MAT4250 EXERCISE SHEET 4

Exercise 1. Let p be an odd prime. Show the supplementary quadratic reciprocity law

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}} .
$$

Exercise 2. Is 43 a quadratic residue modulo 3319 ?
Exercise 3. Let $p \equiv 1(\bmod 4)$ be a rational prime, and consider the fields $L=\mathbf{Q}\left(\zeta_{p}\right)$ and $K=\mathbf{Q}(\sqrt{p})$.
(a) Show that $K \subseteq L$.

Now let q be a rational prime satisfying $q^{n} \equiv-1(\bmod p)$ for some positive odd integer n.
(b) Determine the factorization type of $q \mathcal{O}_{K}$ and $q \mathcal{O}_{L}$.

Exercise 4. Let L / K be a separable field extension. Show that $\Omega_{L / K}^{1}=0$.
Exercise 5. Give an example of an extension of number fields L / K such that $\Omega_{\mathcal{O}_{L} / \mathcal{O}_{K}}^{1}$ is not a projective \mathcal{O}_{L}-module.

Exercise 6. Let A be a commutative ring.
(a) Let M be a free A-module of rank n, with basis e_{1}, \ldots, e_{n}. Then $\bigwedge^{k} M$ is the free A-module of rank $\binom{n}{k}$, with basis $e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ for $1 \leq i_{1}<\cdots<i_{k} \leq n$. (Thus, in particular, $\wedge^{n} A^{n} \cong A$, with basis $e_{1} \wedge \cdots \wedge e_{n}$.)
(c) Let M be a free A-module of rank n, and let $\phi: M \rightarrow M$ be an A-linear endomorphism. Then the induced map $\bigwedge^{n} \phi: \bigwedge^{n} M \rightarrow \bigwedge^{n} M$ is multiplication by $\operatorname{det} \phi$.
Exercise 7. Let A be a Dedekind ring. Use the characterization of finitely generated projective modules over A to show that $K_{0}(A) \cong \mathbf{Z} \oplus \mathrm{Cl}_{A}$. If A is the ring of integers in a number field, show that $\widehat{K}_{0}(A) \cong \mathbf{Z} \oplus \widehat{\mathrm{Cl}}_{A}$.

