
MAT4250 EXERCISE SHEET 2

1. The class number and Dirichlet’s unit theorem

Exercise 1. Compute the regulator of a real quadratic number field.

Now let K be the field K := Q(θ), where θ3 = 11. We aim to compute the class group of K.
You may assume without proof that OK = Z[θ].

If b is a fractional ideal of K, let us write [b] for the class of b in ClK .

Exercise 2.

(a) Compute the discriminant dK . Show that the only ramified primes in K are 3 and 11.
(b) Show that any class [b] in ClK is represented by an integral ideal a of norm N (a) < 17.

Thus, in order to find generators for ClK , it suffices to check all prime ideals of OK of norm
< 17. To do this, it is enough to determine the prime ideals of OK that lie above a rational
prime p such that p < 17. In other words, we must compute pOK for p < 17. We start out by
considering the unramified primes.

Exercise 3. Verify the following table:

p pOK Norm

2 p2p
′
2 N (p2) = 2, N (p′2) = 4

5 p5p
′
5 N (p5) = 5, N (p′5) = 52

7 p7 = (7) N (p7) = 73

13 p13 = (13) N (p13) = 133.

Exercise 4. We will now describe also the ramified primes, thus giving a complete list of the
possible generators of ClK .

(a) Let k ∈ Z be an integer. Show that NK/Q(θ+k) = k3 + 11 and NK/Q(θ2−k) = k3 + 121.
(b) Use (a) to show that p11 := (θ) and p3 := (θ − 2) are prime ideals of norms 11 and 3,

respectively.
(c) Show that p33 = (3). Conclude that we have found all prime ideals in OK of norm < 17.
(d) Show that [p5] = [p2]−1, and that ClK is generated by [p2].

Therefore, in order to determine ClK it only remains to understand p2. By Exercise 4 (a), the
element θ2 − 5 has norm −4. Hence the ideal (θ2 − 5) must be equal to either p22 or p′2, as these
are the only ideals of norm 4.

Exercise 5. Prove that (θ2 − 5) cannot be equal to p′2.

Hence p22 = (θ2 − 2), so that the generator of ClK has order either 1 or 2 (depending on
whether p2 is principal or not). We will show that the order is in fact 2, which yields ClK ∼= Z/2.
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Exercise 6.

(a) Show that O×K ∼= µ2 ⊕ Z. Show also that v := 1 + 4θ − 2θ2 is a unit. You may assume
without proof that v is in fact a fundamental unit.

We will now prove that the order of [p2] in ClK is 2. To do this, assume to the contrary that p2
is principal, say p2 = (α). As p22 = (θ2 − 5), we then have

α2 = (θ2 − 5)w

for some w ∈ O×K . By (a), we can write w = ±vd for some integer d. Write d = 2n+ δ, where
δ = 0 or 1, and let x := ±vδ(θ2 − 5). Then x is congruent to a square modulo any prime ideal p
of OK . We will use this to obtain a contradiction.

(b) Prove that x = −vδ(θ2 − 5), for instance by considering x modulo p3 = (θ − 2),
(c) Show that there is a prime ideal p19 of norm 19 dividing (θ + 3).
(d) Consider x modulo p19 in order to obtain a contradiction.

2. Extensions of Dedekind domains,
ramification theory

Exercise 7. Let p be a rational prime. Show that p = n2 + 3m2 (n,m ∈ Z) if and only if p = 3
or p ≡ 1 (mod 3).

Exercise 8. Let K be a number field. Show that |dK | 6= 1. Conclude that there are no unramified
extensions of Q.

Exercise 9. Suppose that L/K is a Galois extension of number fields such that G = Gal(L/K)
is not cyclic. Can a prime in K be inert (i.e., remains a prime ideal in OL) in this extension?

Exercise 10. Exercise 2, §9 in Neukirch.

Exercise 11. Read §10 in Neukirch.
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