthogonality relations for the
characters on the unit group Z/mZ*, i.e., proposition 7.3 on page 5. d

When proving Dirichlet theorem about primes in arithmetic progressions, we shall
apply the previous proposition in the following form

Proposition 7.7 Let m > 1 be an natural number and let a € Z. Then

ZX(G) _ {qﬁ(m) ifa=1 modm
0

otherwise,
where the sum is taken over all Dirichlet characters of modulus m.
PROOF: Just take b =1 in the previous proposition. U

PROBLEM 7.8. Translate the second orthogonality relation in proposition 7.4 on page
6 to a statement about Dirichlet characters. *

PROBLEM 7.9. Describe all Dirichlet characters modulo 12 and modulo 24. *

10 —
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The quadratic character

One of the famous functions in number theory is the Legendre symbol appearing in
the formulation of quadratic reciprocity. For an odd prime p and n € Z the Legendre
symbol is defined as

1 if n is a square modulo p

(g) =< —1 if nis not a square modulo p
0 if(n,p) #1

The Legendre symbol is as we shall see, a primitive Dirichlet character. It is called the
quadratic character modulo p.

We state without proof, the famous law of quadratic reciprocity discovered by Euler
and proven by Gauss:

Theorem 7.1 Let p and q be two odd primes. Then

Pydy _ ~1)/2:(g-1)/2
(L) = <_1)(p )
A1)
The theorem says that if either p or ¢ is of the form 4k + 1 then p a square mod q if
and only if ¢ is a square mod p, and if both are of the form 4%k + 3, then one of them
is a square modulo the other, while the other is not a square modulo the first.

PROBLEM 7.10. Show that 17 is not a square modulo 107. *

PROBLEM 7.11. Let p be an odd prime. Recall that the set A = {£k | 0 < k <
(p —1)/2} is called the set of least representatives for the residues classes modulo p.
In this way the least representatives are divided into a negative part and a positive
part. Among the p — 1 numbers n, 2n, ...,(p — 1)n a certain number, say u has
a least representative in the negative part of A. Show Gauss’ lemma: (%) = (=1~

HINT: Show that the residue classes of n, 2n, ..., (p—1)n is a full set of representatives
for the non-zero residue classes mod p. Uses Wilson’s theorem: (p — 1)! = —1 mod p.

*

PROBLEM 7.12. Show that (2) = (—1)*~1/8, *

The group of units ), in the field [, with p elements is a cyclic group of order p—1.
Inside this group is sitting a copy of p9; indeed one has {£1} CIF, since p is odd. From
Fermats little theorem—saying that a?~! = 1 when a € Fj—we infer that a®/% € ps,.

Hence there is the character
Y:Fp— ps  given by aw— alP~V/2,
which we denote by 1 for short. Interpreted as a function on the integers it is described

as
_ )0 if (n,p) # 1
vn) = {n(p_l)/Q if (n,p) =1

—~
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Appealing to the little Fermat theorem once more, one has (a?)?~1/2 = 1, and
whith this, it is easily verified that wed have the following exact sequence:

x S « ¥
1 [h2 Fy F, M2 L

where s denotes the squaring-map s(a) = a®. An element a € [} is therefore a square
if and only if a?~1/2 = 1. We have shown that the Dirichlet character associated to 1)
coincides with the Legendre symbol.

The definition of the Legendre symbol is restricted to p being a prime, but it
can be gerealised to any odd odd number, and it is then called the Jacobi symbol.
Assume m = pit - ---- per is an odd composite number. There is a surjection Z/mZ* ~
[LZ/piZ* — 1],Z/pZ*, and for each of the factors Z/p;,Z* we have the quadratic
character v;: Z/p;Z. — ps. Hence their product vy - - - - - 1), is a character on Z/mZ
with values in p9, as well as is the combination 7" - ...t . This is called the Jacobi
symbol, and is the quadratic character modulo m. It is denoted by ( ), and one has

(ﬁ) _ (” ) (ﬁ)@r

m’ p P,

PROBLEM 7.13. Show that (%) is multiplicative in both n and m. *
PROBLEM 7.14. It is no longer true that (%) = 1 implies that n is a sqaure modulo
m. Give an example that manifests this. However, if (%) = —1, then n cannot be a

square modulo m. Show this. *

Addendum

For the benefit of those in the audience who are not completely comfortable with Euler’s
¢-function, we give a quick an dirty exposition of its main properties. And in view of
their prominent role in the theory of Dirichlet characters we use the opportunity to
describe the groups of units in the finite rings Z/nZ.

The Euler ¢-function

There are two definitions of ¢ easily seen to be equivalent. On the one hand ¢(m) is
the number residue classes 7 such that n and m are relatively prime. This is equivalent
to m being invertible in the ring Z/mZ; indeed (n,m) = 1 is equivalent to there being
a relation 1 = an + bm with a,b € Z, and this in its turn, is equivalent to n being
invertible mod m (then inverse is the class of a).

Hence ¢(m) is the order of the unit group Z/mZ*, i.e., ¢(m) = |Z/mZ*|. The
computation of ¢(m) hinges on the two following propositions.
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Proposition 7.8 The Euler ¢-function is multiplicative, i.e., if n and n' are two
relatively prime natural numbers, one has:

¢(nn') = ¢(n)o(n')
PROOF: Since n and n’ are relatively prime, the Chinese remainder theorem gives a
ring isomorphism Z/nn'Z ~ 7Z/nZ x Z/n'Z which induces an isomorphism between the
unit groups: Z/nn'Z* ~ Z/nZ* x 7Z/n'Z*. The proposition follows. a
In case m = p is a prime, the ring Z/pZ is a field, and of course Z/pZ* is of order
p — 1. This proves the first case v = 1 of the following proposition.

Proposition 7.9 Assume that p is a prime and v a natural number. Then ¢(p¥) =
pHp—1).
We would like to use the following very general lemma:

Lemma 7.2 Let A and B be commutative rings with 1 an let ¢: A — B be a surjective
ring homomorphism with kernel I. Assume that I? = 0. Then there is an exact sequence
of unit groups:

0— 1+ —— A 2B 1
where ¢* denotes the restriction of ¢ to the units.

PROOF: From I? = 0 it follows that 1 + a is a unit for all @ € I; indeed, 1 — a is an
inverse to 1 +a: (1 +a)(1 —a) =1 —a? = 1. In the same vain 1 + I is closed under
multiplication since (14a)(1+b) = 1+a+b+ab = 1+a+0, and clearly 1+ 1 = Ker ¢*.
Observe that the multiplicative group 1 + [ is isomorphic to the additive group I.
What is left is to see that ¢* is surjective. So take any unit b € B*. Lift b to some a
in A and b™! to some @’. One has aa’ = 1+« with a € I, but this gives ad’(1 —«a) =1
and a is invertible. Q

PROOF OF PROPOSITION 7.9: The proof goes by induction on the exponent v. If v =1,
we are through as already remarked just before the proposition. If v > 1, there is the
exact sequence

0——p"Z)p" L —— T L2 T T —— 0

where ¢ is the natural reduction mod p” homomorphism. The kernel p*Z/p**Z is
isomorphic to Z/pZ (an isomorphism sends the class of a mod p to the class of p’a
mod p“*!), and by the general lemma above, there is an exact sequence

1 ——1+p"Z)p" L ——Z)p" T —— L p" 7 —— 1.
Counting orders, we get
Z/p" 2 = |Z/p" 2 || Z/pZ| = " (p — Dp = p"(p — 1),

and the proposition follows. a

13 —
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We sum up the properties of the ¢-function in the following proposition:
Proposition 7.10 The following hold for the Euler ¢-function:

O ¢(nn’) = G(n)é(n’) when (n, ') = 1,

O ¢(p¥) = p*L(p — 1) when p is a prime,

O ¢(n)/n =11 -p).

PROOF: The two first formulas are already shown. For the last, write n = p{* - - - - T
with the p;’s different primes. Using the two first properties we find the expression

¢(n) = Hp?’_l(pi —1).

Divide throughout by n to arrive at the third formula in the proposition. d

The behavior of the Euler ¢-function is rather erratic. For example, A. Schinzel has
shown that the fractions of two consecutive values of ¢(n) form a dense subset of the
set of all positive real numbers; that is, the fraction ¢(n + 1)/¢(n) can be as close as
you want to any number in R*. However the quotient ¢(n)/n behaves somehow more
regularly. Obviously ¢(n)/n < 1, and if p is a prime one has ¢(p)/p = 1 — 1/p, which
is close to one. There being infinity many prime we infer that

limsup ¢(n)/n = 1.

n—oo

This is illustrated in the figure below, where the values ¢(n) is plotted against n for n

up to 800. The cloud of plotted points is clearly bounded above by the line y = z. On

the other hand, if n has a lot of prime factors the quotient ¢(n)/n tends to be small.
In lemma 6.1 on page 5 in chapter 6 we established the inequality

H(l —p 1) < 1/loguw,

p<z

and taking n = Hpgn p, a number with an awful lot of prime factors, we obtain a
number with ¢(n)/n < 1/logz. This shows that

liminf ¢(n)/n = 0.

n—oo

This behavior is not apparent in the figure, the reason being that n has to be a very
large number for ¢(n)/n to be very small, certainly much larger than 800. Of the
numbers of the form Hpgn p considered above, only 2 -3 -5 -7 is less than 800!
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#(n) against n for n < 800

PROBLEM 7.15. On the figure the line y = 8/35 - z is printed in red. Can you explain
why (the line is printed, not why it is red)? There are three blue dots on it; explain
that. Can you predict the coordinates of those points? And what is the next blue dot
on the line? *

PROBLEM 7.16. There seems to be a lot of blue dots on the line y = 1/2 - z. Why? %

The groups of units Z /n7*

Let n = len p*? be the prime factorization of the natural number n. By our friends the
chineses the ring Z/nZ decomposes as the direct product of rings Z/nZ ~ Hp‘n 7" 7,
and hence there is a corresponding decomposition of the group of units Z/nZ* =
len Z/p**Z*. Thus, knowing the group structure of each of the factor groups we know
the structure of the group Z/nZ*. In what follows we determine the group structure of
Z/p"Z* for p a prime.

The cases p odd and p = 2 are slightly different, although the underlying structure
is the same. In both cases there is an obvious reduction map Z/p”Z* to a cyclic group,
respectively Z/pZ* and Z/47Z*. In case p = 2 the group Z/4Z* is the simplest factor
group that gives something, 7Z/27Z* being trivial. We shall see that these sequences are
split, and in both cases the kernel will be cyclic.

In the odd case the result is simply that Z/p”Z* is cyclic, while if p = 2, the unit
groups are isomorphic to direct products Z/2"727Z x Z/2Z if v > 3, and Z/AZ* =
and Z/27* is trivial. That is, one has:

15 —
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Proposition 7.11 Let p be a prime number.
O If p # 2, then the group of units Z/p*Z* is cyclic of order p*~'(p —1).

O If p=2 and v > 3, the group of units Z/2"Z* is isomorphic to the direct product
Z)2"7*7 x 7|27

O ZJAZ* is cyclic of order 2, and Z/27* is trivial.
The proof will be a series of lemmas, the first being:

Lemma 7.3 For any natural number a one has
(1+p)? =1+ p*™ mod p*™.
PROOF: Induction on a, the start a = 1 is clear. So assume that
(14+p)*" =1+ p*™ mod p**2.

Now, since the binomial coefficients (i) for k # 1, p all are divisible by p, it holds that
if x =y mod p*, then 2P = y» mod p**!. This gives

(1 _|_p)pa+1 — (1 +pa+1)p -1 +p_pa+1 + Z <Z)pk(a+1) =1 +pa+2 mod pa+3
k>2

since k(a+1) > a+3 as k> 2. Qa
We start with treating the case of odd p, and start with the simplest case Z/pZ.

This is a field, and there is the general esult

Proposition 7.12 If k is a field and G Ck* a finite subgroup, then G is cyclic.

PROOF: Let d be the exponent of G; i.e., the least common multiple of the orders of
all the elements in G. A finite group G is cyclic if and only if d = |G|; indeed, if G is
cyclic this is clear, and for the implication the other way use that there is always an
element of order d in G. The elements in G satisfy the equation ¢ = 1, which has at
most d solutions. It follows that d = |G|, and G is cyclic. Q

Lemma 7.4 Assume that p is an odd prime. The the group of units Z/p"Z* is cyclic
of order p*~'(p —1).

PROOF: We determined the order in previous paragraph.
The reduction modulo p map induces an exact sequence

11— K——Z/p"1* —— 7/ pZ* —— 1

16 —
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where the kernel K is of order p*~!. Lift a generator of Z/pZ* to an element g € Z/p"Z*,
then gP~! = a € K, and since p — 1 is relatively prime to the order p*~! of K, there is
an element b € K with b~ = a. Therefore (ga)?~! = 1, and the sequence splits; that
is Z/p'Z* ~ K x Z/pZ*. Since Z/pZ* is cyclic of order p — 1, it suffices to show that
K i cyclic (of order p*~1). This we shall do by showing that 1 + p is a generator. By
lemma 7.3 above one has in Z/p”Z* (that is modulo p*)

A4+pP " =14p7#1

since p*~! is non-zero in Z/p*Z, and we conclude that the order of 1 + p is equal to
v—1
P d

Lemma 7.5 The group of units (Z/AZ)* is a cyclic group of order 2, and 7/27* is
trivial. If v > 2, it holds that Z/2"Z* is isomorphic to a product of two cyclic groups
respectively of orders 2 and 2v2.

PROOF: The residue classes in Z/47Z are 0, =1 and 2 and 41 are the only units, hence
Z/AZ* is isomorphic with po. In the general, case the exact sequence

| — K —Z/2"7 — 7./A7" — 1

corresponding to the reduction modulo 4 map splits, indeed {1} CZ/2YZ* gives a
splitting. Just as in the case with p > 2, we show that the kernel K is cyclic. The first
element you think of in kernel, is 5, and it turns out to be a generator:

5 = (144 T =142 4 =1,
and 5 is of order a power of 2. Furthermore on has
521/73 _ (1 +4)2v73 —1 + 221/72 4 =1 + 21/—1 ?é 1.

This shows that the order of 5 is 272, which is the same as the order of the kernel K.
Hence the kernel is cyclic. d

4This is a general fact. If in an exact sequence of abelian groups, the two extreme groups are of
relatively prime order, the sequence splits. (It is even true, but much deeper, for non abelian finite

groups.)
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