MAT4250 EXERCISE SHEET 2

1. The class number and Dirichlet's unit theorem

Exercise 1. Compute the regulator of a real quadratic number field.

Now let K be the field $K := \mathbf{Q}(\theta)$, where $\theta^3 = 11$. We aim to compute the class group of K. You may assume without proof that $\mathcal{O}_K = \mathbf{Z}[\theta]$.

If \mathfrak{b} is a fractional ideal of K, let us write $[\mathfrak{b}]$ for the class of \mathfrak{b} in Cl_K .

Exercise 2.

- (a) Compute the discriminant d_K . Show that the only ramified primes in K are 3 and 11.
- (b) Show that any class $[\mathfrak{b}]$ in Cl_K is represented by an integral ideal \mathfrak{a} of norm $\mathcal{N}(\mathfrak{a}) < 17$.

Thus, in order to find generators for Cl_K , it suffices to check all prime ideals of \mathcal{O}_K of norm < 17. To do this, it is enough to determine the prime ideals of \mathcal{O}_K that lie above a rational prime p such that p < 17. In other words, we must compute $p\mathcal{O}_K$ for p < 17. We start out by considering the unramified primes.

Exercise 3. Verify the following table:

p	$p\mathcal{O}_K$	Norm
2	$\mathfrak{p}_2\mathfrak{p}_2'$	$\mathcal{N}(\mathfrak{p}_2) = 2, \mathcal{N}(\mathfrak{p}_2') = 4$
5	$\mathfrak{p}_5\mathfrak{p}_5'$	$\mathcal{N}(\mathfrak{p}_5) = 5, \mathcal{N}(\mathfrak{p}_5') = 5^2$
7	$\mathfrak{p}_7 = (7)$	$\mathcal{N}(\mathfrak{p}_7)=7^3$
13	$\mathfrak{p}_{13} = (13)$	$\mathcal{N}(\mathfrak{p}_{13}) = 13^3.$

Exercise 4. We will now describe also the ramified primes, thus giving a complete list of the possible generators of Cl_K .

- (a) Let $k \in \mathbb{Z}$ be an integer. Show that $N_{K/\mathbb{Q}}(\theta + k) = k^3 + 11$ and $N_{K/\mathbb{Q}}(\theta^2 k) = k^3 + 121$.
- (b) Use (a) to show that $\mathfrak{p}_{11} := (\theta)$ and $\mathfrak{p}_3 := (\theta 2)$ are prime ideals of norms 11 and 3, respectively.
- (c) Show that $\mathfrak{p}_3^3 = (3)$. Conclude that we have found all prime ideals in \mathcal{O}_K of norm < 17. (d) Show that $[\mathfrak{p}_5] = [\mathfrak{p}_2]^{-1}$, and that Cl_K is generated by $[\mathfrak{p}_2]$.

Therefore, in order to determine Cl_K it only remains to understand \mathfrak{p}_2 . By Exercise 4 (a), the element $\theta^2 - 5$ has norm -4. Hence the ideal $(\theta^2 - 5)$ must be equal to either \mathfrak{p}_2^2 or \mathfrak{p}_2' , as these are the only ideals of norm 4.

Exercise 5. Prove that $(\theta^2 - 5)$ cannot be equal to \mathfrak{p}'_2 .

Hence $\mathfrak{p}_2^2 = (\theta^2 - 2)$, so that the generator of Cl_K has order either 1 or 2 (depending on whether \mathfrak{p}_2 is principal or not). We will show that the order is in fact 2, which yields $\operatorname{Cl}_K \cong \mathbb{Z}/2$.

Exercise 6.

(a) Show that $\mathcal{O}_K^{\times} \cong \mu_2 \oplus \mathbb{Z}$. Show also that $v := 1 + 4\theta - 2\theta^2$ is a unit. You may assume without proof that v is in fact a fundamental unit.

We will now prove that the order of $[\mathfrak{p}_2]$ in Cl_K is 2. To do this, assume to the contrary that \mathfrak{p}_2 is principal, say $\mathfrak{p}_2 = (\alpha)$. As $\mathfrak{p}_2^2 = (\theta^2 - 5)$, we then have

$$\alpha^2 = (\theta^2 - 5)w$$

for some $w \in \mathcal{O}_K^{\times}$. By (a), we can write $w = \pm v^d$ for some integer d. Write $d = 2n + \delta$, where $\delta = 0$ or 1, and let $x := \pm v^{\delta}(\theta^2 - 5)$. Then x is congruent to a square modulo any prime ideal \mathfrak{p} of \mathcal{O}_K . We will use this to obtain a contradiction.

- (b) Prove that $x = -v^{\delta}(\theta^2 5)$, for instance by considering x modulo $\mathfrak{p}_3 = (\theta 2)$,
- (c) Show that there is a prime ideal \mathfrak{p}_{19} of norm 19 dividing $(\theta + 3)$.
- (d) Consider x modulo \mathfrak{p}_{19} in order to obtain a contradiction.

2. EXTENSIONS OF DEDEKIND DOMAINS, RAMIFICATION THEORY

Exercise 7. Let p be a rational prime. Show that $p = n^2 + 3m^2$ $(n, m \in \mathbb{Z})$ if and only if p = 3 or $p \equiv 1 \pmod{3}$.

Exercise 8. Let K be a number field. Show that $|d_K| \neq 1$. Conclude that there are no unramified extensions of **Q**.

Exercise 9. Suppose that L/K is a Galois extension of number fields such that G = Gal(L/K) is not cyclic. Can a prime in K be inert (i.e., remains a prime ideal in \mathcal{O}_L) in this extension?

Exercise 10. Exercise 2, §9 in Neukirch.

Exercise 11. Read §10 in Neukirch.