MAT4250 EXERCISE SHEET 1

1. Integrality, traces and norms

Exercise 1. Is $\frac{1+\sqrt{8}}{2}$ an algebraic integer?
Exercise 2. Is the ring

$$
\overline{\mathbf{Z}}=\{\alpha \in \mathbf{C}: \alpha \text { is integral over } \mathbf{Z}\}
$$

of algebraic integers noetherian?
Exercise 3. Suppose that d is a squarefree integer, and let $K=\mathbf{Q}(\sqrt{d})$. Then

$$
\mathcal{O}_{K}=\left\{\begin{array}{lll}
\mathbf{Z}[\sqrt{d}], & d \not \equiv 1 & (\bmod 4) \\
\mathbf{Z}\left[\frac{1+\sqrt{d}}{2}\right], & d \equiv 1 & (\bmod 4)
\end{array}\right.
$$

Exercise 4. Let k be a field, and let A be the ring $A=k[X, Y, Z, W] /(X Y-Z W)$. Let x, y, z and w denote the cosets of X, Y, Z and W in A. Show that x, y, z and w are irreducible but not prime elements.
Exercise 5. Let d be a squarefree integer, and let $K=\mathbf{Q}(\sqrt{d})$. Compute $\operatorname{Tr}_{K / \mathbf{Q}}(\alpha)$ and $N_{K / \mathbf{Q}}(\alpha)$ of an element $\alpha=a+b \sqrt{d} \in K$.

Exercise 6. In this exercise we will show that the two factorizations

$$
\begin{equation*}
2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5}) \tag{1}
\end{equation*}
$$

of the element $6 \in \mathbf{Z}[\sqrt{-5}]$ are in fact distinct in the sense that no factor is a unit multiple of another. Thus $\mathbf{Z}[\sqrt{-5}]$ is not a unique factorization domain.
(a) Show that each factor in (1) is irreducible by computing their norm.
(b) Prove that no factor on one side of $\sqrt[11]{ }$ is an associate (= unit multiple) of one from the other side.

Exercise 7. Recall that if L / K is a separable field extension, then the form $(x, y)=\operatorname{Tr}_{L / K}(x y)$ is nondegenerate. Show that this is no longer true if L / K is inseparable, for instance by considering the fields $K=\mathbf{F}_{p}(X), L=\mathbf{F}_{p}\left(X^{1 / p}\right)$.

Exercise 8.

(a) Let L / K be a separable field extension, and let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for L over K. Show that

$$
d\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\operatorname{det}\left(\left(\sigma_{i} \alpha_{j}\right)_{i, j}\right)^{2}
$$

where the σ_{i} 's run over all K-embeddings $L \rightarrow \bar{K}$.
(b) Prove Stickelberger's discriminant relation: The discriminant d_{K} of a number field K satisfies $d_{K} \equiv 0$ or $1(\bmod 4)$.
(Hint: Let $\alpha_{1}, \ldots, \alpha_{n}$ be an integral basis. In the expression for $\operatorname{det}\left(\sigma_{i} \alpha_{j}\right)$, let P denote the sum of the terms corresponding to the even permutations, and let N be the sum of the odd permutations. Then $d_{K}=(P-N)^{2}=(P+N)^{2}-4 P N$. Show that the terms in the latter expression are integers.)

Exercise 9 (A criterion for a basis to be integral). Let K be a number field, and let $n=[K: \mathbf{Q}]$. According to Proposition 2.12 in Neukirch, if $\mathfrak{a} \subseteq \mathfrak{a}^{\prime}$ are two fractional ideals of K, then the index $\left(\mathfrak{a}^{\prime}: \mathfrak{a}\right)$ is finite and satisfies

$$
\begin{equation*}
d(\mathfrak{a})=\left(\mathfrak{a}^{\prime}: \mathfrak{a}\right)^{2} d\left(\mathfrak{a}^{\prime}\right) \tag{2}
\end{equation*}
$$

(a) Suppose that $K=\mathbf{Q}(\alpha)$ for some $\alpha \in \mathcal{O}_{K}$. Use (2) to show that if $d\left(1, \alpha, \ldots, \alpha^{n-1}\right)$ is squarefree, then $1, \alpha, \ldots, \alpha^{n-1}$ is an integral basis, and hence $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$.
(b) Let α be a root of $f(X)=X^{3}+X+1$. Compute the ring of integers \mathcal{O}_{K} in $K=\mathbf{Q}(\alpha)$. (Remember that the discriminant of a polynomial of the form $X^{3}+p X+q$ is $-4 p^{3}-27 q^{2}$.)

2. Dedekind Rings

Exercise 10. Recall that any PID is also a UFD. Show that the converse holds for any Dedekind ring.

Exercise 11. Prove that a noetherian integral domain \mathcal{O} is a Dedekind ring if and only if $\mathcal{O}_{\mathfrak{p}}$ is a DVR for each nonzero prime ideal \mathfrak{p} of \mathcal{O}.
(This is one of several possible definitions of a Dedekind ring. In fact, for \mathcal{O} a noetherian integral domain which is not a field, the following are equivalent:
(1) \mathcal{O} is a Dedekind ring.
(2) $\mathcal{O}_{\mathfrak{p}}$ is a DVR for all nonzero prime ideals of \mathcal{O}.
(3) Each nonzero proper ideal of \mathcal{O} admits a unique factorization into prime ideals.
(4) Every fractional ideal of \mathcal{O} is invertible.)

Exercise 12. In this exercise we will produce infinitely many imaginary quadratic number fields with nontrivial class group. (In fact, there are only nine imaginary quadratic number fields with trivial class group, namely $\mathbf{Q}(\sqrt{-d})$ for $d \in\{1,2,3,7,11,19,43,67,167\}$.)

Let $d>1$ be an odd squarefree integer such that $-d \not \equiv 1(\bmod 4)$, and let $K=\mathbf{Q}(\sqrt{-d})$. Hence $\mathcal{O}_{K}=\mathbf{Z}[\sqrt{-d}]$.
(a) Show that in \mathcal{O}_{K} we have $(2)=(2,1+\sqrt{-d})^{2}$.
(b) Show that $(2,1+\sqrt{-d})$ is not a principal ideal.

Exercise 13 (Orders of ideals at primes). Let \mathfrak{a} be a fractional ideal of a Dedekind ring \mathcal{O}, and let \mathfrak{p} be a nonzero prime ideal of \mathcal{O}. We define the order of \mathfrak{a} at \mathfrak{p} as

$$
\operatorname{ord}_{\mathfrak{p}}(\mathfrak{a}):=\nu_{\mathfrak{p}},
$$

where $\nu_{\mathfrak{p}}$ is the uniquely determined exponent of \mathfrak{p} occuring in the prime factorization $\mathfrak{a}=\prod_{\mathfrak{q}} \mathfrak{q}^{\nu_{\mathfrak{q}}}$ of \mathfrak{a}. We say that \mathfrak{a} has a zero at $\mathfrak{p}($ written $\mathfrak{p} \mid \mathfrak{a})$ if $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})>0$, or a pole at \mathfrak{p} if $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})<0$.
(a) Show that $\operatorname{ord}_{\mathfrak{p}}$ defines a discrete valuation $K^{\times} \rightarrow \mathbf{Z}, x \mapsto \operatorname{ord}_{\mathfrak{p}}(x)$ (where K is the fraction field of \mathcal{O}). This means that
(1) $\operatorname{ord}_{\mathfrak{p}}(x y)=\operatorname{ord}_{\mathfrak{p}}(x)+\operatorname{ord}_{\mathfrak{p}}(y)$, and
(2) $\operatorname{ord}_{\mathfrak{p}}(x+y) \geq \min \left\{\operatorname{ord}_{\mathfrak{p}}(x), \operatorname{ord}_{\mathfrak{p}}(y)\right\}$.
(b) Show that $\mathfrak{a}=\mathfrak{b}$ if and only if $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{b})$ for all prime ideals \mathfrak{p}.

Exercise 14. In this exercise we aim to show that any ideal in a Dedekind ring \mathcal{O} can be generated by two elements.
(a) Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be a sequence of prime ideals in the Dedekind ring \mathcal{O}, and let ν_{1}, \ldots, ν_{r} be a sequence of nonnegative integers. Show that there is an element $a \in \mathcal{O}$ such that $\operatorname{ord}_{\mathfrak{p}_{i}}(a)=\nu_{i}$ for all $i=1, \ldots, r$.
(Hint: Use that, by the Chinese remainder theorem, the natural map

$$
\mathcal{O} \rightarrow \prod_{i} \mathcal{O} / \mathfrak{p}_{i}^{\nu_{i}+1}
$$

is surjective.)
(b) Let \mathfrak{a} be a proper ideal of \mathcal{O}. Show that \mathfrak{a} can be generated by two elements.
(Hint: By (a), there is an element $a \in \mathcal{O}$ such that $\operatorname{ord}_{\mathfrak{p}}(a)=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})$ for all $\mathfrak{p} \mid \mathfrak{a}$. However, (a) might have zeros at other primes. Find an appropriate element $b \in \mathcal{O}$ to remedy this.)

3. Lattices

Exercise 15.

(a) Let $K=\mathbf{Q}(\sqrt{-3})$. Draw a picture of the lattice Γ of integers from $\mathcal{O}_{K}=\mathbf{Z}\left[\frac{1}{2}(1+\sqrt{-3})\right]$ in the complex plane. Mark the fundamental mesh of Γ. What is $\operatorname{vol}(\Gamma)$? Now let $K=\mathbf{Q}(\sqrt{3})$. We can realize $\mathcal{O}_{K}=\mathbf{Z}[\sqrt{3}]$ as a lattice in \mathbf{R}^{2} via the map

$$
\Sigma: K \rightarrow \mathbf{R}^{2}
$$

given by $\Sigma(x+\sqrt{3} y)=(x+\sqrt{3} y, x-\sqrt{3} y)$. So \mathcal{O}_{K} is naturally a 2-dimensional object, which suggests that we should obtain accumulation points when considering it as a subset of the 1-dimensional space \mathbf{R}. We will show that this is indeed the case:
(b) Verify that $u=2-\sqrt{3}$ is a unit in \mathcal{O}_{K}. Use u to define a sequence of elements from \mathcal{O}_{K} converging to $0 \in \mathbf{R}$.
(c) Show that $\mathbf{Z}[\sqrt{3}]$ is dense in \mathbf{R}.

Exercise 16. Read $\S 5$ in Neukirch.

